
International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 19, December 2014

11

Android Application to Assist Visually Impaired with

Outfit Coordination

Noha Kareem
British University in Egypt

El Sherouk City,
Cairo, Egypt

Abeer Hamdy
Electronics Research Institute,

British University in Egypt

Cairo, Egypt

Khaled Nagaty
Ain Shams University,
British University in Egypt

Cairo, Egyp

ABSTRACT

The paper presents an android based application to assist

visually impaired with outfit coordination process. The

application helps them to be independent in their decisions

while shopping or getting ready for the day. The application

matches apparel image input with user's previously saved closet

items, then provides the user with the possible matching item

suggestions. The matching process is done based on the item

outline and dominating colours.

In order to develop this application five main components have

been developed: 1. Two Region of interest (ROI) extraction

components facilitating feature and colour extraction; 2. An

outline detection component to determine whether an item is a

top, skirt or a pair of trousers; 3. A colour recognition

component to extract dominant colours of an apparel image; 4.

A descriptive colour verbal feedback; 5. A matching

component based on item outline and colours to coordinate with

others in the user‟s closet. The output to the user includes the

descriptive colours, communicated via audio, indicating the 3

dominant colours using their descriptive names - selected from

a pool of 581 different colour shades. Other output is the outline

details of the matching items.

The application was developed and tested on Android 2.2

(Froyo) and the results showed that the ROI extraction and

outline detection components perform well. The colour

recognition and descriptive name generation modules

outperforms the current ones.

Keywords

Colour Blindness, Visual Impairment, Android, Computer

Vision, Outfit Coordination, Clothes Matching, Apparel.

1. INTRODUCTION
There exist 285 million individuals globally who suffer from

visual impairment, as estimated by the World Health

Organisation (WHO); around 13.7% of which are blind [1].

Visually impaired, including colour blind, individuals suffer

from lack of autonomy in their selection of clothing where they

must rely on other opinions. Such a simple task, outfit

coordination, that is rather intuitive for many non-visually

impaired, is non-autonomous, and may cause stress, to the ill-

sighted persons [2].

Additionally, even some visually healthy people struggle with

outfit coordination and appreciate fashion advice. A survey, of

22 participants – 9 of which had visual impairments

(impairments were not further specified), revealed that 100% of

those visually impaired, and around 77% of normally-sighted

people, welcome help in outfit coordination [2]. Moreover,

fashion retail stores, especially through their ecommerce

landmarks, are highly concerned with returning customised

results to their shoppers, and thus need automated outfit

coordination to encourage a shopper to purchase a full outfit,

recommended by the store [3].

To furnish such needs of an automated solution, this paper

proposes an Android-based outfit coordination application that:

1. Classifies an item in terms of its dominant colours and its

outline (top or bottom, the latter further classified into skirt or a

pair of trousers). 2. Provides means for descriptive feedback

regarding the item‟s dominant colours. 3. Matches the item

based on outline and colour to other items in the user‟s closet,

which is a database of apparel images on the application-

hosting device. Outline matching is held by returning results

with items of the opposite outline to the input; for instance

given a skirt, a top is returned. Colour matching is offered

through analogous and complementary matching, as opposed to

merely returning items with similar colours.

The paper is organized as follows: Section 2 introduces

literature review; section 3 introduces the proposed application.

Section 4 presents the development environment, while sections

5-9 discuss in detail the development and testing of the

proposed system. Finally, section 10 concludes the paper.

2. RELATED WORK
Fashion is a highly subjective matter with innumerable tastes

and scarce solid rules. However, outfit coordination systems

have been experimented with. This section presents the recent

research in the field of automated outfit coordination.

Iwata et al [4] maintained an outfit database with magazine and

online stylist opinions as references, modelled on humans. To

discern tops from bottoms, they segmented images according to

assumed ratios with respect to the model‟s face utilising a face

detection algorithm. Their system matches the user top (or

bottom) input against the outfit images in the database yielding

a matching bottom (or top) as a suggestion. This process seems

advantageous in providing the user with real life suggestions,

possibly recognising fashion trends.

Rose‟s [5] helped the visually impaired to allocate clothing

items in their closets via RFID (Radio Frequency Identification)

technology. The system followed a client-server architecture

offering three interfaces to SQL-based queries: One designed

for the fashion consultant; another for administrator use and

then an interface for the closet users. Selective “get” operation

retrieved apparel from the user‟s closet, purging inappropriate

items such as stained and weather-inappropriate clothing. The

returned set is then matched together via cross product to form

potential outfit suggestions that are then filtered by fashion

rules fed by experts.

Paisios et al [6] used a standard neural network and a Siamese

neural network to determine whether a pair composed of a shirt

and a (patterned) tie produces a match to assist the visually

impaired with the matching problem.

