
International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 11, December 2014

31

God Rays in Modern Gaming

Utsav Jambusaria
Student

D.J.Sanghvi College of
Engineering, Mumbai, India

Neerja Katwala
Student

D.J.Sanghvi College of
Engineering, Mumbai, India

Khushali Deulkar
Asst. Prof.

D.J.Sanghvi College of
Engineering, Mumbai, India

ABSTRACT

The importance of lighting in games is unquestionably

tremendous. Not to mention we need to see what we’re doing,

but to generate a great degree of realism, the lighting too

needs to be as realistic. The correct depiction of interaction of

light with different surfaces is required. The complexities that

arise from trying to render global illumination is multiplied

tenfold when the environment itself is interactive, as opposed

to it just being there in the background. This is further

complicated when the issue of rendering caustics is

considered, as this can only be satisfactorily achieved if the

light rays (or photons) are traced right back to their sources.

The aim of our contribution is to provide a review of the

currently used techniques for the real-time rendering of God

rays, complete with their advantages and disadvantages to

depict exactly how far we have come in this field. And despite

all the modern technology available at our fingertips, we shall

see that there is a lot of work yet to be done to ensure cheap

and accurate representations of stunning visual effects like

God rays for the enjoyment of the average gamer.

General Terms

Rendering Algorithms

Keywords

Lighting, caustics, God rays, illumination, games

1. INTRODUCTION
In computer graphics, the articulation of various lighting

effects accurately is imperative for achieving a high level of

accuracy and authenticity in the eventual illumination of a

rendered scene. While there are several different approaches

for the same, one must keep in mind that these are simply

approximation of the actual equations proven by physics, as

we are yet to reach the stage of technological advancement in

the field of computer hardware that allows for a cent percent

accurate representation of these natural phenomena in real

time computer imagery.

For effects like God rays, we predominantly have methods

which involve post-processing or shadow maps. This again

allows us fairly accurate and visually appealing results in real

time at a relatively high, but still achievable cost. That is, even

though the methods require a considerable amount of

computational power, we do have the hardware (GPU &

CPU) capable of providing it.

We can thus see that for the success of any such rendering

algorithm, the following two criteria are absolutely

imperative:

 It should produce visually appealing and realistic

results.

 The computation cost should to as low as possible,

to enable rendering in real-time, as is required while

playing games.

The greatest challenge we face is the fact that these are to be

rendered within a split second, or in real-time as games are

highly interactive, and every given input must be

instantaneously processed and must result in an appropriate

output, without any lag. Thus the screen image could

potentially change multiple times in a single second itself.

Any delay in this matter is simply unacceptable. For example,

it makes no sense if your racing car responds to your

commands telling it to turn, but after a few seconds, just to

ensure the scene has been rendered to look realistic enough.

2. CAUSTICS
Caustics are patterns formed when light reflects or refracts

from some specular or curved surface, and thus focus only on

certain areas of the receiving non-specular surface. These are

most commonly found on the floors of swimming pools[1] and

bath tubs, assuming the water is clean enough to see through.

There are two kinds of caustics possible, catacaustics and

diacaustic.

Catacaustics are formed by the reflection of light via a curved

specular surface. These can be observed at the base of a glass,

where the light gets diagonally reflected onto the bottom of

the glass.

Diacaustic are the more fascinating. They occur when light

refracts through a transparent specular body, like water. These

are especially pleasing when the water is not still, and the

focus of the light keeps on changing at the receiving surface

as a result.

Figure 1: Caustics through glass spheres

3. GOD RAYS
God Rays, or crepuscular rays are the term used for shafts of

sunlight that seem to be radiating outward from where the sun

is located in the sky[2]. Often, the sun is partly occluded by a

shadow inducing object like clouds or trees or buildings, and

the sunlight streams through the gaps between or within them.

While these beams of light appear to be diverging outward,

that is just a matter of perspective as they are, in fact, virtually

parallel. This concept is just the same as how railway tracks

seem to converge together if we look towards the horizon.

Here, the horizon is the sun and the tracks are the shafts of

light.

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 11, December 2014

32

What makes these rays visible as actual ‘rays’, is the presence

of participating media in the medium travelled by the light

rays. In this case, it can be the dust or moisture particles

present in the air. Light falls on them and reflects, thus

making all the particles in its path visible in the form of rays.

