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ABSTRACT
Elliptic curve scalar multiplication is the operation of successively
adding a point along an elliptic curve to itself k times. It is used
in elliptic curve cryptography (ECC) as a means of producing a
trapdoor function. In this paper, algorithms to compute the elliptic
curve scalar multiplication using a special form for integers will in-
troduce, and then two types of signed digit representation will use.
The signed digit form of the scalar is calculated by many types of
algorithms such as binary , non adjacent form and direct recoding.
The results indicate that the proposed methods perform better to
compute the scalar multiplication on elliptic curves and it is more
efficient than the existing methods.
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1. INTRODUCTION
In the mid of 1980s, Miller [15] and Koblitz [12] introduced a new
and an efficient public key crypyosystem named elliptic curve cryp-
tography which is dependent on the difficulty of the one of the hard
mathematical problem (HMP ), which is elliptic curve discrete
logarithm problem (ECDLP ). Since there are no known subex-
ponential time algorithms to solve the ECDLP , ECC supplies
the same level of security with a smaller key size compared with
the well known public key cryptosystems based on the discrete log-
arithm problem (DLP ) and the integer factoring problem (IFP )
over finite fields such as RSA [22], DSA [13] and AlGamal [6].
Because of this singularity (requires a shorter key sizes are trans-
lated to less power and storage requirements, and reduced com-
puting times compared with another public cryptosystems) using
ECC is recommended in resource constrained environments, such
as embedded devices and smart cards. Meanwhile the standard bod-
ies such as NIST , and ISO have adopted ECC as an alternative
and efficient public key cryptosystem.
Scalar multiplication (point multiplication) on elliptic curve is the
operation of computing an integer multiple of an element in the
group of elliptic curve. In other words, it is the calculation of kP
for any scalar k and a point P on the elliptic curve. There are mul-
tiple investigations on how to make this operation (scalar multipli-
cation on elliptic curve) over prime or binary fields faster as much

as possible. In this work elliptic curves which are defined on prime
field will be consider. For more details the reader is referred to [8]
[1] [14].
Since work began on encryption/ decryption system using ECC,
researchers were trying to enhance the efficiency of it. One of these
ways is improving the elliptic curve scalar multiplication by reduc-
ing the number of operations required to calculate it. This operation
kP is exactly the processing of computing

Q = kP = P + P + ...+ P︸ ︷︷ ︸
k times

where k is a positive integer called scalar and P, Q are elliptic
curve points. Therefore, reducing the number of these additions
(k times) will make the elliptic curve scalar multiplication faster,
and then it will make ECC more efficient.
The basic technique to compute kP is based on the binary form of
the scalar k which is called Binary Method [11]. This method scans
the bits of k and it performance depends on if the bit is 0 or 1. That
means, computing kP depends on the type of representation of k.
In 1951, Booth [3] proposed a new signed representation for any
integer, where the bits not only contains 0, 1 but with −1. This
method is named Non Adjacent Form (NAF ). Using this form to
compute kP made theECC more efficient. A generalization of the
NAF called the Window-w Non Adjacent (denoted w − NAF )
which is another method used to compute kP also made the ECC
more efficient. Many algorithms had been introduced to improve
the efficiency of ECC by transferring the scalar k to the NAF of
w −NAF such as [16] [19] [10].
In 2010, H. K. Pathak and Manju Sanghi [20] proposed a method
to compute the elliptic scalar multiplication kP named as ”Direct
Recoding”. In this method a new singed binary representation is
created by bitwise subtraction. Compared with many types of rep-
resentation of the scalar k the direct recoding method reduces the
number of non zero bits . The main contribution of the current
work: Firstly, analysing the Direct Recoding method and the meth-
ods which were mentioned in [20]. Secondly, proposed new algo-
rithms with high performance using the same technique but with
the lowest number of non zero bits comparing with existing algo-
rithms to compute elliptic curve scalar multiplication.
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2. PRELIMINARIES
In this section, a brief review of the materials which is used in the
current work will be introduced. An elliptic curve E over an arbi-
trary field F denoted by E(F ) is given by the Weierstrass equation
[23] as follows:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