Hsu et al [3] developed a system that provides similar matches

to a given input item to offer custom-recommended shopping

options. The system receives an input image of an item and

returns similar items in terms of outline, colour and texture,

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 19, December 2014

12

each with different significance–based weight. They first

separated the item from its background through a binarisation

algorithm (further mentioned in the ROI method 2 discussion,

section 5); then categorised the pixels into prioritised classes

that form the image‟s colour “palette”: “primary” (over 45%

occurrence frequency); “secondary” (10-45%) and “decorative”

colours (2-10%). In addition to colour comparison of an item

with database images for matching, the following has been used:

Fourier descriptors for outline-specific features; Gabor filters

for texture feature extraction and SIFT (Scale Invariant Feature

Transform) to extract feature vectors. Matching “similarity

scores” are then computed, yielding finest matches as the

concluded results.

Yuan et al [7] designed a system, embellished with audio

feedback and voice-input controls, that detects an item‟s

colour(s) to be one of 8 options, other than white, black and

grey (total of 11 options), by employing HSI values. The

system furthermore provides an algorithm to decide if a pair of

input items shares the same pattern and/or colour where Haar

wavelet, and Radon, transforms assisted in pattern comparison.

Yang et al [8] offered a system with visually-impaired user-

friendly interface that categorised textures into stripes; lattice;

special patterns and no patterns. Additionally, the system

recognised 11 clothing colours. For texture categorisation, they

merged structural and statistical descriptors (SIFT and STA

respectively), using a confidence-based measure approach

instead of mere concatenation of extracted features to a single

vector.

The objective of this paper is to provide the visually impaired

user a means for autonomous clothes matching, as well as rich

colour identification. A method for detailed outline

classification is pursued by offering classification of top/bottom

items, further identifying bottom item types into skirts or pair of

trousers. In past research it was found that colour identification

is narrowed down to only a handful of basic shades, such as in

the works of [7, 8]; the motivation in this paper however is to

provide an accurate colour extraction method that offers

hundreds of colour options for rich feedback. Once tops and

bottoms are discerned; the outline alongside extracted colours

are used in matching to provide the intended outfit matching

system. This paper also aspires to provide users with

fashionable suggestions; hence the employment of

complementary and analogous colour matching for aesthetic

variety of possible outfits, as opposed to returning items with

similar colour categories which was noticed in previous projects

such as [3, 7] where their colour matching focused on returning

matches with similar colours to a given item.

3. PROPOSED OUTFIT COORDINATION

APPLICATION
This paper offers a mobile application for outfit coordination, to

match an input item image against the user‟s (pre-populated)

closet items in order to generate outfit suggestions.

Figure 1 shows a flow chart to the proposed application. The

application consists of 6 phases: 1. Pre-processing and ROI

extraction phase; 2. Feature extraction and outline detection

phase; 3. Colour Quantisation and Extraction phase; 4. Colour

name matching phase. 5. Item Matching phase, 6. Text-to-

speech phase to communicate feedback to the application user.

Sections 4-9 discuss the development and testing of these

phases in detail. Section 4 presents the development

environment. Section 5 discusses the pre-processing and the

two ROI extraction methods. Section 6 is dedicated for feature

extraction and item‟s outline detection and classification.

Section 7 is dedicated for colour quantisation and extraction.

Section 8 is dedicated for extracting the quantised colours‟

categories and descriptive names. Section 9 discusses the last

phase of the system which is the process of item matching,

where the item‟s outline and colours are used to match it with

other items in the user‟s closet database and return the user

matching suggestions.

Pre-processing and

ROI extraction

Input item

image

Colour

names

User closet

ROI 1 image

Feature extraction

and outline

detection

Item outline

classification

Colour quantisation

and extraction

Colour category

and name matching

Colour data

Item matching

Matching item

suggestions

ROI 2 image

User closet

Convert text-to-

speech

Audio details (item colours,

item outline, number of

matches returned)

Figure 1: Proposed outfit coordination application

4. DEVELOPMENT ENVIRONMENT
The application was developed on Android mobile phone with

specifications provided in Table 1.

OpenCV library [9] was chosen for the purpose of computer

vision and machine-learning algorithms used in the application.

Regarding the image dataset used for training and testing

purposes throughout the implementation, a collection of apparel

items have been selected from a multitude of fashion retail

stores‟ websites such as: Coldwater Creek; Dorothy Perkins;

Esprit; Gap; H&M; Miss Selfridge; Net-A-Porter; Ralph Lauren

and Topshop. The images utilised have the following properties:

1. Minimal details in the background (mostly plain with a

unified colour; at times however there exists a shadow effect in

the item‟s background), 2. A single image in the foreground;

the apparel item image of interest, 3. The images are supplied

with convenient lighting to support optimal colour reflection; 4.

