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ABSTRACT 
In this paper, two types of cellular automata are studied in 

order to describe the 2-dimensional free growth of an 

avascular tumor under the effect of a limited nutrient source. 

On one hand a deterministic cellular automata approach  is 

used. On the other hand a stochastic one is presented. An 

existing reaction-diffusion model including cell proliferation, 

motility and death is used. Finally, a numerical simulations 

that show the difference between these approaches  are 

discussed. 
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1. INTRODUCTION 
Cellular automata (CA) are mathematical models of systems 

where time, space and state are discrete. The space is 

discretized in the cells, each cell can only be in a finite 

number of states, surrounded by a finite number of cells 

(neighbours) and changes its state according to its current 

state, the state of nearest neighbours and local rules. All cells 

are simultaneously updating and following the same rules.  

The CA specificity is its ability to model in a simple 

formalism a highly complex phenomenon, the distinction 

between CA and any numerical scheme with a discrete space 

is the complexity of the system which is modeled in CA from 

a microscopic level, the level of the cell and rules that provide 

a physical interpretation. Whereas in a numerical scheme, the 

complexity of the system is a result of a mapping from a high 

mathematical abstraction level to a simple form. This is why 

CA has attracted researchers from various disciplines and its 

applications have been proposed in different branches of 

science, such as biology, chemistry, physics, and astronomy. 

CA have been applied not only to model the world 

phenomenons but also to be used as an alternative approach to 

model and simulate systems where partial differential 

equations (PDEs) become difficult to solve. 

In this article, the growth of an avascular tumor is studied by 

means of CA approach, where the concentrations of nutrients 

(oxygen, amino acids, glucose, etc.) diffused from the 

capillary vessel are governed by a reaction - diffusion model 

[4] considering the cell proliferation, motility, death and 

competition for nutrients among normal and cancer cells. 

Tumor growth has attracted the attention of researchers from 

many different fields and the description of tumor growth has 

been presented using partial differential equations or cellular 

automata (See for example [1] [2]). A variety of mathematical 

models exist, describing cancer growth in different stage of 

tumor development, from its initial avascular phase to 

invasion and metastasis, including different factors such as the 

interaction between the growing tumor and the immune 

system ( See for example [3), the effect of limited source of 

nutrient for tumor growth [4], and therapy intervention effect. 

This article is organised as follows: In the next section, a CA 

model is defined, in Section3 a deterministic CA and 

stochastic CA for tumor growth in the presence of nutrient 

elements are presented with a number of representative 

simulations. Finally the difference between the two 

approaches is discussed in Section 4. 

2. CELLULAR AUTOMATA MODEL 

A CA is defined by a quadruple A= (T, , v, f) where 

T: is a d-dimensional lattice of cells which are arranged 

depending on space dimension and cell shape. In the infinite 

case, T = 
dZ  

: denotes a discrete state set which represents all states likely 

to be taken by each cell. It is a commutative ring given by 

 S= {0, 1,…, k-1} in which the usual operations use modular 

arithmetic. 

v: is a function that defines the neighborhood of a cell (c), it 
is  given by : 

v         
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Where cells Ci = 1, 2…, n, are related to c by a relationship of 

proximity, contiguity, influence, and n is the size of the v(c) 

neighborhood 

f:  is a transition function that calculates the cell state at time 

 t + 1 in terms of its neighboring states at time t. It can be 

defined by: 
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Where et (c) is the cell state at time t,  

et (v(c ) ) = { et (
'c  ), 

'c  v(c ) } is its neighboring 

state.  
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The neighborhood plays a very important role in CA; it 

defines the set of neighboring cells that have an influence on 

the considered cell. There are two fundamental types of 

neighborhood that are mainly considered. First there is a Von 

Neumann neighborhood which comprises the four cells 

orthogonally surrounding a central cell on a two-dimensional 

square lattice. A Moore neighborhood comprises the eight 

surrounding cells and which is used in this work. 

3. CA OF CANCER GROWTH 
In order to describe the early growth of a 2-dimensional 

tumor, two types of CA are presented, deterministic and 

probabilistic one.  The deterministic CA describes the effect 

of a limited nutrient source on tumor growth and on the 

normal tissue under direct rules; the probabilistic CA 

describes also the same evolution but furthermore uses 

probabilistic rules. 

3.1 Deterministic CA 
The aim is using deterministic-deterministic approach to 

simulate the tumor growth; this approach consists on 

presenting the chemical diffusion through deterministic PDEs 

and the individual cell behavior through a set of direct rules. 

