
International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 16, December 2014

30

Function Point an Effective Planning Tool

Usman Waheed
Assistant Professor

Bahria University (Karachi
Campus) Pakistan

Tazeen Muzzamil
Assistant Professor

Bahria University (Karachi
Campus) Pakistan

Beenish Tanveer
SZABIST,

Karachi, Pakistan

ABSTRACT
Prerequisite of every estimation technique is effective

requirement discovery and planning.

FP is observed to be good source of initial planning.

While using Function Point (FP), the whole application

is brainstormed. Application is planned with gathering

all inputs, outputs, inquiries, external interfaces and files.

Whereas use case point (UCP) are limited to identifying

actor, and use cases. UCP is not effective in initial

planning. Research presented in this paper takes

advantage by combining UCP with FP model in

identifying objects like (External Inputs, External

Outputs, External Inquiries, External Interface files,

Internal Logical files, and others) for each use case. That

will help in effective planning of project at initial stages

of application. Results show that by combining the FP

model and UCP model, component identification

enhances by 66 %.

Keywords
FP (Function Points), UCP (use case point)

1. INTRODUCTION
Good planning and estimation is not only dependent on

the tools, methodologies and practices; but on the

conjoint realization and the positive attitude of both the

software developer and the management. When the

managers and the developers work together and have an

understanding of what has already be done and what

needs to be done, this result in successful project

planning so that they are more predictable.

Schedule and cost estimation of software projects rely on

a prediction of the size of the upcoming system.

Unluckily, the software prediction is extremely

inaccurate when estimating cost and schedule. Initial

estimates typically miss many basic elements of

application. Reliable early estimations are difficult to

obtain because of the insufficiency of detailed

information about the future system at an early stage.

However, early estimates are essential when bidding for

a contract or defining whether a project is achievable in

the terms of a cost-benefit analysis. Research suggests

that if early planning and object recognizing is precise

there are more chances of improved estimation results.

1.1 Function Point and its Variation
Albrecht [1] in late 1970‟s was the first to propose

function point metric and associated function point

analysis method.

It is based on 5 user identifiable logical functions" which

are divided into 2 data function types and 3 transactional

function types as shown in below table. For a given

software application, each of these elements is quantified

and weighted as mentioned I table 1, counting its

characteristic elements, like file references or logical fields.

Numerous function size metric and methods have been

proposed since their original publications.

ISO/IEC 14143 Function size measurement (FSM) standard

provides the explanation and classification of FSM [2] [3] .

Following are the sizing methods that are certified by ISO:,

International Function Point Users Group (IFPUG) FPA [5] ,

MKII FPA [6] , COSMIC FPA [4] and NESMA FPA [7] .

The IFPUG has continuously been improving the initial

Albrecht method for function sizing and is the most popular

technique of all the sizing methods. Function Point Analysis

measures the functionality, based on the “external user view”

and “logical internal view” of an application as compared to

measuring the “internal technical view”. The FPA measures

relates directly to the Business Requirements and the Business

Data of the software application [10] . In the classic FPA

method proposed by Albrecht the complexity of the external

user view was somewhat subjective. IFPUG have propagated

rules on how to measure it [5] . Another change in the FPA

method was related to the Adjusted Function Point Count

which is no longer recommended by IFPUG.

Charles Symons found some limitations in the Albrecht‟s FPA

method due to which he published his own FPA method name

MK II [11] in 1999. UK Software Metrics Association is now

accountable for its continuing developments [6] . The basic

concept of Symon‟s work is based on Albrecht method; by

overcoming the limitations of the Albrecht FPA. The

foundation of the MK II FPA is based on the fundamental

concept of Albrecht FPA; that is the size of the product can be

measured by the product of Information Processing Size and

Technical Complexity Adjustment (TCA). The criticism on

Albrecht‟s approach was on the TCA that used fourteen

general applications characteristic which were hard to

differentiate. MK II made modifications to the TCA by adding

five characteristics to the list. For Logical transactions

Albrecht used the process of involving five component types,

external inputs, external outputs, external interfaces, external

enquiries and logical internal files. MK II views the system as

a collection of logical transactions (United Kingdom Software

Metrics Association. "MK II Function Point Analysis:

Counting Practices Manual Version 1.3. 1." (1998).

The Full Function Point (FFP) method was proposed in 1997.

Many improvements have been proposed by Common

Software Measurement International Consortium (COSMIC);

which were published in May 2001 as version 2.1 of the

COSMIC-FFP Functional Size Measurement Method [4] .

COSMIC-FFP method was designed to measure the functional

size of real-time software, multi-layered software and business

application software (such as telecom, process control and

operating system) all on the same measurement scale [4] . The

COSMIC-FFP Measurement Process is based on three basic

phases. First Setting the Measurement Strategy that is

establishing the scope and purpose of the measurement.

Secondly mapping the „Functional User Requirements‟ (or

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 16, December 2014

31

„FUR‟) of the software to be measured to the COSMIC-

FFP concepts and in the end measuring the resulting

COSMIC-FFP model of the FUR.

