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ABSTRACT 
In this paper, we prove strong convergence results for some 

Jungck type iterative schemes in Convex metric spaces  for a 

pair of non-selfmappings using a certain contractive 

condition. Our results generalize existing results in the 

literature. 

Keywords 
Jungck-iterative schemes, fixed point, contractive conditions, 

Convex metric spaces. 

1. INTRODUCTION  AND 

PRELIMINARIES 
In 1970, Takahashi [16] introducedthe notion of convex  

metric space and studied the fixed point theorems for 

nonexpansive mappings. He defined that a map 
2: [0,1]W X X   is a convex structure in X if 

       ( , ( , , )) ( , ) (1 ) ( , )d u W x y d u x d u y      

for all , ,x y u X and [0,1]. A metric space (X, d) together 

with a convex structure W is known as convex metric space 

and is denoted by ( , , )X d W . A nonempty subset C of 

a convex metric space is convex if ( , , )W x y C  for all

,x y C and [0,1] . 

Remark 1.1 Every normed space is a convex metric space, 

where a convex structure                                                                                                                                                                

( , , ; , , ) ,W x y z x y z         for all , ,x y z X  and 

, , [0,1]     with 1.      In fact,                            

            ( , ( , , ; , , )) ( )d u W x y z u x y z          

                                            u x u y u z         

                                          ( , ) ( , ) ( , ),d u x d u y d u z      

for all .u X  But there exists some convex metric spaces 

which cannot be embedded into normed spaces. 

Let X be a Banach space, Y an arbitrary set, and 

, :S T Y X  such that (Y) S(Y).T  For 0 ,x Y consider 

the following iterative scheme: 

     1 ,n nSx Tx  0,1,2....n                                         (1.1)          

is called Jungck iterative scheme and was essentially 

introduced by Jungck [1] in 1976 and it becomes the Picard 

iterative scheme when dS I (identity mapping) and 𝑌 = 𝑋. 

[0,1],n   Singh et al. [2] defined the Jungck-Mann iterative 

scheme as 

    1 (1 )S ,n n n n nSx x Tx     0,1,2....n                  (1.2) 

For , , [0,1],n n n    Olatinwo defined the Jungck Ishikawa  

[3] (see also [4, 5]) and Jungck-Noor [6] iterative schemes as 

1 (1 )S ,n n n n nSx x Ty      

(1 )S ,n n n n nSy x Tx    0,1,2....n                (1.3) 

1 (1 )S ,n n n n nSx x Ty      

(1 )S ,n n n n nSy x Tz     

(1 )S ,n n n n nSz x Tx     0,1,2....n                     (1.4) 

respectively. 

Chugh and Kumar [7] defined the Jungck-SP iterative scheme 

as 

1 (1 )S ,n n n n nSx y Ty      

(1 )S ,n n n n nSy z Tz     

(1 )S ,n n n n nSz x Tx    0,1,2....n                          (1.5)   

where
0{ } ,n n 

 0{ }n n 


 and 

0{ }n n 


 are sequences in [0,1]. 

Remark 1.2 If  dX Y and S I   (identity mapping), then 

the Jungck-SP (1.5), Jungck-Noor (1.4), Jungck-Ishikawa 

(1.3), and the Jungck-Mann (1.2) iterative schemes, 

respectively, become the  SP [8], Noor [9], Ishikawa [10] and 

the Mann [11] iterative schemes. 

Jungck [1] used the iterative scheme (1.1) to approximate the 

common fixed points of the mappings 𝑆 and 𝑇 satisfying the 

following Jungck contraction: 

                           𝑑 (𝑇𝑥, 𝑇𝑦) ≤ (𝑆𝑥, 𝑆𝑦), 0≤𝛼<1.             (1.6) 

Olatinwo [3] used the following more general contractive 

definition than (1.6) to prove the stability and strong 

convergence results for the Jungck-Ishikawa iteration process: 

there exists a real number [0,1)a  and a monotone 

increasing function : R R    such that  (0) = 0 and for 

all         𝑥, 𝑦 𝑌, we have 

                    ( , ) ( , ) ( , ).d Tx Ty d Sx Tx ad Sx Sy       (1.7) 

Olatinwo [6] used the convergences of Jungck-Noor iterative 

scheme (1.4) to approximate the coincidence points (not 

common fixed points) of some pairs of generalized 

contractive like operators with the assumption that one of 

each of the pairs of maps is injective. 
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Motivated by the above facts, for , , [0,1],n n n     Chugh et. 

al.[17] introduce the following iterative scheme: 

1 (1 )S ,n n n n nSx y Ty      

(1 ) ,n n n n nSy Tx Tz     

(1 )S ,n n n n nSz x Tx    0,1,2....n                           (1.8) 

and called it Jungck-CR iterative scheme. 

