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ABSTRACT 

Support Vector Machine (SVM) is an effective model for 

many classification problems. However, SVM needs the 

solution of a quadratic program which require specialized 

code. In addition, SVM has many parameters, which affects 

the performance of SVM classifier. Recently, the Generalized 

Eigenvalue Proximal SVM (GEPSVM) has been presented to 

solve the SVM complexity. In real world applications data 

may affected by error or noise, working with this data is a 

challenging problem. In this paper, an approach has been 

proposed to overcome this problem. This method is called 

DSA-GEPSVM. The main improvements are carried out 

based on the following: 1) a novel fuzzy values in the linear 

case. 2) A new Kernel function in the nonlinear case. 3) 

Differential Search Algorithm (DSA) is reformulated to find 

near optimal values of the GEPSVM parameters and its kernel 

parameters. The experimental results show that the proposed 

approach is able to find the suitable parameter values, and has 

higher classification accuracy compared with some other 

algorithms. 
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1. INTRODUCTION 
Recently, information, growing in huge volumes creates the 

need to process large amounts of data. In order to find hidden 

patterns of data and convert them into useful knowledge, this 

is known Data Mining. This direction includes methods other 

than classical analysis, based on clustering analysis [1-4], 

classification analysis [5, 6], and solving problems of 

generalization, association and finding patterns [7-9]. This 

area of research has recently become more and more 

important. 

Classification is the process of arranging data into 

homogenous group or classes according to some common 

characteristics present in the data. Support vector machine 

(SVM) has an excellent performance in many real life 

classification problems such as image processing, text 

classification and bioinformatics. 

SVM which is an emerging data classification technique 

proposed by Vapnik in 1995 [10], and has been widely 

adopted in various fields of classification, nevertheless it 

suffers from complexity and parameters selection. A new 

method has been introduced in [11] by Olvi L. Mangasarian 

which called Proximal Support Vector Machine (PSVM). This 

method has solved the problem of complexity of standard 

SVM, but it suffers from poor performance in the case of 

noisy and unbalanced data. Recently an efficient approach to 

PSVM has been proposed also by Olvi L. Mangasarian which 

is called the Generalized Eigenvalue Proximal Support Vector 

Machine (GEPSVM) [12]. The complexity of standard 

support vector machine has been solved by GEPSVM.  A 

fundamental difference between GEPSVM and SVM is that, 

GEPSVM solves two generalized eigenvalue problems to 

obtain two non-parallel hyper-planes, whereas, SVM solves 

one quadratic programming problem (QPP) to obtain one 

hyper-plane. Therefore, GEPSVM works faster than SVM. 

Experimental results in [12] showed the effectiveness of 

GEPSVM on some public datasets. 

In real world applications data may affected by noise or error 

which significantly influences on the performance of 

GEPSVM. There are many approaches have been proposed by 

researchers for this problem [13-19]. More efforts are needed 

in order to improve the performance of the classification task 

in this type of data. 

In addition, the major problems that are encounter in SVM 

and all its inferred methods are how to find near optimal 

values for the SVM parameters and select a SVM kernel as 

well as tuning its parameters. Unsuitable parameters setting 

lead to poor classification outcomes. Authors in [20-25] tried 

to find solution for SVM parameters. There are no particular 

method to find the optimal values for the SVM or GEPSVM 

parameters and kernel parameters. This problem is still an 

interesting topic for more research to find more appropriate 

values for GEPSVM parameters and kernel parameters. 

For these reasons, an improved version of GEPSVM, called 

DSA-GEPSVM for short is proposed. A new method for 

computing the fuzzy membership function is used in the linear 

case. Furthermore, a new kernel is used in the nonlinear case. 

The new kernel is a combination between the polynomial and 

the radial base function kernel. For solving the problem of 

parameters selection, a new and powerful method which is 

called Differential Search Algorithm (DSA) [26-31] has been 

used. This makes the optimal separating hyper-planes 

obtainable in both linear and non-linear classification 

problems. 

The remainder of this paper is organized as follows. In section 

2 we briefly give description of the GEPSVM. Section 3 give 

description of the DSA. In section 4 the proposed method is 

described. Section 5 reports experimental results. Finally, the 

conclusions make up Section 6. 

