
International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 1, January 2015

25

The Sway of Agile Processes over Software

Maintainability

Balraj Kumar
Department of Computer Applications

Lovely Professional University, Punjab, India

ABSTRACT

Software engineering is escalating in different dimensions at

precipitous speed and coercing the developers and researchers

to find new ways for easy and swift software development.

The induction of agile methodologies is one such step towards

achieving these goals. Today the agile processes and

techniques are very extensively accepted and fostered in the

software construction by the software industry and considered

as the valuable tools for hasty software development. This

paper throws light on different agile software development

methodologies and their sway over the software

maintainability. It emphasizes on the impact as perceived by

the agile fans and foes. The paper also aims to provide an

insight into the effect of agile methods when used as

maintenance processes to enhance the software

maintainability.

Keywords

Agile methodologies, agile software development, sway of

agile processes, software maintainability, maintenance

1. INTRODUCTION
Now software has become an integral part of our daily life.

Due to its indispensability, it has managed to make a unique

place in the sophisticated society and is finding its own ways

to change our frame of mind, culture, knowledge base and

working environment. When the software is modified,

enhanced and adapted to the changing environment, it

becomes more difficult and drifts-away from its original

design; it lowers down the software quality. This is the only

reason that the key portion of the total software development

cost is sacrificed to software maintenance [22]. The need of

hour is to use the state of the art software development tools

and techniques that could produce highly maintainable

software to satisfy the ever changing customer requirements.

Software development practice is actually a framework in

which the development process is carried out. There are two

types of methodologies available for software development:

First, family of plan-driven methods, the heavyweight

processes (waterfall etc.), originate from the academic world

[17] and use mathematical models for software development

and have been taken into use in the industrial world as well.

Second, family of agile methodologies, the lightweight

processes (XP, Scrum etc) is significantly younger and

developed in industrial companies rather than the academic

world and embrace changes at any stage rather than trying to

avoid them. Agile ratifies the planning for change and thus

improving the software quality and especially the

maintainability [4].

The main aim of this paper is to critically examine the sway of

agile development methodologies on the maintainability of

software systems. For this purpose, the paper has been

organized into several sections. Section-2 describes about the

literature of agile development and the maintainability.

Section-3 highlights the relationship between agile methods

and maintainability. Section-4 demonstrates that the agile

practices can be employed in maintaining software systems

too. Section-5 stresses upon the perspectives of agile

protagonists and antagonists. Finally, conclusion is presented

in section-6.

2. BACKGROUND
The present section is divided in two parts. The first part

explores the historical and recent literature of agile

development and covers the various aspects of agile processes

and tools. The next part discusses about the maintainability in

brief and states about the various factors affecting the

maintainability along with the metrics needed to measure a

software system‟s maintainability.

2.1 Agile Software Development
The term „Agile Software Development‟ (ASD) attempts to

serve as an umbrella for large number of processes, practices

and methodologies used for software development and project

management [4]. But what is the meaning of being Agile?

According to Jim Highsmith, being Agile means being able to

deliver quickly, change quickly and change often [11]. It was

introduced in 2001 in the Agile Manifesto [4]. This statement

values:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Here, both the left and the right side of each of the core values

are vital, but the items on the left are valued more than the

ones on the right. Incremental, cooperative, straightforward

and adaptive development is called the agile software

development [5]. Its main goal is to deliver working software

in small cycles/iterations. The steps for ASD are shown in the

following figure:

Figure 1: Agile Software Development

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 1, January 2015

26

In fig-1, the agile process begins with the project approval and

moves through the pre-iteration planning and repeats the cycle

of planning, execution and wrap-up again and again

depending on the project requirements, which is further

followed by a post-iteration consolidation and at last a release.

As ASD is based on iterative and incremental approach it

promises to deliver more productivity, better quality and high

project success rate in software development.

2.1.1 Agile Processes - A Brief Portrayal
Though there are many agile processes available, but here

only few are being discussed which form the basis of this

paper. These include:

Extreme Programming (XP) is envisioned to hone the quality

of software and agility to the changing needs of customer,

industry and market. Initially, it was started simply as an

opportunity to get the work done [15] with the processes and

practices which have been found effective during the

development of a software system. Scrum is an iterative and

incremental model for project management and development.

