
International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 9, December 2014

1

Reverse Engineering

Aabhas Singhal
Department of CSE

Nirma University – Institute Of Technology
Ahmedabad, India

Shlok Gandhi
Department of CSE

Nirma University – Institute Of Technology
Ahmedabad, India

ABSTRACT

This paper provides the basic information about Reverse

Software Engineering and its advantages and disadvantages of

Reverse Engineering. Today Reverse Engineering is used in

many fields of Information Technology in form of Legacy

compatibility, Malware Analysis, Network Analysis, Binary

code patching, debugging, and improvising existing

algorithms, rapid prototyping and even software reusability.

The paper provides understanding of Reverse Engineering and

discusses some of the advantages and issues in detail.

Keywords

Reverse Engineering, Reusability, Disassembly, and

Decompilation.

1. INTRODUCTION
Engineering is profession involves in constructing, designing,

manufacturing, maintaining of systems, products and

structures. Basically there are two types of Engineering:

Forward and Reverse. Reverse Engineering is a process of

understanding, duplicating an al- ready existing product or

component without the aid of drawings, documentation or

computer model[6]. It is process of analyzing a system for

three main purposes:

• Identify the components and understanding their

interrelationship.

• Create their representations in another form.

• Generate physical representation of the system.

In Software Engineering, the term reverse engineering

usually means going backward through the development

cycle and under- standing the implementation and working

of the software. Reverse engineering is a phase preceding

the re-engineering. According to Chikofsky and Cross

”Reverse engineering is the process of analyzing a

subject system to create representations of the system at a

higher level of abstraction.[1] In this case, the o/p of

implementation phase is reverse engineered to the analysis

phase, an inverse strategy of traditional, basic waterfall

model. Reverse engineering is process of examination only

and not modifying the source code (which is a part of re-

engineering).In practice, there are two types of Software

Reverse engineering. One in which, source code is readily

available, but higher level aspects of the programs are poorly

documented or unavailable and they are to be discovered.

Secondly the cases in which source code is not available

and the only objective of Reverse engineering is to

discover the source code

Black Box Testing in s/w engineering is somewhat related

to Reverse engineering. The tester has access to the code

and his goal is detect bugs and undocumented features by

accessing the component from outside. Other uses of

Reverse engineering are security auditing, removal of copy

protection, bypassing the access permissions, customize the

embedded system, in house repairs, enabling additional

features and also personal customization

2. WHY REVERSE ENGINEERING?
While most of the software code that has been written

today is not into use, but a considerable amount of

it has survived the generation and continues to be a

part of global economy. In 1997, the Gartner Group

reported that 80percent of the world’s business ran on

COBOL with over 200 billion lines of code in existence

and with an estimated 5 billion lines of new code annually

[2]. Since re-coding all this software is not a feasible or

economical solution, the only reasonable option is to

maintain and evolve the code, mostly with concepts of

Reverse Software Engineering. While Scientists or software

engineers are busy in maintaining legacy systems, more

than half of their time is spent in understanding the

existing code. Spending this time in understanding the

program is not economically feasible as software industry

grows in complexity and size. To lessen this time of software

engineers, it is advisable to practice reverse engineering

techniques to improve ability of understanding the program

quickly and efficiently.

Though several computer aided soft wares are available for

the purpose, the reverse engineering tools help transferring

the information of software’ design into software

developers’ mind. The expectation is that the developer

would be able to implement, improvise the understood design

and integrate the information to build a system model.

Software tools can never beat the model of mental

understanding. The main problem with software maintenance

is that it cannot be misspelled with some clever technique. [3]

argues ”re-engineering code to create a system that will not

need to be re- verse engineered again in the future is

presently unattainable.”

According to [4], there are four software development related

reverse engineering aspects; aspects that cover a broad

spectrum of software activities, including software

maintenance, re-use, re-engineering, evolution,

interoperability and testing. The image below

summarizes the software development related reverse

engineering aspects:

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 9, December 2014

2

The following are tasks one might perform in each of the

reversing scenarios [4]:

• Achieving Interoperability with Proprietary Software:

Develop applications or device drivers that interoperate (use)

proprietary libraries in operating systems or applications.

• Verification that Implementation Matches Design: Verify

that code produced during the forward development process

matches the envisioned design by reversing the code back

into an abstract design.

• Evaluating Software Quality and Robustness: Ensure the

quality of software is- fore purchasing it by performing

heuristic analysis of the binaries to check for certain

instruction sequences that appear in poor quality code.

• Legacy Software Maintenance, Re- engineering, and

Evolution: Recover the design of legacy software

modules when source is not available to make possible

the maintenance, evolution, and reuse of the modules.

3. REVERSE ENGINEERING PROCESS
The Reverse Engineering process is shown in the figure

below. The unstructured code is structured such that it

contains only structures programming constructs, before

even commencing the Reverse Engineering process. This

makes the code easier to be understood and read and provides

the basis of Reverse Engineering activities.