2. GENERALIZED EIGENVALUE PSVM 
In 2006 Olvi L. Mangasarian and Edward W. Wild proposed 

the Generalized Eigenvalue Proximal Support Vector 

Machine GEPSVM [12] as a generalization of the SVM 

method. The new formulation does not need the planes to be 

parallel, but for each class, the algorithm finds a plane that is 
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as close as possible to the points of one class and as far as 

possible to those in the other class. Due to the simplicity of 

GEPSVM, many researchers have refined it to improve the 

general performance of the classifier [32-35]. But GEPSVM 

still needs more improvements, and is a very good topic for 

researchers. 

First we consider the classification problem of m points in the 

n dimensional real space 𝑅𝑛 , represented by the 𝑚1 × 𝑛  

matrix A belonging to class 1 and 𝑚2 × 𝑛  matrix  B 

belonging to class 2, with  𝑚1 + 𝑚2 = 𝑚. For this problem, a 

standard linear SVM is given by a plane halfway between the 

two parallel bounding planes that bound two disjoint half 

spaces each containing points mostly of class 1 or 2 [12]. 

In MSPSVM the parallelism condition has been dropped, but 

requires that each plane be as close as possible to one of the 

data sets and as far as possible from the other one. Thus, we 

are seeking for the two planes in 𝑅𝑛 : 

𝑃1:𝑥′𝑤1 −  𝛾1 = 0, 𝑃2: 𝑥′𝑤2 −  𝛾2 = 0,                           (1) 

where the plane P1 is closest to the points of class 1 and 

furthest from the points in class 2, while the plane P2 is 

closest to the points in class 2 and furthest from the points in 

class 1. Then the first plane of (1) is obtained by solving the 

following optimization problem: 

min(𝑤 ,𝛾)≠0

 𝐴𝑤−𝑒𝛾 2  /   
𝑤
𝛾   

2

 𝐵𝑤−𝑒𝛾 2  /   
𝑤
𝛾   

2 ,                                  (2) 

where  .   is the two-norm, and it has been assumed in [12] 

that  𝑤 , 𝛾 ≠ 0  which implies to  𝐵𝑤 − 𝑒 𝛾 ≠ 0. As introduced 

in [12] the numerator of the minimization problem (2) is the 

sum of squares of two-norm distances in the (𝑤, 𝛾)-space of 

points in the first class to the plane  𝑥′𝑤1  −  𝛾1    = 0, while the 

denominator of (2) is the sum of squares of two norm 

distances in the (𝑤, 𝛾) space of points in the second class to 

the same plane. By simplifying (2) we can write, 

min(𝑤 ,𝛾)≠0
 𝐴𝑤−𝑒𝛾 2

 𝐵𝑤−𝑒𝛾 2  
 .                                               (3) 

Then Tikhonov regularization term is added [36] to reduce the 

norm of the problem variables  𝑤, 𝛾  that determine the 

proximal planes (1). Thus, for a parameter 𝛿 , problem (3) has 

been rewritten as follows:  

min(𝑤 ,𝛾)≠0

 𝐴𝑤−𝑒𝛾 2+ 𝛿  
𝑤
𝛾   

2

 𝐵𝑤−𝑒𝛾 2 ,                                   (4) 

We can rewrite (4) as follow: 

min 𝑧≠0 𝑟 𝑧 ≔
𝑧 ′𝐺 𝑧

𝑧 ′𝐻 𝑧
,                                                                 

(5) 

where, 

𝐺 ∶=   𝐴 −𝑒 ′   𝐴 −𝑒 +  𝛿 𝐼,                                           (6) 

𝐻 ∶=   𝐵 −𝑒 ′  𝐵 −𝑒 ,           𝑧 ≔  
𝑤
𝛾 .                             (7) 

G and H are symmetric matrices in 𝑅(𝑛+1)×(𝑛+1) and I is an 

identity matrix. 

As pointed out in [37], the objective function of (5) is known 

as the Rayleigh quotient, hence its solution can be obtained by 

solving a generalized eigenvalues problem. That is, the 

eigenvector corresponding to the smallest eigenvalue can 

determine a plane effectively. 