where a1, a2, a3, a4, a6 ∈ F , and ∆ 6= 0, where ∆ denoted to
the discriminant of E.
The set of points on E is the set of solutions in F to the equation
(1), together with a special point named point at infinity O∞ .
Over the prime field Fp, with p > 3 the equation (1) simplifies as
follows:

y2 = x3 + ax+ b (2)

where a, b ∈ Fp and ∆ = 4a3 + 27b2 6= 0.
Over the binary field F2m , equation (1) can be simplified to:

y2 + xy = x3 + ax2 + b (3)

where a, b ∈ F2m and ∆ = b 6= 0.
Over the field of real number R, the elliptic curve is defined on
equation (2) but with a, b ∈ R and ∆ = 4a3 + 27b2 6= 0.

Theorem: Let P, Q ∈ E, L the line connecting P and Q
(tangent line to E if P = Q), and M the third point of intersection
L with E. let L′ be the line connecting M and O∞. Then the point
P +Q is the third point on E such that L′ intersects E at M , O∞
and P +Q.
The setE(F ) of rational points on anEC E defined over a field F
forms an abelian additive group. The additively operation defined
by the tangent and secant law. Figure 1 is illustrated this operation
geometrically [24] [4] on special EC over the real field, as an ex-
ample if the target is compute P +Q for P and Q are points on E,
then draw a line though P andQ which intersects with the E at the
third point M on E, the intersection between the vertical line and
the E is P +Q.

Fig. 1. Elliptic Curve Addition

The focus of this work will be with EC E defined over field of
prime number Fp which is denoted by E(Fp) given by equation
(2).

Theorem: Let P1 = (x1, y1), P2 = (x2, y2) be points in
E(Fp). Then P3 = P1 + P2 = (x3, y3) in E(Fp) is computed by

P1 + P2 =

{
O∞ if x1 = x2 & y1 = −y2

(x3, y3) if otherwise

where

x3 = λ2 − x1 − x2 y3 = λ(x1 − x3)− y1
and

λ =

{
3x2

1+a

2y1
if P1 = P2

y2−y1
x2−x1

if otherwise.

That means, the doubling operation requires some steps. So, for
each doubling of P ∈ E(Fp) the above procedure is performed to
obtain 2P, 2(2P ), 2(2(2P )), ... . This operation is considered as
elliptic curve scalar multiplication kP , where k a secret key in the
ECC, usually with very long bits.
Consider an operation P1 +P2 as ECADD, and an operation 2P
with P ∈ E(Fp) as ECDBL. Furthermore, details can be found
in [4] [2] [24].
The ECDLP is to compute the scalar k for a given point on
EC say P and kP , and this is known to be very difficult, which
is similar to the DLP on the finite field. That is why the elliptic
curve scalar multiplication is the central operation in ECC. The
main idea is to get the shortest representation of the scalar k in
order to reach the most efficient way to compute the elliptic curve
scalar multiplication. The following definitions needed to illustrate
this item.

Definition: A signed digit representation of an integer k to
the base b (denoted by (k)b is an ordered sequence of integers
k0 k1 k2 ... kr with |ki| < b for i = 0, 1, ..., r, such that
k =

∑r
i=1 kib

i.
Signed digit representation is not unique, for example,

18 = (111̄1̄0)2
= (10010)2
= (11̄0010)2

where 1̄ = −1.
In 2007, Ebeid and Hasan [5] proposed an algorithm to generate all
possible signed digit representation of any integer k.
One of the types of representation of the number can be generated
using the following proposition:

Proposition: For any positive integer k there exists s such
that 2s 6 k < 2s+1.
Proof: Consider the statement A(k) given by

2s 6 k < 2s+1. (4)

Mathematical induction is used to show that A(k) is true for any
k > 1.