Figure 2: A classic example of God Rays

4. POST-PROCESSING PIPELINE TO

RENDER GOD RAYS
This method can be used to render light beams caused by

directly glancing at a partly occluded light source. In other

words, this method fails if the source does not lie within the

image borders.

The fundamental principle of their approach is to bloom and

blur parts of the scene around the position of the sun to

simulate overexposure.[3]This post-processing is done in seven

steps and three render targets- the final image, Temp0 and

Temp1, which contain the same image with one-sixteenth the

resolution of the original image.

4.1 Algorithm
 In the first step the scene is rendered into the main render

target.

 The main render target is down-sampled 4 times into

Temp0.

 Temp0 is horizontally blurred into Temp1, in which

Bloom-Effect, Star-Effect and tone-mapping are added.

 Temp1 is vertically blurred into Temp0.

 Steps five and six are the main steps of the method. In step

five a Radial Glow Mask[4] is calculated. The purpose of

this mask is the simulation of pixel glowing, at which pixel

farther away from the sun exhibit little to no glowing. The

mask is applied to the blurred image of Temp0 by

positioning a greyscale gradient texture on the blurred

image at the sun’s position. The texture’s and Temp0’s

pixels are then multiplied and saved in Temp1. By scaling

the texture’s size or intensity different appearances of the

final effect can be achieved. The Radial Glow Mask is

implemented with a vertex and pixel shader.

 Subsequently we calculate the Radial Glow Illumination

from Temp1 and save it in Temp0. This is done by means

of a gather operation. For each pixel, a line connecting it to

the sun’s screen-space position is computed. Along this

line n samples are placed. These samples are weighted

according to the sun’s distance. The highest value is at the

sun’s centre, it decreases with increasing distance from the

sun. The output of this operation is the weighted sum of

the radial glow mask’s texels at the sample points. This

way the pixel intensities are blurred from the sun’s centre

outward.

 To get the final image Temp0 has to be added to the main

render target.

The main advantage of this method is that a complex scene

has no effect of the rendering time as his method involves

only post-processing of the output frame.

Figure 3: Post Processing Pipelining

5. GOD RAYS USING SHADOW MAPS
A method was introduced to render god rays in real-time by

using shadow maps to detect the occlusion in the light beams

and interleaved sampling to reduce the computation cost[5]. It

is derived from the classic Ray Marching algorithm[6],along

with further extensions.

5.1 Algorithm
 Ray Casting: A ray is cast through the volume from the

viewer, for each pixel of the final image.

 Sampling: Along the part of the ray that lies within the

volume, equidistant sampling points or samples are

selected. The sample will generally be in between voxels,

or volume pixels, hence it is necessary to interpolate the

values of the samples from the surrounding voxels.

 Shading: For each sampling point, a gradient of

illumination values is computed. The samples are then

shaded (coloured and lit) according to the surface

orientation and the position of the light source in the scene.

 Compositing: Once all samples have been shaded, they are

composited along the ray of sight, resulting in the final

colour value at that pixel. Computation works back to

front, i.e. it starts with the sample farthest away from the

viewer and ends at the one closest to him. This ensures that

the masked parts of the volume do not affect the resulting

pixel.

Figure 4: God Rays using Shadow Maps

This does not consider the participating media, which causes a

decrease in the radiance between the surface and the eye. For

this, the absorption factor e-t(s-l
n
)for each segment is computed

and the final illumination is composed by the sum of their

products.

The number of steps N along a ray is proportional to the

computing time. Too many steps cause slow rendering,

however, too few samples cause image artefacts. A

compromise must be found. A good way to solve this problem

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 11, December 2014

33

is to use interleaved sampling[7] for the ray marching

algorithm. This is possible because the surface and the

scattering are similar in the neighbouring pixels.

6. COMPARISON

Table 1. Comparison

Post Processing Shadow Mapping

No computational overhead,

because processing happens

only after the final scene is

rendered.

Significant computation

overhead, as the scene

involves every ray to be

mapped one at a time.

May produce effects that are

unnatural.

Gives considerably accurate

and natural results.

Can only be used if light

source is within the image

borders and fails in all other

scenarios

Can be used in any scenario.

Does not need to have the

light source within the image

borders.