[5]The main core activity of Reverse Engineering is extract

abstractions. The designer/engineer must evaluate the

primitive program and thereby structured code, and

extract meaningful specification of processing that is to be

performed, interface that is to be built and database that is

to be used

3.1 Understand processing

The first step of Reverse Engineering is to ex- tract and

understands the procedural specifications of the already

existing application. To understand the procedural

abstractions, the code is analyzed and reviewed at

different levels of abstraction: system, component,

program, statement and pattern. The all-round functionality

of the entire program is to be fully under- stood by the

designer/engineer. This provides the insight of the

interdependence of the individual components of the

application. A block diagram of interdependence of the

functional abstractions is created. Each of the subcomponent

performs some function and represents some procedural

abstraction. If in some cases the abstractions are already

present; then they are verified and modified if needed.

3.2 Understand Data
As Reverse Engineering is a process of different level of

abstractions, at software level, internal data structures are

often to be Reverse Engineered as a part of the process.

Reverse Engineering operations for understanding internal

data structures focus on definition of classes of objects. It is

often done by identifying flags and internal/local data

structures of the application, defining the interrelationship

between the flags and the data structures (local or global)

and list all variables that are interdependent in any way and

scope.

Even internal database structures are important to be Reverse

Engineered. In this case it almost understands the data objects

and their interrelationship. It can be done by building an

initial model, listing and determining its candidate keys,

redefinition of tentative class, defining generalization and

discovering associations.

3.3 Understanding the User Interface
Simple and sophisticated User Interfaces have become

a vital part of any applications redeveloping them is a

common part of the Reverse Engineering process.

Engineers must fully understand the existing interface and

also it’s structural and behavioral aspects. We must be

clear about three things before Reverse Engineering of an

application:

1] Basic Options

2] Behavioral response of the application

3] Possible and better replacements

4. IS REVERSE ENGINEERING

LEGAL? ETHICAL?
There are two main legal aspects with Reverse Engineering:

1] Copyright Infringement: Related to shape and look of the

object

2] Patent Infringement: Related to idea of functioning of the

product

According to some, patent is nothing more than a warning

sign for a competitor to dis- courage competition. If the idea

is useful enough, the competitor may do the following:

Negotiate with the original person a license to lend the idea,

Claim that the idea is no big deal and a normal obvious idea

for anyone doing work in that field or make a minor

change in the product and claim that its new changed

product

For this Cleanroom Reverse Engineering is conducted so as to

carry out sequential steps:

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 9, December 2014

3

1] A team of trained engineers would perform disassembly

and Decompilation of the soft- ware, investigate the code

and describe them in as much detail as possible.

2] Description is documented properly and passed on to

new group of engineers who have no knowledge of the

previous existing software.

3] The second group of Engineers would develop the

software based on the documentation provided by the first

group so as to have different and unchallenged approach.

So this will probably avoid the law infringements and theft

of idea. Some of the new courts suggests that Reverse

Engineering done for achieving interoperability and

betterment through an independent procedure is totally legal

Is Reverse Engineering Ethical or not is a largely debated

topic and does not have a clear solution. But majority

believes that it is ethical as programs can be advances and that

is not an intellectual property. But there are incidents where

Software companies have been hurt by the Reverse

Engineering process.

5. CONCLUSION
Reverse engineering makes the system structure better,

creates new dimension of system documentation and makes

it easier, more lucid to understand. Reverse engineering a

software application program has advantages over more

radical approaches for helping system better- mint and

evolution. The main disadvantage of software reverse

engineering is that there are practical limits to the extent that a

system can be improved by reverse engineering.

6. ACKNOWLEDGMENTS
The authors would like to thank Prof. Sharing Pandya, Nirma

University - Institute Of Technology for his immense support

throughout the study on this subject.

7. REFERENCES
[1] Chikofsky, E. J.; Cross, J. H. (January 1990). ”Reverse

engineering and design recovery: A taxonomy”. IEEE

Software 7: 1317. doi:10.1109/52.43044.

[2] L. Cunningham. (2008, Jul 9). COBOL

Reborn [Online]. Available:

http://it.toolbox.com/blogs/oracle- guide/cobol-reborn-

25896

[3] B. W Weide, W D. Heym, J. E. Hollingsworth, ”Reverse

engineering of legacy code exposed,” in Proc. 17th Int.

Conf. Software Engineering, Seattle, Washington, WA,

1995, pp.327-331.

[4] E. Eliam, Secrets of Reverse Engineering, Indianapolis,

IN: Wiley, 2005.

[5] Software Engineering, A practitioner’s Approach by

Roger S Pressman (5th Edi)

[6] Wikipedia (2014), Reverse Engineering

IJCATM : www.ijcaonline.org