Similarly we can directly get the second plane by solving the 

following optimization problem. 

min 𝑧≠0 𝑠 𝑧 ≔
𝑧 ′ 𝐿 𝑧

𝑧 ′𝑀 𝑧
,                                                                 

(8) 

where, 

𝐿 ∶=   𝐵 −𝑒 ′   𝐵 −𝑒 +  𝛿 𝐼,                                           (9) 

𝑀 ∶=   𝐴 −𝑒 ′  𝐴 −𝑒 .                                                    (10) 

L and M are again symmetric matrices in 𝑅(𝑛+1)×(𝑛+1). As 

analyzed above, the two non-parallel planes can be obtained 

directly by solving the classical generalized eigenvalue 

problem. 

The Nonlinear GEPSVM can be obtained easily by 

considering the problem of finding two non-parallel planes 

𝑃1:𝐾 𝑥′ ,𝐶 ′ 𝑢1 −  𝛾1 = 0, 𝑃2:𝐾 𝑥′ ,𝐶 ′ 𝑢2 −  𝛾2 = 0,    (11) 

where  𝐶 ∶=   
𝐴
𝐵
 . 

K is the kernel function, which will be presented in the next 

section. By employing the same regularization strategy as in 

equations (4-10), we can also obtain the two non-parallel 

planes by solving the optimization problems of the following 

equations: 

min 𝑧≠0 𝑟 𝑧 ≔
𝑧 ′𝐺 𝑧

𝑧 ′𝐻 𝑧
,      𝑤𝑒𝑟𝑒  𝑧 ∶=   

𝑢
𝛾 ,                             

(12) 

min 𝑧≠0 𝑠 𝑧 ≔
𝑧 ′ 𝐿 𝑧

𝑧 ′𝑀 𝑧
,      𝑤𝑒𝑟𝑒  𝑧 ∶=   

𝑢
𝛾 ,                             

(13) 

where, 

𝐺 ∶=   𝐾(𝐴,𝐶 ′) −𝑒 ′   𝐾(𝐴,𝐶 ′) −𝑒 +  𝛿 𝐼,                  (14) 

𝐻 ∶=   𝐾(𝐵,𝐶 ′) −𝑒 ′  𝐾(𝐵,𝐶 ′) −𝑒  ,                           (15) 

𝐿 ∶=   𝐾(𝐵,𝐶 ′) −𝑒 ′   𝐾(𝐵,𝐶 ′) −𝑒 +  𝛿 𝐼,                  (16) 

𝑀 ∶=   𝐾(𝐴,𝐶 ′) −𝑒 ′  𝐾(𝐴,𝐶 ′) −𝑒 .                            (17) 

G, H, L and M are symmetric matrices in 𝑅(𝑚+1)×(𝑚+1).   

Since 2006 GEPSVM has achieved great performance in 

many real live applications, but in some cases data may 

affected by noise and errors. Most classification methods give 

low classification accuracy with this kind of data, and need 

some modifications in order to increase the classification 

accuracy. One of the most effective ways to overcome this 

problem is by adding a fuzzy value to each training sample. 

The works of many researches carried out by adding fuzzy 

values to the standard SVM [13, 14, 17, 18].  Many attempts 

for adding fuzzy to GEPSVM have been illustrated as in [15, 

16, 19]. A first attempt to obtain a fuzzy version of the 

GEPSVM classification is presented in [15, 16]. In [15] the 

authors attempt to solve the following problem: 

min(𝑤 ,𝛾)≠0
 𝑆𝐴  𝐴𝑤−𝑒𝛾 

2

 𝑆𝐵  𝐵𝑤−𝑒𝛾 2  
 .                                                    (18) 

With SA is the fuzzy membership weights for each point Ai 

and SB is the fuzzy membership weights for each point Bi. S
A 

and SB are diagonal matrices. 