First, it will be confirmed that the A(1) is true. Since there exists
an integer s = 0 such that

20 6 1 < 2. (5)

Thus, A(1) is true.
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Next, assume that A(k) is true for some k > 1. So, assume that

2s 6 k < 2s+1. (6)

Finally, to prove that A(k + 1) is true. Since 2s 6 k then
2s + 1 6 k + 1. And, since 2s 6 2s + 1, then 2s 6 k + 1. Now,
to prove the right side of A(k + 1), there are two cases for k > 2:

Either k = 2s, then k + 1 = 2s + 1 < 2s+1 .

Or k < 2s, then k + 1 < 2s + 1 < 2s+1.

Thus, A(k + 1) is true.

By induction, A(k) proved that it is true for any positive integer k.
�

Definition: The hamming weight of an integer k (denoted by
h(k)) is the number of 1s in the signed digit representation.

Definition: The length of the expression (k)b (denoted by
l(k) ) is the number of its digits.

3. ELLIPTIC CURVE SCALAR MULTIPLICATION
Elliptic curve cryptographic schemes require calculations for

Q = kP = P + P + ...+ P︸ ︷︷ ︸
k times

where k is a positive integer called scalar and P, Q are elliptic
curve points. This operation is known as elliptic curve scalar mul-
tiplication. The simplest way to perform the elliptic curve scalar
multiplication kP is the binary algorithms, which is the analogue
of the square and multiply process for fast modular exponentiations
[24].
Elliptic curve scalar multiplication is involved in elliptic curve dig-
ital signature algorithm (ECDSA) [9] and many others protocols.
Implementing such protocols on embedded devices requires partic-
ular care from both the efficiency and the security points of view.
In this section the common methods for performing scalar multi-
plication on an elliptic curve will discuss . These methods are to
represent the scalar k in different ways to compute the main opera-
tion in ECC which is kP elliptic scalar multiplication.

3.1 Binary Method
The basic technique for elliptic scalar multiplication is the
ECADD and ECDBL. It is based on the binary method of the
coefficient k. The integer k is represented as a signed digit repre-
sentation or as k = kl−12n−1 +kl−22l−2+ ...+k0 where kl−1 = 1

and ki ∈ {0, 1}, i = 0, 1, 2, ..., l − 1. That is k =
∑l−1

i=0 ki2
i,

where ki ∈ {0, 1}. This method scans the bits of the bits of k
from the left to right, if the bit is 1 then perform a ECDBL and
ECADD, otherwise, theECDBL will perform (the first bit is al-
ways 1 which is use as initialization). This method is called binary
method. The process of this method to compute kP is given in the
following Algorithm 1.

Algorithm 1: Binary Method for Elliptic Curve Scalar Multiplication
Input:(k)10 = (kl−1...k1k0)2 , P ∈ E(Fp)
Output:Q = kP

1. Q = P

2. For i = l − 1 down to 0 do
2.1. Q = 2Q

2.2. If ki = 1 then Q = Q + P

3. Return Q

For example, let us assume that k is equal to (109)10, so in the
binary representation k is equal to (1101101)2. The 109P for P ∈
E (Fp) is compute as follows:

e6 1 P initialization

e5 1 2P + P doubling and addition

e4 0 2 (2P + P ) doubling
e3 1 2 (2 (2P + P )) + P doubling and addition

e2 1 2 (2 (2 (2P + P )) + P ) + P doubling and addition

e1 0 2 (2 (2 (2 (2P + P )) + P ) + P ) doubling
e0 1 2 (2 (2 (2 (2 (2P + P )) + P ) + P )) + P︸ ︷︷ ︸

⇓
109P

doubling and addtion

The cost of elliptic curve scalar multiplication using binary method de-
pends on the l(k)and the h(k) in the representation of k. If (k)10 =

(kl−1 kl−2 ... k1 k0)2, then the number of ECDBL is l − 1 and the
number of ECADD is one less than the h(k). In an average, the bi-
nary method requires l − 1 ECDBL and l−1

2 ECADD. For exam-
ple, the cost of computation of 109P in the above example requires
(6ECDBL + 4ECADD).
As a conclusion, whenever the bit is 1, two elliptic curve arithmetic opera-
tions doubling and addition will be made and if it is 0, only one operation,
doubling is required. Thus, if the number of h(k) in the scalar representa-
tion reduced , then accelerate this computation will accrue.

