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ABSTRACT 

Recombination has major influence on evolution. 

Recombination occurs at specific region on chromosomes 

more frequently than other regions. Chromosomal region 

where recombination occurs more frequently is hot 

recombination region, whereas, the region where 

recombination occurs less frequently is cold recombination 

region. In this paper, supervised machine learning model 

based on support vector machine and ensembles of support 

vector machine have been devised for the efficient and 

effective classification of hot and cold recombination regions 

based on the compositional features of nucleotide sequences. 

Models were validated using tenfold cross validation 

techniques. These models gave high classification accuracy of 

87.0%, 91.58%, and 92.14 % using support vector machine 

and its boosting and bagging ensembles respectively. 

Moreover, support vector machine ensemble with bagging 

gave remarkably high area under receiver operating curve of 

.9580. Furthermore, results indicate that bagging ensembles 

achieved the best result while used for the performance 

improvement of support vector machines. 
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Evolution. 
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1. INTRODUCTION 
Meiosis and recombination are the crucial aspects of cell 

reproduction and its growth. Meiosis is a type of cell division 

in which the daughter cells are generated during cell division, 

whereas in recombination produces single-strands that can 

occupy the homologous chromosome [1] . Recombination 

have major role in genetic diversity, which causes the 

exchange of genomic material. The recombination varies 

spatially along the genomes of species. Recombination 

breakpoints clustered into two groups Hot Recombination 

Regions (HRR) and Cold Recombination Regions (CRR) [2-

4].  

This paper addresses the classification problem of HRR and 

CRR in saccharomyces cerevisiae evolution. Despite of work 

done for representing recombination breakpoints on the 

chromosomes [5-12], the prediction of  HRR and CRR from 

the molecular sequences is still a challenging task [13]. 

Different techniques used for the sequence analysis have 

applied sequence and structural elements [5-7, 13]. 

Recombination hotspots in saccharomyces cerevisiae are 

associated with certain transcriptional features and on 

chromosomal structure related to some specific regions with 

GC-richness regions [13, 14]. Further analysis shows that 

there is a significant correlation between codon usage bias and 

recombination rate in organisms, such as human, mouse, 

drosophila melanogaster and in saccharomyces cerevisiae [14-

20].Nevertheless, more studies still required for predicting 

HRR and CRR and defining corresponding functioning rules 

[13]. While investigational techniques can be applied for this 

purpose, they are difficult and time-consuming and therefore 

become infeasible for large numbers of genomic sequences 

[20]. Therefore efficient and effective machine learning 

models are required for discerning HRR from CRR. 

In this paper, we present a novel method for classification of 

hot and cold regions located in saccharomyces cerevisiae 

genomes using Support Vector Machine (SVM) and its 

ensembles. Our method can accurately classify hot regions 

from cold regions, which suggests that nucleotide 

compositions are satisfying sequence attributes. Furthermore, 

we tested models based on different validation techniques. 

Support vector machines ability have been studied for various 

purposes including for discriminating ribosomal protein 

coding genes from other genes based on codon usage for 

different species [21]. Codon bias were used by Friedel et al. 

as sequence attributes for separation of mixed plant-pathogen 

Expressed Sequence Tag (EST) collections using SVM with 

high accuracy for classification [20]. Our study indicates that 

support vector machine bagging ensemble gives excellent 

result as compared with support vector machine and support 

vector machine boosting ensembles  

2. METHODS AND MATERIALS 

2.1. Sequence Data   
In this study published by Liu et al. [22] were used. Data 

samples include 474 recombination hotspots and 607 

recombination cold spots. The corresponding recombination 

data were obtained from [23]. From DNA sequence data, 

different features like codon usage biases, codon adaptation 

index and GC% were calculated using jEMBOSS and 

DAMBE software [24, 25].  