𝑆𝑖𝑖
𝐴 = 0.5 +

𝑒𝑓(𝑑 𝐴𝑖 ,𝐶𝐵 − 𝑑 𝐴𝑖 ,𝐶𝐴 )/𝑑𝐴𝐵− 𝑒−𝑓

2(𝑒𝑓  − 𝑒−𝑓)
 , 𝑖 = 1,… , 𝑝,           (19) 
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𝑆𝑖𝑖
𝐵 = 0.5 +

𝑒𝑓(𝑑 𝐵𝑖 ,𝐶𝐴  − 𝑑 𝐵𝑖 ,𝐶𝐵 )/𝑑𝐴𝐵− 𝑒−𝑓

2(𝑒𝑓  − 𝑒−𝑓)
 , 𝑖 = 1,… ,𝑚.          (20) 

Where CA and CB are the center of mass of the two classes, 

dAB is the distance between the two means, the function 𝑑(. , . ) 

is the Euclidean distance between two points, and f is a 

constant that determines the rate at which the fuzzy 

membership decreases towards 0.5. Another recently attempt 

of fuzzy GEPSVM can be found in [19] where the author 

proposed the following fuzzy function 

𝑆𝑖𝑖
𝐴 = 𝑠 +  1 − 𝑠 . 𝑒

− 
min (𝑑(𝐴𝑖 ,𝐶𝐴
max (𝑑(𝐴𝑖 ,𝐶𝐵

 
2

.
                                       (21) 

Where min (d(Ai,CA)) is the minimum distance of the point Ai 

from the centers in CA, max (d(Ai,CB)) is the maximum 

distance of the point Ai from the centers CB
 of the other class, 

and s is a parameter weighting the contribution of the 

exponential term to SA ,for more detail see [19] .  

3. DIFFERENTIAL SEARCH 

ALGORITHM (DSA) 
Differential Search Algorithm (DSA) is a recently and 

efficient evolutionary algorithm. DSA is effectively used to 

solve numerical optimization problems. The main idea of the 

DSA algorithm was inspired form the migration of 

superorganisms making use of brownian like motion [28].  

Algorithms that make use of the principle of evolutionary 

computation are known as Evolutionary Algorithms (EA). 

These algorithms are suitable to search for the optimal (best) 

solution of many optimization problems. In real world 

problems the optimization process may have more than one 

solution, for searching for the optimal solution among all 

these solutions in a short time is a challenging task. If the 

search space is small then searching for the optimal solution 

will take short time. Working with data whose search space is 

very large is a challenge for most researchers. When the 

problem is very large with a great number of possible 

solutions, then finding the optimal solution is difficult. 

Evolutionary computation techniques are powerful and 

effective with this kind of data. EA includes the following 

techniques [28]: 

 Ant colony algorithm 

 Artificial Bee Colony (ABC) algorithm     

 Cultural algorithms 

 Differential evolution 

 Evolutionary algorithms 

 Evolutionary programming 

 Evolution strategy 

 Gene expression programming 

 Genetic algorithm 

 Genetic programming 

 Harmony search 

 Learnable Evolution Model 

 Particle swarm optimization 

 Self-organization such as self-organizing maps 

 Swarm intelligence 

The Differential Search Algorithm (DSA) is the most recent 

addition. There are a number of computational-intelligence 

algorithms that model the behaviors of the superorganisms 

[28-30]. In the present work DSA is used to get the best 

values of parameter values in the proposed algorithm, due to it 

has the ability to manage such problem. The pseudo-code 

indicating the function of DS algorithm is given in Appendix. 

 

4. PROPOSED APPROACH 

4.1 Linear Fuzzy DSA-GEPSVM 
The proposed approach introduce a technique for computing 

the fuzzy membership values. If the data affected with noise 

or outliers then the classification process will influence, so the 

data needs some preprocessing steps. We propose a method 

by adding a fuzzy value for those examples that away from 

the center of the class and the remaining examples don’t have 

any change. Now the new formulation of the problems 

become as follow: 

min(𝑤 ,𝛾)≠0

 𝑆𝐴  𝐴𝑤−𝑒𝛾 
2

+ 𝛿  
𝑤
𝛾   

2

 𝑆𝐵  𝐵𝑤−𝑒𝛾 2
,                                                

(22) 

where, 

𝐺 ∶=   𝑆𝐴  𝐴 −𝑒 ′   𝑆𝐴  𝐴 −𝑒 +  𝛿 𝐼,                              (23) 

𝐻 ∶=   𝑆𝐵𝐵 −𝑒 ′  𝑆𝐵  𝐵 −𝑒 ,           𝑧 ≔  
𝑤
𝛾 .                 (24) 

The optimization problem (22) becomes:  

min 𝑧≠0 𝑟 𝑧 ≔
𝑧 ′𝐺 𝑧

𝑧 ′𝐻 𝑧
.                                                               