Under this, project plans are continuously scrutinized and

improved based on the empirical project reality. Analysis,

development and testing take place in the 2-4 week iterations,

called sprints. Extreme programming and Scrum methods

complement each other very well. Where XP is accountable

for technical aspects, Scrum is responsible for project

planning and tracking [14].

Open Source Software (OSS) development is relatively a

novel agile approach of constructing and deploying large

software systems on world-wide basis. The OSS approach

advocates the source code to be freely available for

amendments and its redistribution without any charge. The

Object-Mine-Adopt is generally regarded as an agile process

because it is more like people-oriented rather than process-

oriented and has many features like other agile methods [6]. It

is swift, adaptive and self-organizing in nature and used to

provide means to construct more maintainable software.

2.2 Maintainability - An Improvement

Opportunity
The maintenance effort is the most time-consuming part of

software-development-life-cycle which may generally range

from 65% to 75% of total time spent on software development

[23]. Most of the time is spent during maintenance-phase

which significantly affects the cost of the software product.

Software can be made highly maintainable by putting more

efforts in the initial stages of its SDLC and this may

considerably reduce the overall software cost [10]. Software

maintainability or simply maintainability is defined as - “The

ease with which a software system or component can be

modified to correct faults, improve performance or other

attributes, or adapt to a changed environment”[3].

Software maintainability can be viewed as an opportunity to

improve the software system the way it is constructed so that

it can be maintained more easily. The maintainability

literature can be classified in two broad categories: factors

swaying the maintainability and the metrics to measure a

software system‟s maintenance effort.

2.2.1 Factors Swaying the Maintainability
Factors can affect the maintenance effort positively or

negatively. Structured design, analysis methodology and lack

of application experience are the factors that have a negative

impact on the maintenance effort [24], whereas good response

time of the hardware for development and proficient staff are

the key factors that influence it negatively. Three factors were

identified based on literature and empirical observations that

significantly influence the software maintainability. They

include functionality, development practice and software

complexity [25]. Age and size are the two control factors that

also directly or indirectly affect the maintenance work. In case

of age, fixing errors become more expensive the later if they

are found in software system [19], whereas the size of a

component or module has a strong impact on the maintenance

effort required for making changes in that component [27].

Developer skills and experience are generally ignored, but

they also have greater impact on the software maintenance

[28]. Program comprehension plays a major role in

maintaining a software system [29]. Without complete

understanding of the code, it is a big challenge for the

maintenance team to perform alterations in software modules

i.e, the more difficult a program is to comprehend, the more

difficult it is to maintain and the more difficult a program is

to maintain the higher will be its maintainability risk [10].

2.2.2 Maintainability Metrics
Maintainability Index (MI) was proposed to determine the

software maintainability precisely based on the status of the

corresponding source code [22]. The MI is a composite

number that depends upon a number of different metrics for a

software system. It is based on the Halstead Volume (HV)

metric [26], the Cyclomatic Complexity (CC) [25] metric, the

average number of Lines of Code per module (LOC), and

optionally the percentage of comment lines per module

(COM). The higher the MI, the more the system is considered

maintainable. The MI agonizes from austere limitations like

root-cause analysis, language liberty, ease of computation and

control.

Authors in [31] presented a huge number of metrics to

measure the maintainability of a software system and

elucidated how to consolidate them to form the

maintainability index for a software system. They presented

all the metrics in a hierarchical form. The hierarchical

structure is divided in 3 major components - source code,

maturity attributes, and supporting documentation. The leaf

nodes represent measurable attributes of a software system. It

is amazing that none of the metrics belong to the skill /

experience of the software developers. But other research has

admitted that the maintenance effort can decrease by engaging

the experienced developers [32]. Authors in [7] proposed a

viewpoint for assessing adaptive maintenance effort in terms

of person hours based on the projected number of LOC to be

modified and/or the number of operators to be altered.