2.2 Support Vector Machine Method for 

Classification 
The support vector machine (SVM) war firstly introduced by 

V. Vapnik [26, 27]. SVM is a supervised machine learning 

technique for the classification and regression. SVM is a 

method based on the theory of statistical learning. The 

objective of this technique is to solve problems directly 
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without solving any intermediate problems. SVM incorporates 

the capability to overcome the over fitting problem of 

machine techniques by using the principle of structural risk 

minimization. In this work, we used SVM for two-class 

classification. For given two classes Positive (CRR) and 

Negative (HRR), for 
1, 1iy   

 respectively. Method can 

straightforwardly extended to K class classification by 

building K , two-class classifiers [26].  The  support vector 

classification (SVC) technique search for the optimal 

separating hyperplane which equidistant from the both classes 

[28].  This optimal separating hyperplane has many fine 

statistical properties.  

2.3 Creating Ensemble of Support Vector 

Machine  
An ensemble of classifiers is a collection of several classifiers 

whose individual decisions are combined in some way to 

classify the test examples [29]. Ensemble often shows much 

better performance than the individual classifiers that make it 

up [30].  

The SVM has good generalization performance and it is easy 

to learn parameters for the classification [2]. However, 

practical implementation of SVM uses the approximate 

algorithms to reduce the computational complexity with 

regard to time and space, therefore, using only a single SVM 

may not able to learn exact parameters for the global 

optimum. Therefore, support vectors learned from such 

machines are not sufficient to classify all known examples. To 

overcome such limitations, we used ensembles of SVM. Each 

classifier in SVM ensembles trained using a different set of 

data via bootstrap method.  

2.4. Constructing SVM Ensembles using 

Bagging 
Bagging [12] technique aggregates solutions of several 

independently trained SVMs using an appropriate 

combination technique. Usually, we have a single training set.  

  ; | 1,2,...i iTS x y i l 
 

However, we need K  training samples sets to construct the 

SVM ensemble with K independent SVMs. Nonetheless, in 

order to improve the aggregation result we need to make 

different training sets using bootstrapping. Bootstrapping 

resamples the data for constructing K replicate with 

replacement. Each instance in the given training set may 

appear repeatedly or may not occur at all [31, 32]  . 

2.5. Constructing  SVM Ensembles using 

Boosting  
In this work we used AdaBoost.M1 implementation of 

boosting algorithm [33].  Boosting assigns a weight for each 

sample in training set. It generates m classifiers sequentially 

such that each iterations use a different classifier. Algorithm 

updates weight for each classifiers according to the 

classification results of that particular classifier. It means that 

instead of randomly selecting instances from samples, 

boosting retains a weight for each instance. At each iteration 

method, adjust the weights to improve the classification 

accuracy. The final classier also aggregates the learned 

classifiers by voting, but each classifiers vote is a function of 

its accuracy [31, 34]. 

2.6.Performance Measurements 

  We used the following indices for the performance 

measurement: Here, True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN) are the number 

of actual HRR predicted as HRR, number of CRR predicted 

as CRR, number of CRR predicted as HRR and number of 

HRR predicted as CRR respectively.  

Classification accuracy:  The proportion of instances, which 

are correctly classified by the classification learner 

   Accuracy TP TN TP TN FP FN    
 

Sensitivity: The ratio of detected positive example with the 

total positive examples, e.g. the proportion of CRR correctly 

classified as CRR 

 Sensitivity TP TP FN 
 

Recall:  Recall is similar to sensitivity but commonly used 

with text mining, where it means the proportion of relevant 

document retrieved. 

Specificity:  Specificity is measured by finding the proportion 

of detected negative examples with all negative examples, e.g. 

the proportion of HRR correctly classified as HRR 

 Specificity TN TN FP 
 

Precision: Precision is the proportion of true positive 

examples with all examples classified as positive 

 Precision TP TP FP 
 

True Positive Rate: 

TP
TP rate

Total Positive


 

False Positive Rate: 

FP
FP rate

TotalNegative


 

Area under ROC (AUC) : is the area under receiver-operating 

curve [35]. 