1.2 Use Case Point
Since last two decades UML [9] is widely used in

industry. Use Case Point (UCP) [12] is one of most

popular mechanism used that starts with actor use case

diagram.

Use case points can be counted from the use case

analysis of the system. The first step is to classify the

actors as simple, average or complex.

 Actor type: Simple, that interact through API,

 Actor type: Average, that interacts through text based

GUI .

 Actor type: Complex, that interact through now days

GUI.

Use case complexity is then defined

 Simple:3 or fewer transactions

 Average: 4 to 7 transactions

 Complex: More than 7 transactions

There are some problems with UCP. Such as it is clear

that if use cases does not belong to any transaction then

its type is simple whether it is technically complex such

as any non functional requirements as mentioned in [13]

[14] [16] .

Another problem if any use case contains less transaction,

but these transactions are complex in nature, such as

General ledger transaction with complex business rules

and multiple postings.

It is also observed that in UCP only quantifying use case

by transaction. And in business situations transactions

are of eight different types [15] Other way of classifying

transaction can be in term of complexity of front end,

complexity of backend tables, intermediate interfaces,

external interfaces and or combination of all mentioned

types.

For that purpose research proposes NOT to define use

case in term of transaction, but also in term of other

development components as supported in FP model.

 2. METHODOLOGY FOR USE CASE

DRIVEN PLANNING USING

FUNCTION POINTS
UCP is weak for planning and identifying requirements

of application. Use cases are usually abstract in nature

and in naming convention. They can‟t be good source of

planning. Methodology proposes to elaborate each use

case with the help of function points, that may help in

discovering and planning the project.

2.1 Solution
When new application is developed, the entire objects or

components of the project are needed to be known. This

means number of function points of the application plus

any other function points that need to be developed

would be included. In the end, it would have the number

of function points for the application to be installed plus

any other functions need to be developed.

2.2 Steps of Methodology
Following are the steps of proposed methodology that starts

with actor-use case model diagram and ends with detailed

discovery of objects with the help of function points.

Step 1: First the system is analyzed and documented in terms

of actor use cases diagram.

Step 2: Against each use case, following items are to be

determined

a. II (Input Interface)

b. OI (Output Interface)

c. IQI (Inquiry Interface)

d. ILF (Internal Logical File)

e. EI (External Interface)

f. Others

Where

II (Input Interface): represents user data interface or control

that is used to enter information into system (files), or from

external input device such as barcode reader, thumb

impression reader, or from any other device. Formatted or

semi-formatted files can be used as input if they are stored

partially or completely into system files, otherwise they are

external interfaces.

Do not include inputs captured from other systems, portal,

website or API as they are included in external interfaces. Do

not include input that are used for just searching criteria and

are not stored into system, as they are inquiry type.

OI (Output Interface): represents reports, files and messages

generated from system, or can be for other applications.

Do not include such outputs that are input of other application,

they are external interfaces.

Do not include outputs that are generated because of

technology used.

IQI (Inquiry Interface): represents those input interfaces that

causes and generates an immediate output. These input

interfaces used to search and not updated into files. Outputs

generated in response of input inquiry are also called inquiry

interface.

Do not include pre designed output reports as they are

classified in reports.

ILF (Internal Logical File): represents any persistent storage

mechanism, such as flat file, tables of database, XML files, or

any other format that is used to store and retrieve data or

information.

Do not include files that are not accessible to the user through

external input, output, or inquiry types.

EIF (External Interface Files): data or Files passed or shared

between applications are known as external interfaces. Data of

files enters or leaves the application is known as external

interfaces.

Others: anything that is not covered in above five categories

can be added in it, it can represent technical/logical code/script

used in input, output, external interface and inquiry. Code that

is implementation of design pattern, architectural pattern, or

algorithm. It can be complex transformation or computation,

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 16, December 2014

32

special code for middleware. Code used for storage,

retrieval, sorting and searching of unstructured data or

information.

2.3 Templates used for Methodology
Proposed methodology uses actor use case diagram for

identification of use cases of the system as in Figure 1.

And table 2 shows that list of FP components against

each use case.

Figure 1: Generalized Use Case Diagram

Table 1: Template for Use case FP table

u
se

 c
as

e
1

II (Input Interface)

OI (Output Interface)

IQI (Inquiry Interface)

ILF (Internal Logical File)

EI (External Interface)

Others

u
se

 c
as

e
2

II (Input Interface)

OI (Output Interface)

IQI (Inquiry Interface)

ILF (Internal Logical File)

EI (External Interface)

Others

3. EVALUATION
To evaluate the methodology, research conducted

evaluations from multiple groups. Evaluation was

conducted by 5 groups of well recognized Software

houses. Details are mentioned below

3.1 Two Day Activity
In this evaluation, five groups of four members each was

invited form top ten software houses of Karachi city.

Complete two day activity was conducted with two

facilitators and one RSD (Requirement Specification

Document) that documented the detailed needs of the

system to be developed. The system considered was a

Student Information System. Only three modules

(Admission, Registration and Fee submission) was taken

as a case study. The activity was conducted in two

phases.