3. CONNECTION BETWEEN AGILE

METHODS AND MAINTAINABILITY
The major problem being faced by software industries is that

they spend more on maintaining existing software than they

do on novel software development. So, if the agile processes

are to be successful, they have to support software

maintenance with original development. There are two basic

concerns involved that need to be addressed: First, are

systems that developed using an agile approach maintainable

with emphasis on the development process and reducing

documentation part? Second, can agile methods be used

effectively for developing a new system/project keeping in

mind the unstable customer needs? Since the maintainability

of existing software system is related to how the system

supports easy error correction in future, addition of new

feature and further related activities of software improvement,

so it cannot be measured directly. For this, the maintainability

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 1, January 2015

27

is stated as a set of measureable properties of the system

which all influence the software maintainability. There are

large number of metrics in literature that are used for

measuring the maintainability of a software system and an

approach to unite these measurements into a single MI [31].

Since no study has been found that specifically deals with the

maintainability of a software system developed using agile

approach, so few empirical studies about development teams

that use agile methods were carried out. In a study, the

development team adopted two agile processes (XP and

Scrum) together and reported low defect density and

improved team communication [14]. In another study, XP and

Scrum together were found to be the most effective

combination of agile methods [21]. Identification of few bugs

reduced overall maintenance work. The major finding of

another study that used XP for development is the low code

complexity, whereas the complexity control work is relatively

high [30].

4. AGILE PROCESSES FROM

MAINTAINABILITY PERSPECTIVE
Agile methods can also be used as software maintenance

processes to provide better quality software. Following are

some of the illustrations where agile processes can be

witnessed from different maintainability point of views:

4.1 Extreme Programming (XP)
Extreme Programming, one of the popular agile methods,

could be used for software maintenance as proposed in [20]

instead of the traditional approaches like waterfall paradigm.

The extreme programming practice revealed that refactoring

refined the quality and constancy of two programs written in

Java [1]. When XP was again used in another research [16], it

demonstrated that the coding standard of XP, regular testing

and mutual program ownership were the most appreciated and

the most challenging practices to adopt. Also, the productivity

of maintenance was increased by three times.

4.1.1 Benefits of using XP
The use of XP as a software maintenance model may help:

• Reduce complexity by removing code not in use

• Enforce compliance to source code guiding principles

• Promote ownership and obligation for programming style

• Provide a proactive approach to problem solving

• Refactor to reduce code size by more than 40%

• Eliminate code complexity and stagnation

• Apply user stories to request bug fixes

• Fully automate the build and test process

• Reduce staff and productivity goes up by three times

• Provide a precise set of rules to govern the merging of

solutions and augmentations

• Improve the software quality by 67%

4.2 Scrum
Scrum is built on the core principles of providing an iterative

and incremental approach for effective software development.

Initially, it was designed for software development only, but

now it is equally effective in software maintenance and the

overall project management. Scrum is the perfect agile

methodology for the situation which needs quick reaction to

changes in the customer requirements. Each project is special

and unique and that‟s the underlying philosophy on which

Scrum is built. Software maintenance (aka backlog grooming)

is taken care by the Scrum process. Like other scrum stand-up

meetings, backlog grooming meeting is also crucial from the

software maintenance point of view and must be attended by

the team, stakeholder and the ScrumMaster. During the

maintenance meeting, everyone helps prepare the scrum

backlog for the sprint planning meeting like adding new

stories and epics, extracting stories from existing epics and

estimating effort for existing stories. When the backlog items

satisfy the acceptance criteria and are estimated by

appropriate team members, the planning process will not be

tense or long.

4.3 Open Source Software (OSS)
The OSS development methods are another type of agile

methods that can be used as software maintenance processes.

That‟s why they need not to have separate traditional

sequential methods for software maintenance. For this

purpose, a lot of research has been carried out. The quality of

software was 20% higher in a study of 6 OSS products

representing six million lines of code [2]. A research study of

two OSS products and 4 industry projects showed that OSS

projects had more than 5 times lesser faults [9]. In another

study of 53 OSS products, total sixteen million LOC, the

proportion of major to minor contributors did not increase the

size, complexity, or number of changes [13]. Lastly, in a study

of 75 OSS projects, the use of the OSS development

methodology not only enhanced quality of software, but also

did not raise the development cost [18].

