
International Journal of Computer Applications (0975 – 8887)  

Volume 108 – No 12, December 2014 

35 

Generalized Wavelet Transform Associated with 

Legendre Polynomials 

C.P. Pandey 
Ajay Kumar Garg Engineering 

College, 
Ghaziabad –201001, India 

M.M. Dixit 
North Eastern Regional 
Institute of Science and 

Technology, 
Nirjuli-791109, India 

Rajesh Kumar 
Noida Institute of Engineering 

and Technology, 
Greater Noida, India 

 

 

ABSTRACT  
The convolution structure for the Legendre transform 

developed by Gegenbauer is exploited to define Legendre 

translation by means of which a new wavelet and wavelet 

transform involving Legendre Polynomials is defined. A 

general reconstruction formula is derived. 

MSC 
33A40; 42C10 

Keywords 
Legendre function, Legendre transforms, Legendre 

convolution, Wavelet transforms.  

1. INTRODUCTION  
Special functions play an important role in the construction of 

wavelets. Pathak and Dixit [5] have constructed Bessel 

wavelets using Bessel functions. But the above construction 

of wavelets is on semi-infinite interval (0, ). Wavelets on 

finite intervals involving solution of certain Sturm-Liouville 

system have been studied by U. Depczynski [2]. In this paper 

we describe a new construction of wavelet on the bounded 

interval (-1, 1) R using Legendre function. We follow the 

notation and terminology used in [7]. 

Let X denote the space 

[-1,1] Cor   ,p 1  ),1,1(Lp 
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An inner product on X is given by 
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As usual we denote the Legendre polynomial of degree n N0   

by Pn(x), i.e. 
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For these polynomials one has  
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The Legendre transform of a function f X  is defined by  
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The operator L associates to each Xf   sequence of real 

(complex) numbers
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Legendre coefficients.  

The inverse Legendre transform is given by  
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Lemma 1.1. Assume f, g X , k N0 and c R, then  
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Let us recall the function K(x,y,z) which plays role in our 

investigation  
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where z1 = xy – [(1-x2) (1-y2)]1/2  and z2 = xy + [(1-x2) (1-

y2)]1/2. 



International Journal of Computer Applications (0975 – 8887)  

Volume 108 – No 12, December 2014 

36 

 

Then the function K(x,y,z) possesses the following properties;  

(i) K(x,y,z) is symmetric in all the three variables  
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Also it has been shown in [8] that  





1

1

kkk
dz)z,y,x(K)z(P

1
)y(P )x(P    (1.10) 

Applying (1.8) to (1.10), we have  
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The generalized Legendre translation y for ]1,1[y   of 

a function Xf   is defined by  
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Using Hölder’s inequality it can be shown that 
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and the map fy
y
 is a positive linear operator from X 

into itself.  

As in [7], for functions f,g defined on [-1,1] thegeneralized 

Legendre convolution is given  by  
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Lemma 1.2.  If ),1,1(L g ,Xf 1   then the 

convolution (f*g) (x) exists (a.e.) and belongs to X. Moreover,  
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For any )1,1(Lf 2   the following Parseval identity 

holds for Legendre transform,  
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In this paper, motivated from the work on classical wavelet 

transforms (cf. [1], [3]) we define the generalized wavelet 

transform and study its properties. A general reconstruction 

formula is derived. A reconstruction formula, under a suitable 

stability condition is obtained. Furthermore, discrete LWT is 

investigated.  

Using Legendre Wavelet, frame and Riesz basis are also 

studied. A few examples of LWT are given. Similar 

constructions of wavelets and wavelet transforms on semi-

infinite interval can be found in [4] and [5]. 

2. GENARALAISED WAVELET 

TRANSFORM 

For a function 
,X

 define the dilation Da by 
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where 1.a0    and  1b1   The integral is 

convergent by virtue of (1.13). 

Now, using the wavelet b,a the Legendre wavelet transform 

(LWT) is defined as follows:  
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provided the integral is convergent.  

Since by (1.13) and (2.2) 
X

a,b


 whenever 
,X

 

by Lemma 1.2, the integral (2.6) is convergent for 
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Hence, (t) changes sign in (-1,1) therefore it represents a 

wavelet.  
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Theorem 2.1.  If 
X

defines a Legendre wavelet and 
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 then the convolution () defines a 

Legendre  wavelet.  
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represents a Legendre wavelet.  

Theorem2.2. Let
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 (b,a) be the 

continuous Legendre wavelet transform. Then, we have the 

following inequality 
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Proof. The above inequality follows from (1.15).  

3. A GENERAL RECONSTRUCTION 

FORMULA 
In this section we derive a general reconstruction formula and 

show that the function f can be recovered from its Legendre 

wavelet transform. Using representation (2.6), we have  
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Multiplying both sides by 
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q(a) and integrating both sides with respect to a from 0 to 1, 
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4. THE DISCRETE TRANSFORM  
The continuous Legendre wavelet transform of the function f 

in terms of two continuous parameters a and b can be 

converted into a semi-discrete Legendre wavelet transform by 
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The above theorem leads to the following definition of dyadic 

dual.  