The apparel item is centred and most are not folded.

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 19, December 2014

13

An HTML colour dataset prepared by Kevin Walsh [10] was

adopted as a reference for colour categories and shade names.

The HTML-parsing java library, jsoup [11] was used to parse

the HTML colour dataset. For audio output, the built-in

Android text-to-speech library has been used to provide audio

feedback, upon user selection, regarding the evaluated item‟s

outline; colours; and number of item matches found.

Table 1. Testing device specifications

Criterion Specification

Hardware specifications

Processor 600MHz

RAM1 189-279MB

Internal memory 181MB

External memory2 10.5MB

Software specifications

Operating System Android 2.2 (API Level 8), known

as Android Froyo

Application prerequisites OpenCV manager (downloaded
through Google‟s Application

store, Google Play [12].)

5. PRE-PROCESSING AND ROI

EXTRACTION
Images are pre-processed by passing through a median filtering

and Gaussian blurring with filter sizes 11 x 11. Such processes

are held on each colour channel (Red; Green and Blue) which

are split for individual processing and re-merged once pre-

processing is done.

Two Region Of Interest (ROI) extraction approaches are

applied to the pre-processed images. ROI method 1 precedes

the feature extraction phase, while ROI method 2 precedes the

colour extraction phase.

ROI method 1: It utilises adaptive Gaussian thresholding with a

3x3 mask over a pre-processed grey-scaled version of the image

followed by finding the contours in the binarised image using

the algorithm of Suzuki et al. [13, 14, 15]. Upon finding

contours, they are then filled [16, 15] to produce the binary

mask, whose set pixels are then used as a guide to selecting

pixels from the original photo to form an ROI image [15].

Figure 2 illustrates the steps of generating a binary mask using

this approach. In Figure 2 two example images are shown to

highlight the need for calling the finding and contour filling

methods, where in some instances it yields better ROI results.

An example on a skirt item is seen in the rightmost flow of

Figure 2 showing a fuller ROI than the left example. Even

though the finding and filling contours steps were added there

were many cases where not the entire ROI is extracted, such as

in the T-shirt flow example in Fig. 2 above. However it was

found that the ROIs extracted sufficed for the purpose of feature

extraction for SVM classificaiton (consider section 6 for further

details). For colour extraction on the other hand, the entire

item‟s ROI is pursued to gather as much colour data as possible.

Hence, the implementation of ROI method 2.

1 The testing device has 279MB worth of RAM, 189MB of which are
usually free in testing phases (the remaining approximate 90MB tend to

be consumed by system operations).
2 The external memory requires approximately 10MB total, the number
is increased for additional assurance.

ROI method 2: It encompasses an item‟s interior details,

suitable for colour extraction. This binarisation method hosts

some similarities with that of Hsu et al, summarised as

“Grayscale Canny edge detection Dilation Fill holes

 Erase small regions Erode” [3]. A contrast in this paper‟s

method to that of Hsu et al is the use of an xor operation, which

was found to be vital to produce a filled ROI with reduced pixel

data loss, as soon explained. Another difference is that in this

paper small regions have not been erased nor the resultant mask

eroded. Although it would have produced a finer result in

reducing false positive pixels, the result produced deemed

satisfactory when teamed with the colour quantisation and

extraction modules selecting the most frequent colours from an

image (further discussed in the Colour Quantisation and

Extraction section, 7). The algorithm‟s details are further

elaborated in the lines below.

The ROI2 algorithm proceeds as follows:

1. The image is pre-processed using earlier mentioned median

and Gaussian filters, and also adding histogram equalisation.

2. The pre-processed image is converted to grey scale by

utilising the saturation channel of an HSV version of the image.

3. An edge map of the greyed image is produced using canny

edge detection [3].

4. Contours are then found using algorithm of Suzuki et al. [13]

from the edge map

5. Douglas-Peucker algorithm [17, 18, 19] is applied over the

contours to help approximate them to a more regularised shape

through attempting to map the polygons to a straighter figure.

The polygons are then filled [20].

6. Dilation is then performed using a 5 x 5 elliptical structuring

element to fill edge gaps in pursuit of a connected contour for

the apparel item [3].

7. Following the dilation process, the edge map is then

converted back to RGB to flood-fill (with a shade other than

pure black or white, in this work an orange shade) at its four

corners and then its converted to grey scale to be xored with a

grey scale version of the dilated binary image. Thus, a (grey

scale) version before the flood-fill is xored with a (grey scale)

version after the flood fill. The xor operation sets all the ROI

pixels to zero, since both xor operand images have the same

ROI pixels – just varying background (non-ROI) colours, and

the xor operation produces 0 upon xoring two similar values.