Biological background: cancer starts with an uncontrolled 

growth of mutated cells that disrupts the body tissues, this 

uncontrolled division leads to the growth of an avascular 

tumor, if it is not eliminated by the immune system it will then 

stay dormant or it develops its own blood system by the 

process of angiogenesis [11]. In this work, an avascular tumor 

which measures a few millimeters and is not detectable with 

the medical imaging is considered, in this stage of tumor 

growth, the tumor does not have its own blood supply, it 

continues to grow as long as oxygen and nutrients are present 

in its micro-environment [11], the nutrients necessary for 

growth are supplied to the tumor via diffusion from distant 

blood vessels [7]. We use a reaction-diffusion model [4] for 

an avascular cancer growth including cell proliferation, 

motility and death. The cell actions (division, migration and 

death) depend on the nutrient concentration in the local 

microenvironment, which are diffused from a capillary vessel 

of the tissue towards the normal and tumor cells. In areas with 

high nutrient concentration, the tumor cell divides and 

multiplies, however it migrates from the low nutrient 

concentration areas, or from the areas when there is a high 

number of tumor cell. 

In this paper the immune response is not considered, a free 

growth of tumor cells is presented. One of the reasons for 

considering tumor growth in the absence of immune response 

is to study the behavior of tumor before including 

confounding characteristics such as the innate and specific 

immune response through the immune cells. Another reason is 

to allow the comparisons of the tumor behaviors in the 

absence and in the presence of immune response. 

The tissue:  The tissue is represented by a square lattice of size 

(L+1)  (L+1), any site, with coordinates x= (i, j), 

 i, j= 0, 1, 2…L, is occupied by only one of cell types. The 

capillary vessel localized at the top of the lattice at x = 0, is 

the only source of nutrient for the tissue cells. The tumor mass 

may contain different cell [8], we consider only three types: 

normal, tumor and necrotic cells which are inert. Each grid 

site may be in a normal state and contains one normal cell, or 

may be in tumor state, in this case it may contains one or more 

cancer cells which can pile up in at the same site. Periodic 

boundary conditions along the horizontal axis are used. 

The nutrients model:  the nutrient elements are supposed 

divided into two groups: nutrients essential for cell 

proliferation and nutrients essential for cell survival. The both 

nutrient types obey the following diffusion equations:  


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Where N and M represent the proliferation nutrient and 

survival nutrient, respectively, H is the number of normal 

cells tissue, T for tumor cell number. N and M are the 

consumption rates of the two chemicals N and M by non-

tumor cells, N > M is used to reflect the excess consumption 

by the cancer cells of the two types of nutrients.  represents 

the rate of consumption of nutrient by host cells. 

The boundary condition on the capillary vessel is: 

 N(x= 0) = M(x= 0) =1; N(x, 0) = N(x, L) =1,  

and M(x, 0) = M(x, L) =1 corresponding to the periodic 

boundary conditions along the x-axis; the Neumann boundary 

condition 0
)()(








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t

LxM

t

LxN , are imposed to the 

border of the tissue. 

CA Rules: the nutrient elements are governed by deterministic 

reaction-diffusion equations, the cellular evolution proceeds 

according to direct rules which are derived from mathematical 

modeling literature (see for example [4]). 

At each time step, each tumor cell is selected to accomplish 

one of three actions: division, migration or cell death. 

Division: the cell division is accomplished when the 

concentration of nutrients essential for cell proliferation is 

high; it depends also on the spatial tumor cell position: 

- If the selected cell is inside the tumor, the daughter 

cell will occupy the same mother site, it will pile up at 

that site, as is shown in Figure 1-a. 

- If the selected cell is on the tumor border, his daughter 

will occupy randomly the nearest site containing a 

normal or a necrotic cell, as is shown in Figure 1-b. 

When the concentration of nutrient essential for cell 

proliferation is low, the tumor cell becomes necrotic, it loses 

its ability to divide.  

 

Fig 1 : division rules 

http://en.wikipedia.org/wiki/Square_lattice
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Migration: the cell migration is accomplished when the 

concentration of nutrients essential for cell survival is low, in 

this case the tumor cell moves away from this area to high 

nutrient concentration areas. The spatial position of tumor cell 

defines its way of migration: 

-  if the selected cell is inside the tumor, it will move 

to a nearest neighbor site   chosen at random, as is 

shown in figure 2-a. 

- if the selected cell is on the tumor border and there 

is no other cell in the same site, it will migrate by 

interchanging its position with the position of a 

normal or a necrotic cell, figure 2-b. 

- if the selected cell is on the tumor border and there 

is another cell in the same site, it will occupy the 

position of  the normal or necrotic closest neighbor 

cell, this one disappears, figure 2-c. 