(25) 

Similarly we can directly get the second fuzzy plane by 

solving the following optimization problem. 

min 𝑧≠0 𝑠 𝑧 ≔
𝑧 ′ 𝐿 𝑧

𝑧 ′𝑀 𝑧
   ,                                                            

(26) 

where, 

𝐿 ∶=   𝑆𝐵  𝐵 −𝑒 ′   𝑆𝐵  𝐵 −𝑒 +  𝛿 𝐼,                              (27) 

𝑀 ∶=   𝑆𝐴𝐴 −𝑒 ′  𝑆𝐴  𝐴 −𝑒 .                                          (28) 

Figure 1 explains the process of computing fuzzy matrix SA. 

 

Fig 1:  Methodology of calculation of fuzzy matrix SA 
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Where s is a parameter weighting the contribution of the 

exponential term to SA. The same way for SB. The next step 

and the most important step in the proposed method is how 

we can get the optimal parameters. In the linear MSPSVM 

there is only one parameter 𝛿. DSA algorithm has been used 

to find the optimal value of 𝛿. 

4.2 Nonlinear DSA-GEPSVM 
Appropriate choice of the kernel function increases the 

accuracy of the classification. In real life applications the 

choice of kernel function depends on the dataset used.  

Here are some of the most popular kernels. 

Polynomial function:  

A polynomial kernel is a common method for nonlinear 

modeling. 

𝐾 𝑥, 𝑥′ = (< 𝑥, 𝑥′ >  +1)𝑑 .                                             (29) 

Gaussian radial basis function:  

This function has received significant attention, most 

commonly with a Gaussian of the form, 

𝐾 𝑥, 𝑥′ = 𝑒𝑥𝑝  
− 𝑥−𝑥 ′  2  

2 𝜎2
 .                                                 (30) 

Exponential radial basis function:  

𝐾 𝑥, 𝑥′ = 𝑒𝑥𝑝((− 𝑥 − 𝑥′   )/(𝐷 𝜎  )) .                           (31) 

In [38] a new kernel has been introduced the author used the 

new kernel with the standard SVM, in the presented work we 

use the new kernel which is called PolyRBF witch is a hybrid 

between a polynomial kernel and a Gaussian RBF kernel. 

𝐾 𝑥, 𝑥′ = (1 +  𝑒𝑥𝑝  
− 𝑥−𝑥 ′  2  

𝐷 𝜎    )𝑑  .                                 (32) 

Where D is the dimension of the data, now we have three 

parameters in the nonlinear case, the first parameter is the 

regularization of GEPSVM and second and third parameters is 

for the kernel function if we use the polynomial kernel then 

we have the parameter d, and if we use the RBF then we have 

the parameter 𝜎, last if we use the PolyRBF the we have two 

parameters d and 𝜎.  

In order to get the nonlinear planes in equation (11), we 

proposed to use the PolyRBF kernel. In the next subsection 

we explain how to get the best parameters in the linear and 

nonlinear classifier. 

4.3 Parameter Optimization using DSA 
A population in DSA assumed to be made up of random 

solutions of the problem corresponds to an artificial-

superorganism migrating. In DSA, artificial- superorganism 

migrates to the global minimum value of the optimization 

problem. In the migration time the artificial-superorganism 

tests whether some positions which was selected randomly are 

suitable temporary during the migration. Then the process 

stops over on the suitable tested position for a temporary time 

during the migration, the members of the artificial that made 

such discovery immediately settle at the discovered position 

and continue their migration from this position [28]. 

In the implementation of DSA, artificial-organisms (i.e., Xi, 

i={1,2,3,…,N}) making up an artificial-superorganism (i.e., 

Superorganismg, g={1,2,3,…,G}) contain members as much 

as the size of the problem  (i.e., xij, j={1,2,3,…,D}). Where, N 

signifies number of elements in the superorganism (Size of 

the population), G represents number of maximum generation, 

and D indicates size of the problem [28-30]. 