3.2 Non Adjacent Form (NAF ) Method
The hamming weight of the scalar k can be reduced with a signed repre-
sentation that uses the numbers 0 and ±1. Among various signed represen-
tation, NAF is a canonical representation with less number of hamming
weight for integer k. The NAF representation of k has been proposed in
1951, by Booth [3] (some time the searchers called it Addition-subtraction
method according to its process). And after 10 years Rietweisner [21] has
been proved that every integer could be uniquely represented in this form.
Nowadays, The NAF of a scalar k denoted by NAF (k) becomes the
subject of various investigations in different contexts such as elliptic curve
scalar multiplication. The property of this representation is that, of any
two consecutive digits, at most one is non zero, Moreover, the length of
NAF (k), denoted by l(NAF (k)) is at most 1 more bit than its binary
representation. This means, fewer point additions and therefore more effi-
ciency when needed to compute the scalar multiplication on EC.
Now, because of the group law of elliptic curve group, it is observed that
the inverse of P = (x, y) ∈ E (Fp) is −P = (x,−y) ∈ E (Fp).
Therefore, computing inverse of any point on elliptic curve is free and very
fast in terms of computational time. That is, in the process of computing
the kP , and the minus is come across, subtraction of P is performed during
this computation, furthermore, it costs the same amount of ECADD in the
total operation.
In the example of signed digit representation, it mentioned that there is no
unique singed digit representation for any integer k. To get this uniqueness
has to add some conditions on the representation, this condition it will be
that there are no adjacent non zeros (using NAF ).
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For example, the number 7 can have several signed-digit representations:

(0111)2 = 4 + 2 + 1 = 7

(101̄1)2 = 8− 2 + 1 = 7
(11̄11)2 = 8− 4 + 2 + 1 = 7

(1001̄)NAF (7) = 8− 1 = 7

But only the last representation is NAF .

Definition: A NAF of a positive integer k is a singed digit representation
of k to the base b = 2, such that ki ki+1 = 0 for i ≥ 0. The NAF (k) is
written (kl−1 ... k1 k0)NAF (k).

The reader can refer to Gordon [7] for the proofs of existence and unique-
ness of NAF (k) for any integer k. Muir and Stinson [17] in their paper
have proved that the hamming weight of the NAF (k) is minimal among
all signed digit representations of k. Fortunately, the number of bits in the
NAF (k) is at most one more than the number of bits in the binary form of
k. Algorithm 2 is for the conversion of a scalar k into NAF .

Algorithm 2: Computing NAF of a Scalar k

Input: A scalar (k)10
Output: N = (kl−1...k1k0)NAF (k)

i = 1; c = k
While c > 0

If c odd
N(i) = 2− (cmod 4)

c = c−N(i)

Else
N(i) = 0

End if
c = c

2 ;i = i + 1
End while

Return N

Performance of Algorithm 2 can be summarized in the following steps:

(1) If k is an even integer, 0 have to take, and continue with k
2 .

(2) If k ≡ 1(mod4), 1 have to take, and continue with k−1
2 which is even

integer that guarantees a 0 in the next step.
(3) If k ≡ 3 ≡ −1(mod4), take −1, and continue with k+1

2 which is
even integer that guarantees a 0 in the next step.

This measure produces zero after each non zero digit, which means this
signed-digit representation must has low hamming weight.
For example, the mechanism to compute NAF (27), according to Algo-
rithm 2, is shown in Table 1.

Table 1: Computing a NAF (27)

i c N(i) N

1 27 1̄ (1̄)

28
2 14 0 (01̄)

3 7 1̄ (1̄01̄)
8

4 4 0 (01̄01̄)

5 2 0 (001̄01̄)
6 1 1 (1001̄01̄)

0

Remarks:

(1) NAF (k) for a scalar k has fewest non zero digits (hamming weight)
of any signed representation of k, unless if the binary representation of k
already has. For instance

(89)10 = (1011001)2
= (101̄01̄001)NAF (89).