4.4 Observe-Mine-Adopt (OMA)
The OMA is an agile approach that helps organizations to

identify and adopt software processes to enhance the

maintainability and also emphasizes to ascertain highly

maintainable modules, difficult to maintain modules and best

practices to develop easy to maintain modules [6].

4.4.1 Benefits of using OMA
The OMA approach provides the following benefits:

• The OMA operations are clearly defined and close to the

natural ways of human thinking.

• The methodology overhead is trivial and can be

performed by holding a few OMA meetings.

• The OMA supports the development team to get the

feedback so that people can quickly adapt to changes.

• The OMA primarily depends on human experiences and

is well suited for empirical methods.

In a study [8] to determine the maintainability, the OMA was

applied on two real-world projects. After integrating the

specified changes, one minor and one major change was

observed in applications. A minor change did not affect any

core requirements for the specification and did not require any

prior knowledge of the domain area, whereas a major change

affected the core processing requirements of the system and

necessitated domain familiarity and strong knowledge of the

system. In a different study, another group of 3 projects

written in Java used the OMA model to assess the software

maintainability. The original code of all 3 projects along-with

their modified versions (after a minor or a major change) was

intensively scrutinized. The major and minor changes were

similar in scope and size to those found in [8] study.

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 1, January 2015

28

5. VANTAGE POINT OF AGILE FANS

AND FOES
According to supporters, agile methods are the best practices

that have happened to software development in the recent

years, whereas the critics see them as a backlash to software

engineering and compare them to hacking. In the light of

critical views and annotations by both fans and foes, this

section presents the different representations found in

literature [12].

5.1 Affirmative Representations
According to the advocates of agile methods, these practices

are much better for maintenance purposes than the superseded

ones and the software developed using agile methods

stimulates customer collaboration to extract correct

maintenance requirements, development of regular software

advancements to deliver competence to maintenance

customers quickly, cooperation within the development teams

to enforce high maintenance communication and quick

response to fast changing customer requirements.

Agile methods provide the means to develop software by

undertaking software maintenance in a systematic manner.

The people working on the software maintenance usually

prefer to work with agile methodologies. They develop a good

quality software usually at a nominal cost. With agile

methodologies, software maintainability is more effective

when constructed with other best practices. These include

project management, team empowerment and architecture.

To achieve high software maintainability, the major emphasis

is on tracking requirements, design, testing etc. Agile

methodologies, not just at the start rather throughout the

development process, facilitate the regular improvement in the

design and architecture. Likewise, testing must be performed

on regular basis and not just at the end. Automating the testing

process lowers the cost of testing software regularly. After a

long period, it becomes extremely difficult to predict what

changes are needed. With regular and proper customer

feedback, software must be amended to satisfy the client

requirements. The software must be flexible enough to

incorporate new changes.

5.2 Negative Representations
Software maintainability is one of the quality attributes that

must be put up into the structural design of a software system.

The trivial role played by the software architecture in agile

software development is a barrier to long-term software

maintenance. The agile practices seem to work well in a set of

ideal conditions that do not hold true in many projects like the

same team will be maintaining the software throughout its life

cycle. Secondly, the new feature addition should not have a

major impact on the entire software system. If it does have,

there are chances for the team to go back and redesign or

refactor the code again.

The purpose of agile methods is to adapt to the ever changing

requirements of the customers. They lose the long-term

product quality for the sake of achieving short term goals such

as marketing period and transient customer contentment. It is

evident that requirements may change and the customer

perceptions may also get change over time. Software systems

usually have long life once they are developed and ready for

use. Then what are the benefits gained through agile practices

compared to the costs of maintaining a product in the years to

come. In agile approach, the original development is exposed

to the bare minimum. This may be a good way of keeping

tight deadlines, but it is not the best way to save costs. The

truth is that the costs of adding quality later are much higher

than building in the quality from the start. When the

customers actually comprehend and feel the reality, they

would not be as excited about the agile campaign as they are.