𝑥𝑖𝑗 = 𝑟𝑎𝑛𝑑.  𝑢𝑝𝑗 −  𝑙𝑜𝑤𝑗  + 𝑙𝑜𝑤𝑗                                      (33) 

The stopover site is an important step in migration. The 

method to find a stopover site at the remaining between the 

artificial- organisms may be described by a Brownian-like 

random walk model [28]. By a random selection of 

individuals of the artificial- organisms move toward the 

targets of 𝑑𝑜𝑛𝑜𝑟 =  𝑋𝑟𝑎𝑛𝑑𝑜𝑚 _𝑠𝑢𝑓𝑓𝑙𝑖𝑛𝑔 (𝑖)  to discover stopover 

sites. The scale value (R) is used to control the size of the 

change occurred in the positions of members of the artificial-

organisms. The way of calculation R makes the respective 

artificial-superorganism to radically change direction in the 

habitat [28-30]. 

The stopover site position in DSA is produced by using 

equation (34): 

𝑆𝑡𝑜𝑝𝑜𝑣𝑒𝑟𝑆𝑖𝑡𝑒 = 𝑆𝑢𝑝𝑒𝑟𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚+ 𝑆𝑐𝑎𝑙𝑒 ∗ (𝑑𝑜𝑛𝑜𝑟 −
𝑆𝑢𝑝𝑒𝑟𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚)                                                               (34) 

A random process is used to determine the members of the 

artificial organisms of the superorganism of stopover site. If 

the one of the stopover site elements goes outside the limits of 

the search space for any reason, it randomly deferred to 

another position in the search space. If the stopover site is 

better than the sources owned by the artificial-organism, the 

artificial-organism moves to that stopover site. While the 

artificial-organisms change site, the superorganism containing 

the artificial organisms continues its migration to the global 

minimum. 

There are two control parameters in DSA, which are p1 and 

p2. The tested and the most appropriate values for these 

parameters were conducted by [28]. Figure 2 describes the 

main steps of the proposed approach. 

Fig 2: Basic steps of the proposed approach 
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In the proposed approach we are seeking for optimal values 

for the linear and nonlinear parameters. The stopping criteria 

for the procedure is either max number of cycles are reached 

or the 100% accuracy is obtained. 

5. EXPERIMENTAL RESULTS 
The proposed approach is implemented on personal computer 

with a core i3 processor 2.13GHz, 3GB of RAM, and 

windows 8.1 operating system. Matlab 2010b framework is 

used in development. To verify the proposed approach quality 

the following datasets are used from UCI repository [39], the 

datasets characteristics are shown in Table 1.  

Table 1 Datasets characteristics. 

Dataset Features Instances 

Australian 14 690 

Breast Cancer 10 683 

Diabetes 8 768 

German 24 1000 

Heart Disease 13 270 

Ionosphere 34 351 

Liver Disorders 6 345 

Sonar 60 208 

Splice 60 1000 

Wbpc 34 198 
 

Tables 2 and 6 summarize all parameters setting in the linear 

and nonlinear DSA-MSPSVM respectively with their 

assigned values. Where the values are chosen based on our 

numerical experiments.  

For implementation, the data was divided into ten parts or 

folds, nine of which comprised the training data, with the 

tenth being used for testing the generalization ability of the 

classifier. This process was repeated ten times, using a 

different fold for testing on each occasion. This process is 

known as tenfold cross validation and is a standard 

methodology for reporting the performance of a classifier. The 

classification accuracy was computed by computing the 

average across all the ten trials.  

Table 2 Linear GEPSVM parameter 

Parameter Symbol Interval 

P1 𝛿 [0.001,10000] 
 

The DSA parameters setting are shown in table 3. 

Table 3 DSA-GEPSVM parameters setting 

DSA Parameter Definition Value 

Popsize Size of superorganism 30 

Dim Dimension of search space 1 

Low Minimum  limit of search space 0.001 

Up Maximum  limit of search space 10000 

Maxcycle Max number of Iteration 20 
 

Table 4 illustrates the results obtained after implementing 

Linear DSA-GEPSVM on several public benchmark datasets. 