(2) The length of NAF (k) is at most one more bit than its binary repre-
sentation.

(3) If l(NAF (k)) = l, then 2l

3 < k < 2l+1

3 .
(4) The average hamming weight of NAF (k) (denoted by h(NAF (k))

when l(NAF (k)) = l is l
3 .

The method for computing the scalar multiplication kP using NAF ex-
pression is Algorithm 3.

Algorithm 3: NAF Method for Elliptic Curve Scalar Multiplication
Input:(k)10 = (kl−1...k1k0)NAF (k) , P ∈ E(Fp)

Output:Q = kP
1. Q = P

2. For i = l − 1 down to 0 do
2.1. Q = 2Q

2.2. If ki = 1 then Q = Q + P

2.3. If ki = −1 then Q = Q− P
3. Return Q

According to the Algorithm 3, the scalar multiplication using NAF

method requires l
3ECADD and lECDBL, where the subtraction and

addition operation have the same cost in the case of the elliptic curves
group.

Example: Let k = 127 and P a point on the elliptic curve E. Now, the
binary representation of k is (1111111)2, so the cost is exactly equal to
(6ECDBL + 6ECADD).
While, the NAF (127) is (10000001̄)NAF (127), so the cost it is equal to
(7ECDBL + 1ECADD).

3.3 Mutual Opposite Form (MOF )
In 2004 Okeya et al. [18] introduced an algorithm to compute the elliptic
curve scalar multiplication, called mutual opposite form (MOF ). He also
proved that this form is unique for all positive integers. MOF satisfies the
following properties:

(1) Signs of adjacent non zero bits (regardless 0 bits) are opposite.
(2) Most non zero bit and the least non zero bit are 1 and −1 respectively.

The idea of the MOF method is summarized by converting the binary
string of the scalar k into signed digit representation by computing

mk = 2k − k

where (−) stands for a bitwise subtraction. Algorithm 4 is for the conver-
sion of a scalar k into the MOF .

Algorithm 4: Computing MOF of a Scalar k

Input: A scalar (k)10 = (kn−1 kn−2 ... k1 k0)2
Output: MOF (k) = (mkn mkn−1 ...mk1 mk0)MOF (k)

Set mkn = kn−1
For i = n− 1 down to 1

mki = ki−1 − ki
mk0 = −k0

Return N
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The conversion of MOF expression can be created from right to left or
from left to right.
For example, the mechanism to compute MOF (9) and MOF (27),
according to Algorithm 4, is shown in Table 2 and 3.

Table 2: Computing a MOF (9)

i ki mki MOF (k)

4 1 (1)

3 1 0− 1 = −1 (11̄)

2 0 0− 0 = 0 (11̄0)
1 0 1− 0 = 1 (11̄01)

0 1 −1 (11̄011̄)

Table 3: Computing a MOF (27)

i ki mki MOF (k)

5 1 (1)
4 1 1− 1 = 0 (10)

3 1 0− 1 = −1 (101̄)

2 0 1− 0 = 1 (101̄1)
1 1 1− 1 = 0 (101̄10)

0 1 −1 (101̄101̄)

According to these examples the MOF dose not work for all integer.
In other words, MOF is efficient but not for all scalars, this is due to
that for two expressions MOF (9) and MOF (27) the hamming weight
are increased from 2 to 4 and from 3 to 4 respectively comparing with
NAF (9) = (1001)NAF (9) and NAF (27), while the hamming weight
for (27)2 = (11011)2 is 4 it is equal to the hamming weight of
MOF (27).

3.4 Direct Recoding Method (DRM )
In 2010, Pathak and Sanghi [20] proposed a new method to present the
scalar k in a new form. This method is named direct recoding method
(DRM ).
DRM has the lowest hamming weight. The idea comes from the fact that
for any scalar k, there exist s such that

2s < k < 2s+1 (7)

So,

k = (2s+1)2 − (2s+1 − k)2 (8)

In Section 2 it has proved that for any scalar k, there exist s such that

2s ≤ k < 2s+1 (9)

So, the formula should be as

2s ≤ k < 2s+1 (10)

For example, 23 6 8 < 24. Table 4 and 5 are examples of the mechanism
to create the DRM(9) and DRM(27).