Inadequacy of system documentation may lead to increased

system complexity, poor maintainability, dearth of system

familiarity, difficulties to assess impact of change and side

effects and chaos in the challenging and complex maintenance

tasks. Like system documentation, the process documentation

is equally important. Its role is to record all the relevant

process steps in order to provide process transparency to all

the people in development team so that they can control the

process and take right decisions in present and future.

Insufficient process documentation makes the monitoring

impossible. This is the main reason for losing control over the

software processes and systems and for decreasing the

chances to improve their quality.

6. CONCLUSION
Agile processes are a set of methodologies that promise swift

and quality software development. Agile promoters strongly

support and recommend these lightweight processes in

comparison to traditional ones, whereas the antagonists, on

the other side, have declared the agile methodology as a

“license to hack” or “code-and-fix” method. The paper finds

the agile methodologies best suited for the projects that have

little visibility for future requirements. With their use,

decisions can be made throughout the development when the

requirements become clearer. Self-organizing teams, close

cooperation between business people and developers, pair

programming, timely software releases, regular adaptation to

unstable needs and refactoring are the key factors for their

success. Here the paper has validated that agile processes have

significant sway on the maintainability of a software system

and these methods can be applied to software maintenance as

well. In fact, the software complexity and defects get reduced.

The use of agile processes may decrease software

maintenance costs, improve productivity and enhance the

software quality.

7. ACKNOWLEDGMENT
This paper has come into present shape with invaluable

guidance and support of my friends and colleagues. Also, I

want to acknowledge my family, parents especially my

beloved daughter Jivita who have always been a guiding force

and source of inspiration for me.

8. REFERENCES
[1] Alshayeb, M., & Li, W. (2005). An empirical study of

system design instability metric and design evolution in

an agile software process. Journal of Systems and

Software, 74(3), 269-274.

[2] Samoladas, I., Stamelos, I., Angelis, L., & Oikonomou,

A. (2004). Open source software development should

strive for even greater code maintainability.

Communications of the ACM, 47(10), 83-87.

[3] IEEE, Authoritative Dictionary of IEEE Standards

Terms, ANSI/IEEE Std. 100. Institute of Electrical and

Electronic Engineers, New York NY, 2000.

[4] Fowler, M., & Highsmith, J. (2001). The Agile

Manifesto Software Development Magazine.

[5] Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J.

(2002). Agile software development methods: Review

and analysis.

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 1, January 2015

29

[6] Huffman Hayes, J., Mohamed, N., & Gao, T. H. (2003).

Observe‐mine‐adopt (OMA): an agile way to enhance

software maintainability. Journal of Software

Maintenance and Evolution: Research and Practice,

15(5), 297-323.

[7] Hayes, J. H., Patel, S. C., & Zhao, L. (2004, March). A

metrics-based software maintenance effort model. In

2011 15th European Conference on Software

Maintenance and Reengineering (pp. 254-254). IEEE

Computer Society.

[8] Hayes, J. H. (2002). Energizing software engineering

education through real-world projects as experimental

studies. In Software Engineering Education and

Training, 2002.(CSEE&T 2002). Proceedings. 15th

Conference on (pp. 192-206). IEEE.

[9] Dinh-Trong, T. T., & Bieman, J. M. (2005). The

FreeBSD project: A replication case study of open source

development. Software Engineering, IEEE Transactions

on, 31(6), 481-494.

[10] Kumar, B. (2012, September). A Survey of Key Factors

Affecting Software Maintainability. In Computing

Sciences (ICCS), 2012 International Conference on (pp.

261-266). IEEE.

[11] Highsmith, J. A. (2000). Extreme programming, e-

business Application Delivery, vol.

[12] Kajko-Mattsson, M., Lewis, G. A., Siracusa, D., Nelson,

T., Chapin, N., Heydt, M., ... & Snee, H. (2006,

September). Long-term life cycle impact of agile

methodologies. In Software Maintenance, 2006.

ICSM'06. 22nd IEEE International Conference on (pp.

422-425). IEEE.