Table 4 Linear DSA-GEPSVM accuracy results on some 

benchmark datasets 

Dataset 
Proposed method 

P1 Training Testing 

Australian 920.9123 70.6924 73.913 

Breast Cancer 4.8162 97.3984 100 

Liver Disorders 964.9806 70.7395 77.1429 

Diabetes 5 74.2775 80.5195 

German 15.8707 74.7778 82 

Heart Disease 0.8947 87.2428 96.2963 

Ionosphere 0.1306 81.132 76.064 

Sonar 0.2105 91.9786 90.4762 

Splice 40.3143 74.8889 76 

wpbc 0.001 89.3258 95 

 

Table 5 illustrates the comparison between Linear DSA-

GEPSVM and four recently methods GEPSVM, FSVM, 

FTSVM, and IGEPSVM. The proposed method given 

promising results for all dataset from other methods, and the 

mean accuracy of proposed method is the best. 

Table 5 Training accuracy of linear DSA-GEPSVM and 

compared methods on UCI datasets 

Dataset Proposed 
GEPSVM 

[12] 

FSVM 

[13] 

FTSVM 

[18] 

IGEPSVM 

[36] 

Australian 70.6924 - 85.56 86.08 - 

Breast Cancer 97.3984 - 65. 01 65.60 - 

Liver Disorders 70.7395 68.86 76.67 77.80 73.83 

Diabetes 74.2775 67.93 - - 74.61 

German 74.7778 75.49 71.68 78.20 77.15 

Heart Disease 87.2428 - 83.33 84.44 - 

Sonar 91.9786 83.66 - - 88.47 

wpbc 89.3258 83.98 - - 87.74 

mean 82.0541 75.984 79.31 78.424 80.36 

 

The deferent kernels were applied to nonlinear DSA-

GEPSVM. The first kernel is the polynomial kernel, the 

second kernel is the radial base function kernel and the last 

one the hybrid kernel between the previously mentioned 

kernels. In order to prove how the hybrid kernel is effective, 

we applied the nonlinear DSA-GEPSVM three times on each 

kernel. Table 7 shows the detailed results that obtained.  

Figure 3 shows how the hybrid kernel is effective in most 

cases.  
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Table 6: Nonlinear DSA-GEPSVM parameters 

Parameter Symbol Interval 

P1 𝛿 [0.001,10000] 

P2 𝜎 [0.001,33] 

P3 p [0.001,33] 
 

Table 7: The nonlinear DSA-GEPSVM results applied to 

the three mentioned kernels 

Dataset Kernel P1 P2 P3 
ACC 

Training 

ACC 

Testing 

Mean 

ACC 

Breast 

Cancer 

rbf 562.9775 0.001  - 100.00 98.55 99.28 

poly 1000.0000 -  4.5906 100.00 100.00 100.00 

PolyRBF 125.4612 24.8243 5.3731 96.92 98.55 97.73 

Heart 

rbf 0.0010 4.5501  - 87.24 88.89 88.07 

poly 1000.0000  - 8.9368 100.00 81.48 90.74 

PolyRBF 2516.2190 12.9724 25.134 100.00 85.19 92.59 

Ionosphere 

rbf 20.6282 0.001 -  100.00 94.29 97.14 

Poly 0.0010 -  4.1069 100.00 80.00 90.00 

PolyRBF 841.7760 32.5201 24.1597 100.00 97.06 98.53 

Sonar 

  

  

rbf 13.1398 0.001 -  100.00 90.00 95.00 

poly 8884.2091 -  6.3464 100.00 76.19 88.10 

PolyRBF 0.0010 19.9701 19.631 100.00 85.71 92.86 

 

 

Fig 3:  Mean accuracies of poly, rbf, and PolyRBF applied 

on UCI datasets 

Table 8 and Table 9 illustrate the comparison between 

training and testing accuracies of nonlinear DSA-GEPSVM 

on four datasets with other recently methods GA+SVM, 

SA+SVM, PSO+SVM, CV-ACC, and S.C. Chen. Results 

proved how the proposed approach give comparable and 

promising results. 