Brier score: Brier is the measure of the accuracy of probability 

calculations, which measures the average deviance between 

the predicted probabilities of measures and the actual 

measures. 

The Matthews correlation coefficient (MCC):  is used to 

measure the quality of binary classifier in machine learning. It 

is regarded as a balanced measure, which takes into account 

true and false positives and negatives. MCC is used with data 

sets of very different sizes. The value of MCC lies in between 

−1 and + 1. A coefficient of +1 characterizes a perfect 

prediction, 0 no better than random prediction and −1 

indicates total disagreement between prediction and 

observation. 

The MCC is calculated from confusion matrix using the 

following formula: 

     
1 2

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


   
 

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Confusion_matrix
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3. RESULT AND DISCUSSION 
We used nucleotide compositional features (see Methods 

section for details) as the input for the classification. 

Performances of models were evaluated on tenfold cross-

validation. We have used Support Vector Machine (SVM) and 

SVM as a base classifier in the ensemble learning techniques 

bagging and boosting (AdaBoost.M1) for the classification of 

Hot Recombination Regions (HRR) and Cold Recombination 

Regions (CRR) in in saccharomyces cerevisiae genome 

sequences. Total 1081 nucleotide sequences of recombination 

breakpoint regions, including 607 (CRR) and 474 (HRR), 

were used in classification using the nucleotide composition 

(4), Di nucleotide frequency (16), codon use frequency (64), 

codon adaptation indexes (2) and GC %( 1). Models were 

validated using ten-fold cross validation techniques. We 

compared the performance of  SVM and two ensembles of 

SVM using ensemble algorithms AdaBoost.M1[34] and 

Bagging [36] on tenfold-cross validation.  

Classification accuracy of SVM bagging ensemble was 

slightly better than SVM and SVM boosting ensemble (Table-

2). Results indicate that a substantial improvement in overall 

classification accuracy on tenfold cross validation, is achieved 

when SVM were used as a base class in ensemble techniques. 

Classification accuracy of 91.58% and 92.14 has been 

achieved with boosting and bagging ensembles respectively 

on ten old cross-validations (Table-1). 

Table-2 provides the confusion matrix for the classification on 

tenfold cross validation which indicates that misclassified 

HRR and CRR are very low (6.9%, 8.6) in case of bagging 

ensemble of SVM, in caparison to SVM and SVM 

AdaBoost.M1. However, close resemblance of HRR and 

CRR, causes misclassification of 91,54,54 CRR by SVM, 

SVM AdaBoost.M1 and SVM bagging respectively (Table-2), 

which indicates that SVM AdaBoost.M1 and SVM bagging 

are equally sensitive of the discrimination of HRR (Table-1). 

Table-1 Performance indices for classification, Table measures the performance indices for classification of SVM and SVM 

ensembles AdaBoost.M1 and Bagging for hot and cold recombination breakpoint region

 CA Sens. Spec. AUC IS F1 Prec. Brier MCC 

SVM  0.8760 0.8080 0.9292 0.9266 0.6028 0.8511 0.8991 0.1936 0.7486 

AdaBoost.M1 0.9158 0.8861 0.9390 0.9126 0.8188 0.9023 0.9190 0.1684 0.8288 

Bagging 0.9214 0.8861 0.9489 0.9580 0.7636 0.9081 0.9313 0.1420 0.8403 

Nevertheless, SVM bagging outperformed in the 

discrimination of HRR over SVM and SVM AdaBoost.M1 

indicated by 6.9 % misclassified HRR (Table-2) and high 

specificity (Table-2).On tenfold cross validation SVM 

Bagging beats SVM and SVM AdaBoost.M1 on specificity 

and on sensitivity both SVM bagging and SVM boosting 

(88.61%) beats SVM (see Table-1). 