[13] Scotto, M., Sillitti, A., & Succi, G. (2007). An empirical

analysis of the open source development process based

on mining of source code repositories. International

Journal of Software Engineering and Knowledge

Engineering, 17(02), 231-247.

[14] Fitzgerald, B., Hartnett, G., & Conboy, K. (2006).

Customising agile methods to software practices at Intel

Shannon. European Journal of Information Systems,

15(2), 200-213.

[15] Beck, K. (2000). Extreme programming explained:

embrace change. Addison-Wesley Professional.

[16] Svensson, H., & Host, M. (2005, March). Introducing an

agile process in a software maintenance and evolution

organization. In Software Maintenance and

Reengineering, 2005. CSMR 2005. Ninth European

Conference on (pp. 256-264). IEEE.

[17] Plat, N., van Katwijk, J., & Toetenel, H. (1992).

Application and benefits of formal methods in software

development. Software Engineering Journal, 7(5), 335-

346.

[18] Capra, E., Francalanci, C., & Merlo, F. (2008). An

empirical study on the relationship between software

design quality, development effort and governance in

open source projects. Software Engineering, IEEE

Transactions on, 34(6), 765-782.

[19] Shen, V. Y., Yu, T. J., Thebaut, S. M., & Paulsen, L. R.

(1985). Identifying error-prone software—an empirical

study. Software Engineering, IEEE Transactions on, (4),

317-324.

[20] Poole, C., & Huisman, J. W. (2001). Using extreme

programming in a maintenance environment. IEEE

Software, 18(6), 42-50.

[21] Parsons, D., Ryu, H., & Lal, R. (2007). The impact of

methods and techniques on outcomes from agile software

development projects. In Organizational Dynamics of

Technology-Based Innovation: Diversifying the Research

Agenda (pp. 235-249). Springer US.

[22] Coleman, D., Ash, D., Lowther, B., & Oman, P. (1994).

Using metrics to evaluate software system

maintainability. Computer, 27(8), 44-49.

[23] Muthanna, S., Kontogiannis, K., Ponnambalam, K., &

Stacey, B. (2000). A maintainability model for industrial

software systems using design level metrics. In Reverse

Engineering, 2000. Proceedings. Seventh Working

Conference on (pp. 248-256). IEEE.

[24] Albrecht, A. J., & Gaffney, J. E. (1983). Software

function, source lines of code, and development effort

prediction: a software science validation. Software

Engineering, IEEE Transactions on, (6), 639-648.

[25] McCabe, T. J. (1976). A complexity measure. Software

Engineering, IEEE Transactions on, (4), 308-320.

[26] Halstead, M. H. (1977). Elements of Software Science,

Operating, and Programming Systems Series. Elsevier

Science, 7.

[27] Niessink, F., & van Vliet, H. (1997, October). Predicting

maintenance effort with function points. In Software

Maintenance, 1997. Proceedings., International

Conference on (pp. 32-39). IEEE.

[28] Banker, R. D., Datar, S. M., Kemerer, C. F., & Zweig, D.

(1993). Software complexity and maintenance costs.

Communications of the ACM, 36(11), 81-94.

[29] Yau, S. S., & Collofello, J. S. (1980). Some stability

measures for software maintenance. Software

Engineering, IEEE Transactions on, (6), 545-552.

[30] Capiluppi, A., Fernandez-Ramil, J., Higman, J., Sharp,

H. C., & Smith, N. (2007, May). An empirical study of

the evolution of an agile-developed software system. In

Proceedings of the 29th international conference on

Software Engineering (pp. 511-518). IEEE Computer

Society.

[31] Oman, P., & Hagemeister, J. (1992, November). Metrics

for assessing a software system's maintainability. In

Software Maintenance, 1992. Proceerdings., Conference

on (pp. 337-344). IEEE.

[32] Kitchenham, B. A., Travassos, G. H., von Mayrhauser,

A., Niessink, F., Schneidewind, N. F., Singer, J., ... &

Yang, H. (1999). Towards an ontology of software

maintenance. Journal of Software Maintenance, 11(6),

365-389.

IJCATM : www.ijcaonline.org