Table 4: Computing a DRA(9)

23+1 > (9) > 23

∴ 24 > (9) > 23

∴ 9 = (24)2 − (24 − 9)2
= (16)2 − (7)2
= (10000)2 − (111)2

∴ DRM(9) = (101̄1̄1̄)DRM(9)

Table 5: Computing a DRM(27)

24+1 > (27) > 24

∴ 25 > (27) > 24

∴ 27 = (25)2 − (25 − 27)2
= (32)2 − (5)2
= (100000)2 − (101)2

∴ DRM(27) = (1001̄01̄)DRM(27)

From the result of computing DRM(9) can find that its hamming weight
was increased from 2 up to 4 comparing with the hamming weight of (9)2,
while in computing DRM(27) it was decreased from 4 to 3 compared with
the hamming weight of (27)2. On the other hand, the hamming weight of
DRM is the same compared with the hamming weight of NAF (27) but
by using only single operation of bitwise subtraction [20]. The reader can
find more examples in [20].

4. PROPOSED METHOD
Elliptic curve scalar multiplication is the most prominent computation part
of ECC. The proposed methods in this work is for making the elliptic
curve scalar multiplication has high performance compared with the exist-
ing algorithms. This methods are to create a new form for the scalar k with
fewest hamming weight compared with the other methods.
The idea of the proposed method to create new form for the scalar k is as
follows: For any scalar k, there exist s such that

2s ≤ k < 2s+1 (11)

So,

k = 2s + (k − 2s) (12)

Then,

k = (2s)2 + (k − 2s)2 (13)

Or,

k = (2s)NAF (2s) + (k − 2s)NAF (k−2s) (14)

For example, the Table 6 and 7 illustrate the mechanism of create the new
form for k = 9 and k = 27.
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Table 6: Computing the new form for k = 9

24 > (9) > 23

∴ 9 = (23)2 + (9− 23)2
= (8)2 + (1)2

= (1000)2 + (1)2
∴ 9 = (1001)

Or
9 = (23)NAF (8) + (9− 23)NAF (1)

= (8)NAF (8) + (1)NAF (1)

= (1000)NAF (1) + (1)NAF (1)

∴ 9 = (1001)

Table 7: Computing the new form for k = 27

25 > (27) > 24

∴ 27 = (24)2 + (27− 24)2
= (16)2 + (11)2
= (10000)2 + (1011)2

∴ 27 = (11011)

Or
27 = (24)NAF (16) + (27− 24)NAF (11)

= (16)NAF (16) + (11)NAF (11)

= (10000)NAF (16) + (101̄01̄)NAF (11)

∴ 27 = (1001̄01̄)

From Table 6 and 7 can see that when represent binary form for the sepa-
rated part 23 and 9 − 23, it got a similar form as the binary form but with
least time compared with binary form and the same result when used the
NAF with least time. In the other hand, for k = 27 when represent bi-
nary form for the separated part 24 and 27− 24, it got a similar form same
as the binary form but with least time compared with binary form. While
when used the NAF to represent the parts, the hamming weight was re-
duced compared with binary form with least time. Furthermore, the form
is the same with the DRM(27). But according to the main aim for this
work which is to accelerate the elliptic curve scalar multiplication, the new
form is faster than the DRM . This is due to that in DRM they used binary
form to represent the separated parts, while in our proposed used the NAF

which more efficient than the binary form. Table 6 is another example to
compare all these methods.