 

Fig 2 : migration rules 

Cell death: the tumor cell dies when the survival nutrient 

elements are insufficient; in this case it is unable to move to 

keep alive.  

Simulations: We start with one tumor cell grows in the normal 

tissue in the half of the lattice (x = L/2) and at the distance Y 

from the capillary vessel which diffuses nutrients to the tissue 

cells. The CA simulations were implemented using a sequence 

of steps which are given as the following algorithm: 

1) Construct the cell grid, represent the capillary vessel 

    at x = 0. 

2) Assign parameter values; solve the diffusion equations in 

the steady- state, to obtain initial nutrient concentrations. 

3) loop until stop condition is satisfied: 

- For each selected cancer cell, define the cell action (division, 

migration, death) which depends on the calculated nutrient 

concentration, the action of each cell will be implemented. 

If the selected cell divides, then the number of cancer cells 

increases, on the other hand if the selected cell dies, then the 

number of cancer cells decreases. 

- Update the CA structure according to its changed states 

- The time step is iterated and the entire procedure (solution of 

the diffusion equations and the cell dynamic) is repeated until 

the stop condition. Each temporal-iteration corresponds to 

division cycle of tumor cell. 

Results: the reaction-diffusion equations have been solved by 

using a numerical algorithm in addition to the finite difference 

method, to approximate the derivative of the system, this last 

could be a set of linear equations, its solution gives at each 

time step the nutrient concentrations N and M respectively as 

follows: 

 

- Figure 3-a) shows a various stages of tumor growth (From 

the left to the right. We started with a single mutated cancer 

cell in normal tissue, in a convenable area with high 

concentration level of nutrients essential for proliferation, the 

mutated cell divides, grows and leads to a compact tumor with 

high tumor cell number; similar results are found when the 

rates of consumption are high. 

 the rate of consumption is considered in some works such as 

a key system parameter which defines the relationship 

between the tumor morphology and the host cell tissue (See 

[3], [4]), the lower rate consumption refers to a lower 

competition between the normal and tumor cells for nutrients, 

which means easy growth of tumor in the absence of immune 

response in compact morphology, while the higher rate 

consumption refers to a competition for nutrient elements 

between the normal and the tumor cells which lead to less 

compact morphology and less connected cells. 

a deterministic approach has not considered the tumor 

morphology due to the deterministic CA rules, each cell 

accomplishes its action (division, migration or death) 

according to nutrient concentration level, its current state and 

the neighboring state (the 8 surrounding cells) and didn't take 

into account the total number of tumor cells which changes in 

every cycle of division in the local microenvironment, neither 

the nutrient elements consumed. If the migration rule is taken 

as an example, the tumor cell will migrate not only because 

the level of survival nutrient elements concentration M is low, 

but also due to the total tumor cell number in its same area of 

life which consume at the same time the nutrient elements. 

Parameter values are: Domain size of 400 elements (H = 400), 

 = 1/ L, N = 379, T = 1, N = 100, M = 10, 

- Figure 3-b) shows the total number of tumor cells over time. 

3.2 Stochastic CA 
The aim is using deterministic-stochastic approach to simulate 

the tumor growth; this approach consists on presenting the 

chemical diffusion through deterministic PDEs and the 

individual cell behaviors through a set of probabilistic rules. 

CA Rules:  The same tissue cells, reaction-diffusion equations 

for nutrient elements and celular dynamics of the 

deterministic CA are used for the stochastic CA. the 

probabilistic rules have been used in order to assign the 

stochastic nature to the tumor cells. 

Division: Tumor cells divide with probability Pdiv which 

depends on the ratio of the proliferation nutrient concentration 

N present on the microenvironment of the selected cell and 

the tumor cells T: 
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Migration: Cancer cells migrate with probability Pmov, 

which depends on the survival nutrient concentration M and 

the tumor cells T presented on the microenvironment of the 

selected cell: 
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Cell death: cancer cells die by becoming a necrotic cell with 

probability Pdet which is determined by the concentration per 

tumor cell of the survival nutrient M present on the 

microenvironment of the selected cell: 
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divP , movP , detP are taken from Ferreira et al. [4] 

Simulations: We start with one tumor cell grows in the normal 

tissue in the half of the lattice (x = L/2) and at the distance Y 

from the capillary vessel which diffuses nutrients to the tissue 

cells.  The CA simulations were implemented using the same 

deterministic CA algorithms and considering the probability 

values at each-iteration. 