The xored image is then flood-filled with white at the corners

before the image is negated. Upon negation, the image‟s

background is set to black, while the item‟s pixels are set to

white, representing the binary mask.

Figure 3 illustrates the steps of ROI extraction method 2,

alongside an example. It is shown that upon the xor step, all

similar pixels between the two versions of the dilated binary

image are set to zero and then upon inversion, to one, signifying

the ROI pixel locations. This binary image is then used as a

reference to indicate which pixels in the item image represent

ROI pixels, to produce the ROI image.

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 19, December 2014

14

Pre-process&

convert to greyscale

Input

image

Adaptive

thresholding

Binary

mask

Find and draw (fill)

contours

Figure 2: ROI1 binarisation flowchart with examples

Pre-process (including

histogram

equalisation)

Input

image

Perform Canny edge

detection

Dilate contours&

convert to RGB

Copy image& flood-

fill corners with

orange

Invert

Binary

mask

Greyscale

Find contours;

approximate& fill

polygons

Convert to grey scale

XOR (grey-scaled

dilated contours both

versions: flood-filled

and original)

Flood-fill corners with

white

Convert to grey scale

Figure 3: ROI2 binarisation flowchart with example

6. FEATURE EXTRACTION AND

OUTLINE DETECTION
This component includes: A feature extraction stage then a two-

phase classifier. The feature extraction stage is developed using

an extractor called Oriented FAST and Rotated BRIEF (ORB)

[21]. One of ORB‟s prominent features is its remarkable

efficiency in comparison to SIFT [22] and SURF (Speeded Up

Robust Features) [23] . ORB requires approximately 0.3% and

7%, of the time needed by each extractor respectively, per

image. Furthermore, ORB has the advantage of being a royalty-

free alternative to SIFT and SURF [21].

The input to the ORB is the ROI1-image. The output of the

ORB is a set of features that are fed to a linear, binary, Support

Vector Machine (SVM1). SVM1 is the first phase of what is

referred to as the two-phase classifier. SVM1 classifies an item

into either a top or a bottom. If the item is classified as a bottom,

it is fed into a second linear, binary SVM (SVM2) for further

classification, into either a skirt or a pair of trousers.

For training images, a total of 182 training images‟ features has

been used (80 tops – including knee-length dress and coats; 55

pairs of trousers and 47 skirts). SVM1 training dataset

considered all items while SVM2‟s training set considered only

trouser and skirt items.

The two-phase classifier has been tested using the features

extracted from each of ROI1 and ROI2, which provides the

SVM features input. A test set of 10 item images has been

assembled to include 4 tops; 3 pairs of trousers and 3 skirts. For

SVM phase 1 all 10 images were tested; for SVM 2 only the 6

bottom items were tested. The test images for the two-phase

classifier are shown in Figure 4, with the top test items in the

first row; trousers in the second and skirts in the third.

Figure 4: Two-phase classification test items

After running different ROI variations on the test set to precede

feature extraction (all using ORB), it was found that the method

yielding highest accuracy rates required ROI1. Furthermore, the

ROI1 images were resized to the mode image size of the

training dataset which enhanced accuracy results (compared to

no scaling). Test images were also resized to the mode size.

Training set image mode size was thus saved as preference on

the test device.

To test the different ROI variations, after feature vectors were

produced (from the scaled/non-scaled ROI1/ROI2 images,

using ORB), vectors were padded with zeros to reach the

maximum size of all training feature vectors. In cases where a

test image‟s features exceeded such maximum size, the feature

matrix was resized to the saved maximum size (also saved via

Android preferences).

The remainder of this section illustrates the experimental data

supporting the decision of using scaled ROI1 images as the

preferred source to extract features from. Table 2 tabulates the

ROI variation test cases. „Scaled‟ in Table 2 refers to scaling

the image to the mode size of training images.

Performance metrics consulted were the accuracy, sensitivity

and specificity for each of the two SVM classifiers.

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 19, December 2014

15

Table 3 and Table 4 provide the classes with respect to

which specificity and sensitivity were measured in first and

second phase SVMs respectively. The formulae used for

performance metrics are indicated in Table 5. They are applied

for each of SVM 1 and SVM 2 using their designated positive

and negative classes identified in

Table 3 and Table 4 respectively. Note that true positives refer

to items correctly classified as positives; total positives refer to

all items originally categorised as positives. The same naming

convention is applied to true negatives and total negatives with

respect to the negative category.