Table 8: Computing DRM and the new forms for k = 686

210 > (686) > 29

∴ 686 = (210)2 − (210 − 686)2
= (10000000000)2 − (101010010)2

∴ DRM(686) = (101̄01̄01̄001̄0)DRM(686)

686 = (29)2 + (686− 29)2
= (512)2 + (174)2

= (1000000000)2 + (10101110)2
∴ 686 = (1010101110)
Or

686 = (512)NAF (512) + (174)NAF (174)

= (1000000000)NAF (512) + (101̄01̄001̄0)NAF (174)

∴ 686 = (1101̄01̄001̄0)

From Table 8 can find that when used the binary method to represent
512 and 174 got the same form with the binary method for 686 =

(1010101110)2, but with least time to execute. In the other hand, when
used the NAF to represent the separated parts got the same number of
hamming weight of DRM(686) which was 5 but the length is least (from
11 to 10). That means the number of operation is reduced as a total, from
14 operation in binary and DRM methods to 13 operations in new method
with using NAF .

4.1 Complexity of the Proposed Algorithm
In this section the cost of proposed method according to the mentioned
methods will discuss with the same number of size, which are used to rep-
resent the scalar k to compute the elliptic curve scalar multiplication kP . At
the beginning, it is observed that any ECADD requires 2 squaring, 2 mul-
tiplication and 1 inversion operation as showed in Section 2. That means,
reducing one number of the hamming weight of the signed digit represen-
tation of k means saving 5 operation when calculating the elliptic curve
scalar multiplication. On the other hand, reducing the length of the signed
digit representation of k means reducing the number of operation as a total
(ECADD and ECDBL). This happens when the proposed method used,
but with the NAF on the separated parts.
In order to be able to compare the different elliptic curve scalar multipli-
cation, the number of ECDBL and ACADD counted where every zero
digit in the sign digits form of k refer to one ECDBL and one non-zero
digit refer to two operations (ECDBL and ACADD).
Table 9 and the plots in Figure 2 shows the number of operations required
by the proposed algorithm and the binary, NAF and MOF and DRM

algorithms.
Now, the comparison of the complexity of the algorithms which mentioned
will give in the following table:

Table 9: Complexity of Computing Elliptic Curve
Scalar Multiplication of Various Processors

Size of k
Number of Operations

Algo1 Algo2 Algo3 Algo4 Algo5 Algo6

10 14 14 17 14 14 13

16 23 21 25 24 22 21

24 42 29 13 29 42 29

32 59 36 39 37 57 36

* Algo1 refers to the Binary Algorithm
* Algo2 refers to the NAF Algorithm
* Algo3 refers to the MOF Algorithm
* Algo4 refers to the DRM Algorithm
* Algo5 refers to the Proposed Method/ Binary
* Algo6 refers to the Proposed Method/ NAF

Fig. 2. Complexity of Computing Elliptic Curve Scalar Multiplication of
Various Processors
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All algorithms have been implemented on Intel(R)Core(Tm)2Duo

with processor 2.99GHz and 3.00GB of memory using MATLAB ver-
sion 7.10.0.499 (R2010a). In order to compute the complexity, executed
all algorithms with different size bits (10, 16, 24 and 32) for the scalar k.
The following is result collected from the execution and its corresponding
graphical explanation.
The efficiency of the proposed methods is clearly known, from the Table
9 and Figure 2. For instance, elliptic curve scalar multiplication using bi-
nary, NAF , MOF and DRM algorithm require 23 , 21 , 25 and 24

respectively with respect to the number of operations, while the proposed
algorithm/ Binary and proposed algorithm/ NAF require 22 and 21 oper-
ations respectively when k has 16 bits. That was an example that both of
the proposed algorithms are efficient than all the mentioned algorithm even
when they have the same number of operations but with least time in the
execution processing.

5. CONCLUSION
Elliptic curve scalar multiplication is a fundamental operation in elliptic
curve cryptosystem. In the recent past, a number of hardware architectures
have been proposed in the literature to speed up this operation. In this work,
a high performance methods to compute elliptic curve scalar multiplication
scheme based on DRM algorithm has been proposed. The computational
complexity of the proposed methods have high performance when com-
pared to the other methods . This is due to that the number of operations
required for execution is either the same with less time or less when com-
pared to the another mentioned methods.
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