Remark 1.3. Putting           

           0 0 , 1n n nand    
 

in Jungck-CR iterative scheme, we get Jungck versions of 

Agarwal et al. [12] and Sahu and Petrus¸el [13] iterative 

schemes, respectively, as 

defined below: 

1 (1 )Tx ,n n n n nSx Ty    
                                         (1.9)

 

(1 )Sn n n n nSy x Tx   
  

and 

1 ,n nSx Ty 
                                                                  (1.10)

 

(1 )S ,n n n n nSy x Tx   
 

Now we give the above iterative schemes in the setting of 

convex metric spaces: 

Let (X,d,W)
 
be a convex metric spaces. For 0 ,x X  we 

have 

(1.1.1)   Jungck Picard iterative scheme:  

1 ,n nSx Tx  0,1,2....n   

(1.1.2)  Jungck  Mann iterative scheme: 

                         1 (S , , ),n n n nSx W x Tx   0,1,2....n   

where 0{ }n n 

  is a real sequence in [0,1]. 

(1.1.3)       Jungck Ishikawa iterative scheme: 

                      1 (S , , )n n n nSx W x Ty    

                     (S , , ),n n n nSy W x Tx  0,1,2....n    

where 0{ }n n 

  and 0{ }n n 

  are real sequences in [0,1]. 

(1.1.4)     Jungck Noor iterative scheme: 

                     1 (S , , )n n n nSx W x Ty    

                     (S , , )n n n nSy W x Tz   

                     (S , , ),n n n nSz W x Tx  0,1,2....n   

where 0{ } ,n n 

 0{ }n n 

  and 0{ }n n 

  are real sequences in 

[0,1]. 

(1.1.5)   Jungck Agarrwal iterative scheme: 

                     1 ( , , )n n n nSx W Tx Ty    

                    (S , , ),n n n nSy W x Tx  0,1,2....n   

where 
0{ }n n 


 and 

0{ }n n 


 are sequences of positive 

numbers in [0,1]. 

(1.1.6)   Jungck  SP-iterative scheme: 

                    1 (S , , ),n n n nSx W y Ty    

                    (S , , ),n n n nSy W z Tz   

                    (S , , ),n n n nSz W x Tx  0,1,2....n   

(1.1.7)   Jungck  CR-iterative scheme: 

                   1 (S , , ),n n n nSx W y Ty    

                    ( , , ),n n n nSy W Tx Tz   

                    (S , , ),n n n nSz W x Tx  0,1,2....n   

Where 
0{ } ,n n 

 0{ }n n 


 and 

0{ }n n 


 are sequences in [0,1]. 

We will need the following definition to prove our main 

result: 

Definition 1.4 (see [14, 15]). Let 𝑓 and 𝑔 be two self-maps on 

𝑋. A point 𝑥 in 𝑋 is called (1) a fixed point of 𝑓 if (𝑥) = 𝑥; (2) 

coincidence point of a pair (𝑓, 𝑔) if 𝑓𝑥 = 𝑔𝑥; (3) common 

fixed point of a pair (𝑓, 𝑔) if 𝑥 = 𝑓𝑥 = 𝑔𝑥. If 𝑤 = 𝑓𝑥 = 𝑔𝑥 for 

some 𝑥 in 𝑋, then 𝑤 is called a point of coincidence of 𝑓 and 

𝑔. A pair (𝑓, 𝑔) is said to be weakly compatible if 𝑓 and 𝑔 
commute at their coincidence points. 

Now we will give our main results: 

2. CONVERGENCE RESULTS 
Theorem 2.1. Let (X,d,W)  be an arbitrary Convex metric 

space and let , :S T Y X   be  nonself –operators on an 

arbitrary set Y  satisfying contractive condition (1.7). Assume 

that (Y) S(Y),T   (Y)S  is a complete subspace of X  and 

Sz Tz p   (say). For 0 ,x Y  let 0{Sx }n n



   be the Jungck 

CR iteration defined by (1.1.7), where { },{ },{ }n n n    are 

sequences of positive numbers in [0,1]  with { }n  satisfying 

0
.nn





   Then, the Jungck-CR iterative process 

0{Sx }n n



  converges strongly to .p  Also, p will be the unique 

common fixed point of S,T provided that Y=X, and S and T 

are weakly compatible. 