Table 2. Test cases for SVM effectiveness measurement

Test case
Preparation for image preceding feature

detection (for training and test images)

1 Not scaled, ROI method 1

2 Not scaled, ROI method 2

3 Scaled, ROI method 1

4 Scaled, ROI method 2

Table 3. SVM phase 1 class key for effectiveness analysis

Value Classification

1 (positive class) Tops

-1 (negative class) Bottoms

Table 4. SVM phase 2 class key for effectiveness analysis

Value Classification

1 (positive class) Skirts

-1 (negative class) Pairs of trousers

Table 5. Performance metrics

Metric Formula (Percentage)

Accuracy

100 ∗ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡 𝑖𝑡𝑒𝑚𝑠

Sensitivity

100 ∗ 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

Specificity

100 ∗ 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

Figure 5 and Figure 6 illustrate the effectiveness results for

SVM1 phase and SVM2 classifiers respectively. As shown in

Figure 5 and Figure 6; case 3, which used scaled ROI1 images

as the feature extraction source, signified highest accuracy in

both SVM phases. Test case 3 hosted 70% accuracy in SVM 1

discerning tops from bottoms with most erroneous

classifications being false negatives (misclassifying tops as

bottoms), hence the 50% sensitivity (and approximate

specificity of 83.3%). More significantly, test case 3 yielded a

100% score accuracy, sensitivity and specificity with bottom

items (SVM 2) in the test cases.

Figure 5: SVM phase 1 effectiveness graph

Figure 6: SVM phase 2 effectiveness graph

7. COLOUR QUANTISATION AND

EXTRACTION
The objective of this component is to extract the major colours

of ROI2 images. Normally, an image‟s histogram encompasses

a broad array of bins, in each of the Red, Green and Blue

channels, and thus colours utilised in the image, the image‟s

colour palette, are required to be narrowed down, through a

colour quantisation algorithm, for more focused recognition of

the various colours within the image. This paper utilises k-

means clustering of an image‟s pixels into colour clusters [24],

to perform the needed colour palette reduction.

The colour quantisation and extraction process proceeds as

follows:

1. The original image is downsized to its half , before it's fed to

ROI method2, to reduce the pixels considered for colour

quantisation.

2. The pixels of the ROI2 image are then iterated over to

determine which are to be sent for quantisation, since the

background pixels of the ROI2 do not represent the item‟s

colours.

3. The image is then vectorised to a single column and then

quantised using k-means.

4. Once the image‟s colours are quantised, the colours are

sorted by frequency. The quantised colours are then mapped to

the nearest colour ids (as discussed in Section 8.2) and saved to

the database and can be used in item matching and colour name

extraction.

The clustering process is repeated three times in efforts to yield

better results [25]. The initial centres are selected randomly.

0

20

40

60

80

100

120

Case 1 Case 2 Case 3 Case 4

Accuracy (%)

Sensitivity (%)

Specificity (%)

0

20

40

60

80

100

120

Case 1 Case 2 Case 3 Case 4

Accuracy (%)

Sensitivity (%)

Specificity (%)

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 19, December 2014

16

Different values to the number of quantisation bins, or

equivalently the k value for the k-means clustering, were

experimented, as k is one of the parameters that impact the time

complexity of the k-means algorithms. Figure 7, illustrates

graphically the time taken to colour-quantise a single image

given an assortment of bin values. As shown by the figure, to

quantise an image; approximately 29 minutes are required for

15 bins, compared to approximately 0.3 minutes for the three

bins. So k is set to 3 to speed up the mobile application.

Moreover, three colours tend to offer a satisfactory metric to

describe a multicoloured clothing item‟s dominant resident

shades.

Figure 7: Quantisation processing times of an image for

various bin sizes

8. COLOUR CATEGORY AND NAME

MATCHING
To offer the application user a detailed verbal feedback about

the input apparel's colour, a database of colours and descriptive

names was built and a colour name matching process was

performed with the aid of this database. The following two

subsections discuss the database of colour categories and the

colour name matching.

8.1 Database of Colour Categories and

Names

To build a database of colours, a dataset of colour values

mapped to respective descriptive names is required. For such

purpose, the HTML-based colour directory, compiled by Kevin

Walsh [10] was chosen. The HTML tables were parsed using

jsoup [11] and saved in a SQLite database in the Android

application.

The colour-related tables in the SQLite database are represented

by the Entity Relationship Diagram (ERD) seen in Figure 8.