Doesn’t consider shadows

within god rays in final

rendering of the scene.

Considers shadows first and

then renders the final image

with god rays.

Quicker, cheaper, but less

accurate.

Slower, costlier, and hence

more accurate.

7. PROPOSED SOLUTIONS
After having extensively studied the above methods for the

real-time rendering of God Rays in interactive gaming

applications and gauging their advantages and disadvantages

over each other, we have come to the conclusion that while

approximating the rendering equations as closely as possible

is the right way forward, implementing the same in today’s

hardware leaves a lot to be desired.

As a result of this, we propose the following solutions:

7.1 Solution 1 - Best of Both Worlds
We appreciate both, the Post-Processing approach and the

Shadow Map implementation, and feel that if both of them

were merged to form a new algorithm, it could give quicker

and more accurate results in all environments.

The Post-Processing approach is excellent with respect to its

very low computation cost, but its greatest drawback is that it

cannot work if the light source is outside the image borders.

To overcome this, we can assume the location of the source to

be within the image boundary by taking the global

illumination of the scene into account, just for the purpose of

calculation.

After this, we can calculate the Shadow Map of the scene as

in the second approach, thus saving on computation time for

the occluded parts.

Finally, the image is post processed, taking into account the

occluded parts.

This ensures that the process can work in every scene, unlike

the Post-Processing approach at only a marginal time increase

that is necessary for the Shadow Map calculation.

7.2 Solution 2 - Improved Hardware

Performance
As discussed earlier, the algorithms for approximating the

rendering equations give highly accurate results, and do not

need to be worked upon. But a noticeable increase in the

hardware performance and efficiency (both, CPU & GPU)

will result in a considerable improvement in the scope of the

implementation of the above algorithms.

Also considering that what we are using now is just an

approximation and not the actual equation. And there is

nothing better for rendering reality, than rendering reality

itself. That should be our final aim. To use the most accurate

algorithms and still manage to efficiently imbibe them into the

most fascinating and scintillating computer graphics the world

has ever gazed upon.

Because eventually, as software and hardware go hand in

hand. As newer software algorithms make it possible for us to

incorporate more realistic and visually appealing elements in

our project, newer and more powerful hardware should be

developed to make it possible for us to practically implement

them and turn what was a dream yesterday, into a reality

today.

8. CONCLUSION
Lighting effects such as caustics, god rays and light shafts are

very important to render realistically appearing scenes. They

add to the mood of a scene and to its impression on the

viewer. The best results are obtained by sticking close to the

physical correct descriptions of light and its behaviour. Also

the physical correct specification of the participating media

adds to the authenticity of a scene. We introduced several

methods which can handle light characteristics, which are

normally hard to obtain, such as anisotropic scattering,

multiple scattering, colour bleeding, god rays and light

radiating through non-homogeneous media. The price of this

high accuracy is high computing times and high memory

costs. That’s why physically correct methods are only used for

offline rendering. Nowadays most 3D graphic applications,

for instance games and visualizations, require real-time

rendering. This is always accomplished by simplifying and

approximating the lighting model. By implementing the

methods on the GPU more speed can be gained.

9. FUTURE SCOPE
In the future the main task will be the realization of better

approximations and the improvement of the computing

capabilities of the GPU, to generate physical accurate lighting

effects in real-time.

Even further, the aim should be developing the hardware that

is capable of rendering not just the approximations, but the

actual equations themselves and reproduce nature in its

complete beauty on computer screens.

10. REFERENCES
[1] Arvo, J. 1986. Backward ray tracing. Siggraph ’86, 259–

263.

[2] Kajiya, J. T. 1986. The rendering equation, Siggraph ’86,

143–150.

[3] Wand, M., Strasser, W. 2003. Real-time caustics.

Computer Graphics Forum 22, 3, 611–620.

[4] www.Wikipedia.com/Crepuscular_Rays

[5] B Fruhstuck, A., Prast, S.,Caustics, Light Shafts, God

Rays, 2013.

[6] T´oth, B., Umenhoffer, T. 2009. Real-time Volumetric

Lighting in Participating Media. Eurographics 2009.

[7] www.Wikipedia.com/Ray_Marching

IJCATM : www.ijcaonline.org

http://www.wikipedia.com/Crepuscular_Rays
http://www.wikipedia.com/Ray_Marching