Proof.  First, we prove that p  is the unique common fixed 

point of .S and T  Let there exist another point of coincidence 

say p*. Then, there exists 
*q X  such that 

* * *.Sq Tq p   

But from (1.7), we have  

             

* *

*

*

0 (p,p ) d(Tq,Tq )

(Sq,Tq) ad(Sq,Sq )

ad(p,p ),

d

d

 

 



  

which implies that 
* 0 1.p p as a     

Now, as S and T are weakly compatible and p = Tq=Sq, so Tp 

= TTq = TSq = STq and hence Tp = Sp. Therefore, Tp is a 

point of coincidence of S, T and since the point of coincidence 

is unique then p = Tp. Thus, Tp = Sp = p, and therefore p is 

unique common fixed point of S and T. 
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Now we prove that Jungck-CR iterative process 
0{Sx }n n




 

converges strongly to .p   

 Using (1.1.7) and condition (1.7), we have 

 1(Sx ,p) d(W(Sy ,Ty , ),p)n n n nd     

                   (1 )d(Sy ,p) (Ty ,p)n n n nd      

                    (1 )d(Sy ,p) (Tz,Ty )n n n nd                  

 (1 )d(Sy ,p) (Sz,Tz) a (Sz,Sy )n n n nd d              

                      (1 )d(Sy ,p) (Sy ,p)n n n nad          

                       [1 (1 a)]d(Sy ,p).n n                       (2.1.1)       

For (Sy ,p),nd  we have 

(Sy ,p) d(W(Tx ,Tz , ),p)n n n nd   

                (1 )d(Tx ,p) (Tz ,p)n n n nd     

                (1 )d(Tx ,Tz) (Tz ,Tz)n n n nd     

                
 

 

(1 ) (Sz,Tz) ad(Sx ,Sz)

(Sz,Tz) (Sz ,Sz)

n n

n n

d

d ad

 

 

   


    

                 (1 )ad(Sx ,p) (Sz ,p),n n n nad            (2.1.2) 

(Sz ,p) d(W(Sx ,Tx , ),p)n n n nd 
 

                 
(1 )d(Sx ,p) (Tx ,p)n n n nd   

 

                  
(1 )d(Sx ,p) (Tx ,Tz)n n n nd   

 

                   

 (1 )d(Sx ,p) (Sz,Tz) ad(Sx ,Sz)n n n nd     
  

                    
(1 (1 a))d(Sx ,p).n n  

                   (2.1.3) 

It follows from (2.1.3) that 

     
(Sy ,p) (1 )ad(Sx ,p) (1 (1 a))d(Sx ,p).n n n n n nd a      

                                     

                                                                         (2.1.4) 

Using (1 )a (1 ) (1 (1 a)) ,n n n n nand a a         
 

inequality (2.1.4) yields 

       (Sy ,p) (1 (1 a))d(Sx ,p)n n nd   
                   (2.1.5)

 

From (2.1.5) and (2.1.1), we get 

1(Sx ,p) [1 (1 a)][1 (1 a)]d(Sx ,p)n n n nd          

                   [1 (1 a)]d(Sx ,p)n n            

                   00
[1 (1 ) ]d(Sx ,p)

n

kk
a 


     

                   0
(1 a)

0e d(Sx ,p).
kk





                             (2.1.6) 

Since [0,1], 0 a 1andk     
0

,nn





   so 

0
(1 a)

0(Sx ,p) 0 as n .
n

kke d



      

Hence from equation (2.1.6) we get, 

1(Sx ,p) 0 as n ,nd     that is 
0{Sx }n n




 converges 

strongly to .p         

Corollary 2.2. Let (X,d,W)  be an arbitrary Convex metric 

space and let , :S T Y X   be  nonself –operators on an 

arbitrary set Y  satisfying contractive condition (1.7). Assume 

that (Y) S(Y),T   (Y)S  is a complete subspace of X  and 

Sz Tz p   (say). For 0 ,x Y  let 
0{Sx }n n




  be the  

iteration defined by (1.1.5), where { },{ },{ }n n n    are 

sequences of positive numbers in [0,1]  with { }n  satisfying 

0
.nn





   Then, the iterative process 

0{Sx }n n




 converges 

strongly to .p  Also, p will be the unique common fixed point 

of S,T provided that Y=X, and S and T are weakly 

compatible. 

Proof: Putting 0n n nand     , in iterative scheme 

(1.1.7), convergence of iterative scheme (1.1.5) can be proved 

on the same lines as in Theorem 2.1. 

Corollary 2.3. Let (X,d,W)  be an arbitrary Convex metric 

space and let , :S T Y X   be  nonself –operators on an 

arbitrary set Y  satisfying contractive condition (1.7). Assume 

that (Y) S(Y),T   (Y)S  is a complete subspace of X  and 

Sz Tz p   (say). For 0 ,x Y  let 0{Sx }n n



   be the Jungck-S 

iteration defined by (1.10), where { },{ },{ }n n n    are 

sequences of positive numbers in [0,1]  with { }n  satisfying 

0
.nn





   Then, the Jungck-S  iterative process 0{Sx }n n



  

converges strongly to .p  Also, p will be the unique common 

fixed point of S,T provided that Y=X, and S and T are weakly 

compatible. 

Proof: Putting 0 , 1n n n nand       , in iterative 

scheme (1.1.7), convergence of iterative scheme (1.10) can be 

proved on the same lines as in Theorem 2.1. 
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