Figure 8: ERD from perspective of colour names

As shown in the ERD, the colorNamesTable offers colour

details: RGB and HSV values, name, as well as the foreign key

of colour category, classID. The second table,

colorClassesTable, represents the colour classes (categories)

hosts the lastIndex column which designates the last colorID

(from colorNamesTable) within the current colour class. For

completeness, the table preserves the colour class‟s name (such

as Blue, Brown and Green) in the className column. There are

10 colour classes, representing 581 colours in total. This vast

amount of colours in the database is expected to assist with

plausible colour name outputs even in cases where the actual

colour category classification is not optimal, for example if a

colour is misclassified as white instead of grey, there are still

some colour shades in the white category that represent greyish

hues.

Colour classes are helpful in having nearest neighbour matching

performed against it (first step in finding a matching colour

name, as will be soon elaborated upon, section 8.2). Colour

classes are also helpful in matching apparel based on

complementary and homogenous colours. Colour classes were

parsed from table headers [10] where each colour category had

an exclusive table (example colour classes are red, blue and

yellow, where each hosts a myriad of various “shades” within

its own table).

The colour records are read sequentially, one at a time. The

parsed colour names were run through string operations to yield

readable results; numbers, if existed, were purged from colour

names and capitalised letters were preceded by spaces to

separate words (such as SlateGray1 and SlateGray2 both

became Slate Gray) for easier user comprehension upon the

text-to-speech feature. Also, colour records with a colour value

but no name were not added to the colour database.

8.2 Colour Name Matching
In this stage the quantised colours, section 7, will be matched

against the colour names database. The first step to find the

colour name was finding the colour class; k-nearest neighbours

(KNN) algorithm was used for this purpose. To train the

KNN object, the parsed colour data (stored in the SQLite

database) was saved in a matrix in HSV format and then fed

into the KNN object as a training set. Each of the three colours

extracted from image colour quantisation was converted to

HSV and saved in a matrix. Then the nearest colour category

was found using KNN with k set to 7. Only the hue channel has

been used in both training dataset and quantised colours.

The colour category classification comparisons are based on

hues since similar RGB values can be found across various

colour categories, thus hue values help discern one category

from another. It was observed that comparisons based on hue

(H) only tends to yield higher accuracy in category detection

than using saturation and/or value (S,V) as well, as depicted in

Figure 9 (with other RGB varieties compared for

experimentation). This result was expected since hue is

commonly used for matching, given its intuitive measure for a

colour‟s category [26]. Test results were based on a sample set

of 10 colours, half of which did not exist in the colour database,

and thus their categories were set by visual assessment. The

non-existing colours tested the nearest neighbour mapping,

especially regarding colour names‟ plausibility in cases of no

exact matches in the database.

Hue-based colour category classification also has the added

advantage of a higher efficiency in terms of nanoseconds, as

illustrated in Figure 10, where classification using Hue only

saves around 44% (0.26 seconds) of training dataset preparation

time when compared to classification using all HSV channels.

This is considerable because KNN is a lazy learner, and thus

retrains the training dataset (which can grow with larger colour

databases) per classification; unlike with SVMs for instance

28.6481

5.3633

1.0219 0.26860

5

10

15

20

25

30

35

15 7 5 3P
ro

ce
ss

in
g
 t

im
e

p
er

 i
m

ag
e

(m
in

u
te

s)

Bin size (number of clusters)

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 19, December 2014

17

where the trained model was saved as an external xml file

(which is facilitated by the OpenCV library).

The legend „prepare training dataset‟ in figure 10 refers to the

addition of the category labels of all colour records - retrieved

from the colour database – into a matrix object, as well as the

colour values themselves (for the channel(s) in question) in a

matrix object representing training attributes. This is variable

to colour channels used where less channels are expected

require less time to save. Provided HSV colour space was used

for classification, the colour would also need to be converted to

HSV. The „instantiate KNN object‟ step, in this project using

the OpenCV library, is also the step that trains the dataset. The

„prepare test dataset‟ step adds the training dataset‟s colours

themselves (for the channel(s) in question) to a matrix object

converting to HSV upon need.

Figure 9: Channel-based comparison of KNN category

colour matching accuracy

Figure 10: Channel-based comparison of processing time

for KNN classification

Once the colour category is found, a linear search then follows

to discover the nearest colour shade - also referred to here as

nearest neighbour - in the deduced colour class from the colour

database (instead of searching the entire colour database). To

estimate the nearest neighbour - which help matches the input

colour to a descriptive name from the colour dataset -

Manhattan distance was used to compare RGB distances (for all

three channels). The nearest RGB value was chosen as the

metric to find the nearest colour name to yield the nearest shade

sought after.

For an example of colour name results, the image below in

Figure 11, has Dark Orange, Light Salmon and honeydew

describing the top three dominant colours. Note how the

honeydew colour could be attributed to the top‟s interior‟s brand

tag as well as the light cream embellishments on the top‟s front,

offering visually impaired users richly illustrated apparel colour

data. Such colour detail has a wealth of potential in future

applications detecting various materials‟ colours.