Table 8: Training accuracies comparisons between the 

nonlinear DSA-GEPSVM with PolyRBF and other 

recently approaches 

Method 

Datasets 

Breast 

Cancer 

Heart 

Disease 
Ionosphere Sonar 

Proposed 96.92 100 100 100 

GA+SVM[20] 94.23 94.58 96.61 95.22 

SA+SVM[21] 97.95 87.97 97.5 91.85 

PSO+SVM[22] 97.95 88.17 97.5 88.32 

CV-ACC[23] 96.69 84.753 97.714 100 

S.C. Chen [24] 96.04 86.32 96.60 96.07 

 

Table 9: Testing accuracies comparisons between the 

nonlinear DSA-GEPSVM with PolyRBF and other 

recently approaches 

Method 

Datasets 

Breast 

Cancer 

Heart 

Disease 
Ionosphere Sonar 

Proposed 98.55 85.19 97.06 85.71 

GA+SVM[20] 94.23 94.58 96.61 95.22 

SA+SVM[21] 97.95 87.97 97.5 91.85 

PSO+SVM[22] 97.95 88.17 97.5 88.32 

CV-ACC[23] 95.97 83.98 93.68 87.26 

S.C. Chen [24] 96.96 91.15 97.5 96.90 

6. CONCLUSIONS 
In this paper, we presented a DSA-MSPSVM method for data 

classification based on MSPSVM and DSA approaches. It is 

well known that the MSPSVM regularization parameter 𝛿 and 

kernel parameters are important to the performance of the 

classifier. But it is difficult to choose a kernel function and its 

parameters because they are dependent on datasets. The DSA 

has been applied to optimize these parameters. We conducted 

experiments to evaluate the performance of the proposed 

approach with three different kernel functions Poly, RBF, and 

PolyRBF in the nonlinear classifier. The results obtained were 

compared with those obtained with other algorithms. The 

results show enough evidence that the proposed approach has 

less error rates across most of the datasets with other 

algorithms. We can also conclude that PolyRBF kernel gives 

better results as compared with other kernel functions. 

Further, we plan to extend the DSA-MSPSVM approach to 

deal with multiclass problems in the linear and nonlinear 

cases, and study the kernel function effects in the datasets. 
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8. APPENDIX 

Pseudo code: Differential search algorithm [28] 

Require: 

N: Size of the population, where i = {1, 2, 3, …, N}  

D: Dimension of the problem  

G: Number of maximum generation  

1:  Superorganism = initialize(), where Superorganism = [ArtificialOrganismi]  

2:  yi = Evaluate(ArtificialOrganismi ) 

3:  for cycle = 1: G do  

4:    donor = SuperorganismRandom_Shuffling(i) 

5:  Scale   = randg[2.rand1] . (rand2  -  rand3) 

6: StopoverSite =Superorganism +Scale . (donor - Superorganism) 

7: p1=0.3 . rand4 and  p2=0.3 . rand5 

8: if  rand6 < rand7 then 

9:  if  rand8 < p1 then 

10:   r = rand(N,D) 

11:   for Counter1=1 : N do  

12:    r(Counter1,:) = r(Counter1,:) < rand9 

13:   end for 

14:  else 

15:   r = ones(N,D) 

16:   for Counter2=1 : N do 

17:    r(Counter2, randi(D)) = r(Counter2, randi(D)) <rand10 

18:   end for 

19:  end if 

20: else 

21:  r = ones(N,D) 

22:  for Counter3=1 : N do 

23:   d = randi(D,1, p2  . rand . D ) 

24:   for Counter4 = 1 : size(d) do 

25:    r(Counter3,d(Counter4)) = 0 

26:   end for 

27:  end for 
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28: end if 

29: individualsI,J  rI,J  > 0 | I ∈ i,J ∈ [1 D] 

30: StopoverSite(individualsI,J) := Superorganism(individualsI,J) 

31: if StopoverSitei,j < lowi,j or StopoverSitei,j > upi,j then 

32:  StopoverSitei, j = rand . (upj – lowj) + lowj 

33: end if 

34: y StopoverSite;i = evaluate(StopoverSitei) 

35: 𝑦Superorganism ;𝑖
=  

  yStopoverSite ;i                 𝑖𝑓   yStopoverSite ;i  < 𝑦Superorganism ;𝑖

𝑦Superorganism ;𝑖
     𝑒𝑙𝑠𝑒                                                   

   

36: ArtificialOrganism𝑖 =  
𝑆𝑡𝑜𝑝𝑜𝑣𝑒𝑟𝑆𝑖𝑡𝑒𝑖                     if   yStopoverSite ;i  < 𝑦Superorganism ;𝑖

ArtificialOrganism𝑖       𝑒𝑙𝑠𝑒                                                      
  

37:  end for  
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