Performance Evaluation Using ROC 

Receiver-operating curve (ROC) [35] is a curve plotted on 

false positive rate (X-axis ) and True positive rate (Y –axis) 

which is independent of positive case and negative cases and 

useful when the number of ratio between positive and 

negative cases vary during the training. For the best classifier 

area under the ROC must be near to one. Fig 1 indicates that 

SVM bagging out performed over SVM and SVM 

AdaBoost.M1. Area under the curve (AUC) for ROC is nearly 

equal to one (0.9580) for this technique, which is better than 

SVM and SVM AdaBoost.M1 (0.9266 and 0.9126 

respectively) on tenfold cross validation (Table-1).  

Performance Evaluation on calibration graph  

Calibration graph [37] plots estimated probabilities (X-axis ) 

against actual probabilities (Y-axis) and is quite different than 

ROC. Suitable classifiers must also have the property that its 

predicted probabilities are better calibrated. Nonetheless, even 

after the improvement in the calibration ability, ROC 

properties and classification ability remains unchanged [37]. 

A perfect celebrated graph represents the diagonal of the 

graph, which indicates no difference between the estimated 

and actual probabilities. Fig. 2 (a) and (b) shows the 

calibration graph for all three algorithms, which, clearly 

indicates that SVM AdaBoost.M1 is better calibrated than 

SVM and SVM. AdaBoos.M1. Furthermore the calibration 

ability is not much affected when CRR or HRR were used as 

target class.  

4. CONCLUSION 
Classification of hot recombination regions with cold 

recombination regions in eukaryote genomes is a challenging 

task because of current limited knowledge of experimental 

data. In this paper, we have applied three supervised machine-

learning models for this classification problem. SVM and its 

two ensembles using AdaBoost.M1 and Bagging models were 

used to discriminate hot recombination regions from cold 

regions. Nucleotide composition, di-nucleotide composition, 

codon uses, codon adaptation indexes and GC percentage 

were used as the sequence attributes. We compared the 

performance of the all three models on various classification 

performance indices using tenfold cross validations 

techniques. High classification accuracy of 92.14 were 

reported using SVM bagging ensemble, Moreover the 

performance were evaluated using receiver operating curve 

and calibration graph. SVM ensemble using bagging gives 

better performance than boosting and SVM, whereas later 

graph indicates that AdaBoost.M1 provides better-calibrated 

classifier.  
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Table-2 Confusion Matrix, Table gives confusion matrix when SVM, SVM AdaBoost.M1 and SVM bagging were used for the 

classification of hot recombination regions (HRR) and cold recombination regions (CRR) on tenfold cross validation. 

 Predicted Class 

 SVM SVM-AdaBoost.M1 SVM Bagging 

 CRR HRR CRR HRR CRR HRR 

A
ct

u
a

l 
cl

a
ss

 

CRR 

607 

564 

86.1% 

43 

10.1% 

570 

91.3% 

37 

8.1% 

576 

91.4% 

31 

6.9% 

HRR 

474 

91 

13.9% 

383 

89.9% 

54 

8.7% 

420 

91.9% 

54 

8.6% 

420 

93.1% 

Total 1081 655 426 624 457 630 451 

 

Fig.-1 ROC for classification of hot recombination 

breakpoint regions from cold recombination breakpoint 

regions using SVM , SVM AdaBoost.M1, and SVM 

Bagging on  tenfold cross validation. 

 

Fig.2. (a) Calibration graph for classification of hot 

recombination breakpoint regions from cold 

recombination breakpoint regions using SVM, SVM 

AdaBoost.M1, and SVM Bagging on tenfold cross 

validation. (a) Hot class as target class 

 

 

Fig.2. (b) Calibration graph for classification of hot 

recombination breakpoint regions from cold 

recombination breakpoint regions using SVM, SVM 

AdaBoost.M1, and SVM Bagging on tenfold cross 

validation.  (b) cold class as target class. 
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