Figure 11: Sample top with colour name results Dark

Orange, Light Salmon and Honeydew

9. ITEM MATCHING
To provide the user with outfit coordination results, the system

is to return compatible matches, to the input item image, in

terms of outline and colour.

In this paper the item‟s most frequent colour is used to find

complementary and analogous matches. Medium frequent and

least frequent colours could also be considered, however for a

reduced pool of more related results, only the most dominant

colour has been chosen. Thus, provided a patterned item is in

question, only the most dominant colour in that apparel‟s

material is considered in the outfit matching. The query results

are also purged by the item outline by querying items in the

user‟s closet with the opposite outline. Thus for trousers and

skirts, tops results are returned, and vice versa.

The matching process ensues as follows: (1) matching colours -

two analogous and one complementary, elaborated upon later -

are computed using the most dominant colour in the apparel; (2)

every computed matching colour is classified into a colour

category using the colour database – this calls for KNN

classification (method discussed in Colour Name Matching

section 8.2). Then (3) - still for every matching colour - the

system searches for matches through querying the closet for

items with the needed matching colour category and outline.

Regarding colour, the query first starts by searching for the

matching colour category using the most frequent colour;

provided the user‟s closet hosts no items with such colour as the

most frequent one, then the search is repeated for the second

most frequent colour, then if still no results, the least frequent

colour, before determining that no matching results are found.

The topmost result could then be highlighted, or even sort the

matching results in order of closest matches by sorting the

matching items ordered by ascending (Manhattan) distance

from the original matching colours, depending on application

needs. The matching details are then saved in the SQLite

database. Figure 12 offers an example matching result for a pair

of trousers given a sample user closet of 10 items in the

application prototype.

Regarding computing colour matches; a shade‟s complementary

colour hosts a hue value (hence the need for HSV space) 180°

away from the original one - on the opposite end of the hue

spectrum. After shifting the hue by adding 180°, the new colour

needs to be normalised to the maximum allowable hue: 360°.

60
70

80

10

40

10

0

10

20

30

40

50

60

70

80

90

A
c
c
u

r
a

c
y

 (
%

)

Method

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

HSV HS H RGB RG R

T
im

e
(n

an
o
se

co
n

d
s)

Subset of channels used in classification

Prepare

training

dataset

(581

items)

Instantiate

KNN

object

(train)

Prepare

test dataset

(10 items)

Find

nearest

neighbours

(classify)

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 19, December 2014

18

While complementary colours tend to offer more colourful

outfit options for users, analogous colours are inclined to be a

colour-conservative choice where matching colours are more

similar to one another, offering additional fashion options for

the user. For every colour, two analogous colours are extracted:

the neighbouring colours on the right and left banks on the

colour wheel – each 30 ° apart in hue value. To obtain the

analogous colours, simply the hue is shifted leftwards (by

subtraction) and rightwards (by addition) to result in two

different analogous shades (and normalise to the maximum

360°). Colour wheels have a continuous range of possible

shades, 2563 possible shades to be numerically precise [27];

however, it is common to divide the colour wheel into 12 slices,

as shown in the colour wheel in Figure 13. Thus the distance

from a colour of
360°

12
 = 30° was adopted as a sound heuristic

to obtain an analogous shade. Figure 13 illustrates the concept

of a colour wheel, divided into 12 sections; it also demonstrates

an example for a complementary colour (green) and analogous

colours (pink and orange) with respect to the colour red.

Figure 12: Sample matching result

Figure 13: Example of complementary and analogous

matches with red

10. CONCLUSION AND FUTURE WORK
This paper discussed the development of a mobile application

for outfit coordination. The application could be used in both

shopping and home environments to help visually impaired

individual to decide what items to purchase independently; as

well as to assist him to independently decide what to wear on a

daily basis.

For this purpose two ROI extraction methods have been

implemented each of which caters an exclusive purpose: The

first ROI method, using adaptive thresholding, was used for

feature extraction; while the second ROI method, using canny

edge detection and an xor operation, offered binary masks fit

for colour extraction. A two-phase SVM has been

implemented to classify items to top or bottoms then classify

bottoms to either skirts or pants. A rich colour description

feedback has been developed to provide the application user

with highly descriptive colour feedback, selected from an array

of 581 colours. Furthermore, an intuitive approach to outfit

matching is developed to offer users with a variety of fashion

options. Complementary and analogous matching are used as

opposed to only matching similar colours together, as seen in

previous applications. Computational and storage efficiency

were concerned in developing the application to ensure its being

responsive.

Further work to consider is extending the two-phase SVM to

multi-phase SVM for further classification to items such as

classifying the tops to shirts and jackets.