Definition 4.2. A function 
)1,1(L2

~


 is called a 

dyadic dual of a dyadic wavelet , if every 
)1,1(Lf 2 

 

can be expressed as 

 



















m

1

1

k

m

m
.db)b()t(P)k2(~)b(fL)t(f

 (4.8)  

So far we have considered semi-discrete Legendre wavelet 

transform of any 
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 discretizing only variable 
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a. Now, we discretize the translation parameter b also by 

restricting it to the discrete set of points  
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 is defined by (4.11) and stability condition 

(4.12) holds. Let T be a linear operator on L2(-1,1) defined by  

n,m;b

Nn
Zm

n,m;b 0

0

0
,fTf  




 .       (4.13) 

Then  

  n,m

bn,m;b 00
,ff

 (4.14)  

where  

  m    ;T
n,m;b

1n,m

b 00 Z, nN0 

Proof. From the stability condition (4.12), it follows that the 

operator defined by (4.13) is a one-one bounded linear 

operator.  

Set 

)1,1(Lf    ,Tfg 2 
 

Then, we have  







0

0

Nn
Zm

2

nm,;b
f,    f,Tf

. 

Therefore 

2

1

2

1-

2

2

2

2

1

|||||||| T g,

 fTf, ||f||A  ||||

gTgg

gTA









 

so that 
22

1 ||g||
A

1
     ||gT|| 

. 

Hence, every 
)1,1(Lf 2 

 can be reconstructed from its 

discrete LWT given by (4.11). Thus  

  TfTf 1





 

0

00

Nn
Zm

n,m;b

1

nm,;b
Tf,  

(4.15) 

Finally, set  

 
  m   ;T

n,m;b

1n,m

b 00 Z,   nN0 

Then, the reconstruction (4.15) can be expressed as 







0

00

Nn
Zm

n,m

bnm,;b
f,f  

 

which completes the proof of theorem 4.3. 

5. FRAMES AND RIESZ BASIS IN L2(-1, 

1) 

In this section, using 
n,m;b0


  a frame is defined and Riesz 

basis of  

L2(-1,1) is studied.  

Definition 5.1. A function 
)1,1(L2 

 is said to 

generate a frame 
  )1,1(L  of 2

n,m;b0


 with sampling 

rate b0 if (5.12) holds for some positive constants A and B. If 

A = B, then the frame is called a tight frame.  

Definition 5.2. A function 
)1,1(L2 

 is said to 

generate a Riesz basis of 
 

n,m;b0


 with sampling rate b0 if 

the following two properties are satisfied. 

The linear span 
 m:

n,m;b0 Z > is dense in L2(-1,1) 

  (5.1) 

There exist positive constants A and B with 0<A B  

such that  

2

,

2

2

,;

Nn
Zm

nm,

2

2, 2

0

}{c     ||}{||
nmnmbonm cBcA  






 
                    (5.2) 

for all 

2

n,m
}c{ 

(N

2

0 ).  Here A and B are called the 

Riesz bounds of 
}{

n,m;b0


. 

Theorem 5.3. Let 
),1,1(L2 

 then the following 

statements are equivalent.  
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}{
n,m;b0


 is a Riesz basis of L2(-1,1);  

}{
n,m;b0


 is a frame of L2(-1,1) and is also an 

2  - 

linearly independent family in the sense that if 

   0c 
nm,n,m;b0


and 
,}{c 2

nm,


 

then cm,n = 0.  

Furthermore, the Riesz bounds and frame bounds agree.  

Proof. It follows from (5.2) that any Riesz basis is 
2 -

linearly independent.  

Let 
}{

n,m;b0


 be a Riesz basis with Riesz bounds A and B, 

and consider the matrix operator 

 
 

00 NN)n,m(),s,r(n,m,s,r
M




 

where the entries are defined by  

 
n,m;bs,r;bn,m,s,r 00

,
. (5.3) 

Then from (5.2), we have 

2

2n,mn,m

nm,s,r,

n,m,s,rsr,

2

n,m
||}c{||Bcc   ||}c{||A 2  

so that M is positive definite. We denote the inverse of M by  

  2
0N)n,m(),s,r(n,m,s,r

1M


 
 (5.4) 

which means that both  

 nm,s,r, 
;m,sm,rn,m;u,t

u,t
u,t;s,r

N0 (5.5) 

and 

2

,

1-

nm,nm,s,r,

,,,

,

2

,

1

22
}{A  c  }{

 nm

nmsr

srnm cccB   

  

                                                                                (5.6) 

are satisfied. This allows us to introduce  

)x()x(
n,m;b

n,m

n,m;s,r

s,r

0
 

.                    (5.7) 

Clearly, 
)1,1(L2s,r 

 and it follows from (5.3) and 

(5.5) that  

 n m, s, r,  ;;
n,sm,rn,m;b

s,r

0 N 

which means that {r,s} is the basis of L2(-1,1), which is 

dual to 
}{

n,m;b0


. 

Furthermore, from (6.5) and (6.6); we conclude that 

n,m,s,r

n,ms,r , 
 

and the Riesz bounds of {r,s} are B-1 and A-1.  

In particular, for any 
)1,1(Lf 2 

 we may write  

 

 
n,m

nm,

n,m;bo
)x( ,f)x(f

 

and  

 

n,m

2

n,m;bo

1-2

2

2

n,m

n,m;bo

1 ,fA  ||f||  ,fB

                                                         (5.8) 

Since, (5.8) is equivalent to (4.12), therefore, statement  

(i) implies statement (ii). To prove the converse part, we recall 

Theorem 4.3 and we have for any 
)1,1(Lg 2 

 and f = 

T-1g,  

 







0Nn
Zm

n,m;bon,m;bo
,f)x(g

. 

Also, by the 2 linear independence of 
}{

n,m;b0


, this 

representation is unique. From the Banach-Steinhaus and open 

mapping theorem it follows that 
}{

n,m;b0


 is a Riesz basis 

of L2(-1,1).  
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