Results:  

- Figure 4-a) shows a various stages of tumor growth (From 

the left to the right). We started with a single cancer cell in the 

centre of the normal tissue. For low consumption rates, the 

tumor cell begins with migration action to the high 

concentration level of nutrients essential for proliferation, 

once arrived it divides and grows which leads to a compact 

tumor. The cells in the center of tumor mass die due to the 

difficulty of nutrients access to that area, it being deprived 
from nutrient elements which form a necrotic core in the 

center of tumor, while the tumor cells keep growing whenever 

are distant from the central area. These tumor characteristics 

are described mathematically by Chaplain [12] and 

experimentally by Folkman [13]. Parameter values are: 

Domain size of 400 elements (H = 400),  = 1/ L, N = 379, 

 T = 1, N = 50, M = 25,  
div

= 0.1,  mov = 1,  det = 0.01. 

- Figure 4-b) shows the total number of tumor cells over time, 

it is noticed that the tumor grows to a certain size and 

becomes stable, this behavior can be explained by the 

transition from the dormant avascular state to vascular state 

and the tumor need to forming a new blood vessels. When the 

size of tumor is stable that means the tumor is in dormant 

stage and needs its own vasculature and its own blood supply 

to stay alive and to invade the surrounding tissue and migrate 

to distant body parts (the metastasis). 

- Figure 5-a): for high consumption rates, the morphology of 

the tumor becomes less connected and less compact. It is 

observed also that a necrotic core is beginning to form in the 

center of the tumor. Parameter values are: Domain size of 400 

elements 4mm (H = 400),  = 19/ L, N = 379, T = 1,  

N = 100, M = 10,  
div

= 0.1,  mov = 1,  det = 0.01. 

- Figure 5-b) shows the total number of tumor cells over time, 

it’s less high than the total number of tumor cells in Figure 4-

b due to the tumor morphology and competition for nutrients 

between normal and tumor cells. It is noticed also that the 

tumor grows to a certain size and becomes stable which 

means that the tumor is in dormant state. 

4. CONCLUSIONS 
In this work, the  cellular automata approach is used in order 

to studying the tumor growth; in one hand, the deterministic- 

deterministic approach is used, which means that the nutrient 

elements are governed by a deterministic reaction-diffusion 

PDEs ,and the CA dynamics are defined by a deterministic 

rules. In the other hand, the use of deterministic-stochastic 

approach means that   a deterministic reaction-diffusion PDEs 

governs the nutrient elements, and a combination of 

probabilistic and direct CA rules present the cell dynamics.  

In the case of deterministic CA approach, the tumor cells 

divide and grow when they are present in areas with high 

concentration levels of nutrient essential for cell proliferation, 

while the tumor cells migrate from the area with low 

concentration levels of nutrient essential for cell survival. The 

tumor cells die when the nutrient elements essential for 

survival are not sufficient. It is noticed that in deterministic 

CA approach, the tumor cell action depends only on the 

concentration of nutrient elements without depending on the 

total tumor number in the local microenvironment which 

changes at each division cycle, this number is considered only 

in PDEs resolution for calculating the nutrient concentration 

in every tissue site in order to determine the concentration 

levels of nutrients. If a tumor cell is presented in high 

concentration level of nutrient elements it will marked for 

division without taking in account the number of tumor cells 

consuming nutrient elements in the same time, the direct rules 

impose on the considered cell to divide without knowing if 

this cell has consumed enough nutrients and is it able to 

divide. For this reason, the tumor morphology in deterministic 

CA is compact even if the rates of consumption are higher or 

lower. 

 For stochastic CA approach, the tumor cell action (division, 

migration, death) depends on the nutrient elements 

concentration as well as the total number of tumor cell in the 

local tissue, that is why the tumor morphology has changed 

for higher and lower consumption rates, also it is noticed that 

after certain division cycle, the necrotic core in the tumor 

center has been formed due to insufficient nutrient elements in  

this area, while this tumor behavior was not noticed for 

deterministic CA case. Additionally, the tumor cells in 

Figures 4-b) and 5-b) keep growing to a certain size and 

become stable in order to move from a dormant avascular 

state to the vascular state and form its own blood supply to 

stay alive, however, in deterministic CA case the tumor cells 

keep growing during the defined division cycle. 

The stochastic CA approach sheds light on the tumor behavior 

and describes the tumor growth in more clearly way than the 

deterministic approach. This approach will be able to describe 

clearly the tumor growth when the immune system response 

and the therapy intervention will be considered? 
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Fig 3-a) : Deterministic CA for tumor growth 

 

Fig 3-b): Tumor cell count over time 
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Fig 4-a): Stochastic CA for tumor growth with low consumption rate 

 

Fig 4-b): Tumor cell count over time 

 

Fig 5-a): Stochastic CA for tumor growth with high consumption rate 
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Fig 5-b): Tumor cell count over time 
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