In first phase (first day) all the groups were given three

modules and were told to develop an actor-use case

diagram. And then to list and identify, possible database

tables, input prototype interfaces, inquiry interfaces and

possible reports for the whole system. At the end of first

phase, each group listed their development component as

mentioned in table 2.

Table 2: First day activity

Groups Inputs Outputs Inquiries Tables

G1 10 5 2 9

G2 12 5 2 10

G3 9 3 1 7

G4 15 3 2 12

G5 12 4 3 10

In second phase (second day), they were guided to proposed

methodology, and suggested to develop step1 and step2

accordingly mentioned in (section 2.2). In this activity all

groups brainstormed once again and then redeveloped the

previous day list once again. While developing components

against each use case, many components repeated. At the end

of the day, after eliminating all duplicates, the finalist that was

developed is mentioned in table 3.

Table 3: Second day activity

Groups Inputs Outputs Inqui

ries

Tables Others

G1 14 6 4 11 4

G2 16 7 4 12 5

G3 12 4 3 11 3

G4 18 6 3 15 3

G5 15 7 5 13 5

After analyzing these two tables, total no of components

identified by each is mentioned, and it is concluded that on

average 66% new components are discovered, when proposed

methodology is used. Results are mentioned in table 4.

The two day activity concluded that, when FP components are

used along with use cases, it facilitates in planning. And add

further value when FP components are computed against each

use case that resulted further 66% improvement.

Table 4: improvements in result

Groups First day

results

Second day

results

%age

improvement

G1 26 39 67

G2 29 44 66

G3 20 33 61

G4 32 45 71

G5 29 45 64

4. CONCLUSIONS
Initial planning is prerequisite of any estimation, and FP is

found to be efficient in identifying development components.

Research used FP to strengthen the use case model. And

evaluation showed 66% improvement in component

identification. Research concludes that for the success of any

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 16, December 2014

33

estimation model is in its initial planning. More your

time and effort spent on planning and identifying

component is better for the rest for estimation and

development of the project.

5. REFERENCES
[1] Albrecht A. (1979). Measuring Application

Development Productivity. In IBM Applications

Development Symposium, Monterey, CA.

[2] ISO/IEC. "" Information Technology -

SoftwareMeasurement - Functional Size

Measurement" - Part 1:Definition of Concepts."

1998.

[3] ISO/IEC. ""Information Technology -

SoftwareMeasurement - Functional Size

Measurement - Part 2":Conformity Evaluation of

Software Size MeasurementMethods to ISO/IEC

14143-1." 1998, 2002.

[4] ISO/IEC. ""Software Engineeir-- COSMIC: A

Functional Size Measurement Method" 2nd

Edition." Geneva: ISO, 2011.

[5] ISO/IEC. ""Software and Systems Engineering--

Software measurement--IFPUG Functional Size

Measurement Method" ISO." Geneva, 2009.

[6] ISO/IEC. ""Software Engineeir-- MK II: A

Functional Point Analysis-Counting Practtices

Manual" ISO." Geneva, 2002.

[7] ISO/IEC. ""Software Engineeirn--NESMA

Functional Size Measurement Method Version 2.1--

Definition andCounting Guidelines for

theApplication of FunctionPoint Analysis" ISO."

Geveva, 2005.

[8] A.J. Albrecht. "“Measuring Application Development

Productivity”." Application Development Symposium,.

October, 1979,.

[9] d‟Souza, Desmond, and Alan Cameron Wills. Catalysis:

Objects, Components, and Frameworks with UML. Vol.

223. Object Technology Series. Addison-Wesley, 1998.

[10] C. Gencel, O. Demirors, E. Yuceer. "“A Case Study on

Using Functional Size Measurement Methods for Real

Time Systems”." 15th. InternationalWorkshop on

Software Measurement (IWSM). Montreal, Canada,

Shaker-Verlag, 12-14 Sept. 2005,. 159-178.

[11] "United Kingdom Software Metrics Association. "MK II

Function Point Analysis: Counting Practices Manual

Version 1.3. 1." (1998)." n.d.

[12] G. Karner, "Resource Estimation for Objectory Projects,"

[13] Y. Ossia. IBM haifa research lab. IBM Haifa Research

Lab [Online].2011. Available:

https://www.research.ibm.com/haifa/projects/software/nfr

/index.html

[14] Z. Jiang, P. Naudé and B. Jiang, "The effects of software

size on development effort and software quality,"

International Journal of Computer and Information

Science and Engineering, vol. 1, pp. 230-234, 2007.

[15] Syed Irfan Hyder, Usman Waheed, “Transaction Sets

from Transaction Pattern”, TECHNOLOGY FORCES

(Technol. forces): PAF-KIET Journal of Engineering and

Sciences, Volume 01, Number 02, July-December 2007,

pp39-42

[16] W. Xia, L. F. Capretz, D. Ho and F. Ahmed, "A new

calibration for Function Point complexity weights,"

Information and Software Technology, vol. 50, pp. 670-

683, 2008.

IJCATM : www.ijcaonline.org