11. REFERENCES
[1] World Health Organization, “Visual impairment and

blindness,” October 2013. [Online]. Available:

http://www.who.int/mediacentre/factsheets/fs282/en/.

[Accessed 29 May 2014].

[2] M. A. Burton, E. Brady, R. Brewer, C. Neylan, J. P.

Bigham and A. Hurst, “Crowdsourcing Subjective Fashion

Advice Using VizWiz: Challenges and Opportunities,”

ASSETS, pp. 135-142, 22-24 October 2012.

[3] E. Hsu, C. Paz and S. Shen, “Clothing Image Retrieval for

Smarter Shopping,” California, 2011.

[4] T. Iwata, S. Watanabe and H. Sawada, “Fashion

Coordinates Recommender System using Photographs

from Fashion Magazines,” in Twenty-Second International

Joint Conference on Artificial Intelligence, 2-4 Hikaridai,

Seika-cho, Soraku-gun, Kyoto, Japan, 2011.

[5] J. Rose, “Closet Buddy: Dressing the Visually Impaired,”

ACM SE, pp. 611-615, 10-12 March 2006.

[6] N. Paisios, L. Subramanian and A. Rubinsteyn, “Choosing

which Clothes to Wear Confidently: A Tool for Pattern

Matching,” New York, 2012.

[7] S. Yuan, Y. Tian and A. Arditi, “Clothing Matching for

Visually Impaired Persons,” IOS press, New York, 2011.

[8] OpenCV, [Online]. Available: http://opencv.org/.

[9] K. J. Walsh, “rgb,” Copyright © 2010 Kevin J. Walsh,

2010. [Online]. Available:

http://web.njit.edu/~kevin/rgb.txt.html. [Accessed 20

November 2012].

[10] jsoup, “jsoup: Java HTML Parser,” [Online]. Available:

http://jsoup.org/.

[11] OpenCV manager, “OpenCV Manager,” [Online].

Available:

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 19, December 2014

19

https://play.google.com/store/apps/details?id=org.opencv.e

ngine&hl=en.

[12] S. Suzuki and K. Abe, “Topological Structural Analysis of

Digitized Binary Images by Border Following,” CVGIP,

vol. 30, no. 1, pp. 32-46, 1985.

[13] Find contours, [Online]. Available:

http://docs.opencv.org/modules/imgproc/doc/structural_an

alysis_and_shape_descriptors.html#findcontours.

[14] P. Wagner, “Extracting Contours with OpenCV,” 26 May

2012. [Online]. Available:

http://www.bytefish.de/blog/extracting_contours_with_ope

ncv/. [Accessed 30 May 2014].

[15] Draw contours, [Online]. Available:

http://docs.opencv.org/modules/imgproc/doc/structural_an

alysis_and_shape_descriptors.html#drawcontours.

[16] D. Douglas and T. Peucker, “Algorithms for the reduction

of the number of points required to represent a digitized

line or its caricature,” The Canadian Cartographer , vol.

10, no. 2, p. 112–122 , 1973.

[17] Approximate polygonal curves, 2014. [Online]. Available:

http://docs.opencv.org/modules/imgproc/doc/structural_an

alysis_and_shape_descriptors.html#approxpolydp.

[Accessed 31 May 2014].

[18] Abid Rahman, “Contours-2: brotherhood,” 2012. [Online].

Available:

http://opencvpython.blogspot.com/2012/06/contours-2-

brotherhood.html. [Accessed 3 June 2013].

[19] D. G. Lowe, “Object recognition from local scale-invariant

features,” in The Proceedings of the Seventh IEEE

International Conference on Computer Vision, Kerkyra,

1999.

[20] B. Herbert, T. Tuytelaars and L. V. Gool, “"Surf: Speeded

up robust features,” Computer Vision–ECCV , pp. 404-417,

2006. Athi, “Color Quantization,” [Online]. Available:

https://www.mathworks.com/matlabcentral/fileexchange/3

1687-color-quantization.

[21] Athi, “Color Quantization,” [Online]. Available:

https://www.mathworks.com/matlabcentral/fileexchange/3

1687-color-quantization.

[22] K-menas, [Online]. Available:

http://docs.opencv.org/modules/core/doc/clustering.html#k

means.

[23] D. Cardani, “Adventures in HSV Space”. M. Specht,

“Using perceptually uniform color spaces for

imagesteganography steganography: An enhancement of

the Least Significant Bit method”.

[24] Dataset images from coldwatercreek.com,

dorothyperkins.com, esprit.com, gap.com, hm.com,

missselfridge.com, net-a-porter.com, ralphlauren.com and

topshop.com.

IJCATM : www.ijcaonline.org

