
International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 10, December 2014

25

A SOA-based Resource Intensive and Data Aware

(RIADA) Approach for Grid Computing

Humera Bashir
Lecturer: Department of

Computer Science, University
of Karachi.

Sadiq Ali Khan
Assistant Professor:

Department of Computer
Science, University of Karachi

Shaista Rais
Lecturer: Department of

Computer Science, University
of Karachi

ABSTRACT

The Grid technology is flowing into large scale service

oriented architecture-- a universal podium for delivering

future high demand computational services. The management

of resources and requests scheduling in this big range

distributed environment is a complicated job, no

contemplation may result in efficiency deprivation in a Grid

environment and may possibly bring about big handling

queues and task running delays. This paper outlines a simple

and straight forward approach to incrementally maintain the

area of Grid technology addressing challenges related to the

problem of maintaining a Grid wide view of Grid user‘s

resource utilization. To remain flexible this paper presents a

SOA- Based RIADA (Resource Intensive and Data Aware)

approach for providing a basis for more efficient and user

friendlier management of resources and resource scheduling

techniques in a future Grid offering a rich blend of diverse

applications.

General Terms
Computation, Communication, Distributed System, Cloud

Computing, Computer Architecture, Data Management,

Systems Design, Databases, Schedulers

Keywords

Grid technology, Data Intensive Scheduling Techniques,

Resources Management

1. INTRODUCTION
A Grid is definitely an anthology of devices sometimes

referred to ―nodes, users, client, resources, hosts‖ engines

along with other such terms. They all lead any amalgamation

of resources to the Grid as a complete. Many different

methods may be used by all consumers of the Grid while the

others may have certain boundaries.

Grid is huge degree, decentralized and heterogeneous NC

systems that will scale to web-size milieu with devices

spread i.e. distributed across numerous organizations and

administrative domains. A defining feature of Grids is the

sharing of networks, computers, and other resources and

services. User requirements for performance must be

translated into resource requirements and conflicting resource

requirements must be resolved. Grid computing adapted from

[13] is much concerned with ―matched resource sharing

discussing and issue resolving in active, multi-institutional

electronic organizations.‖ Grid doesn't enforce utter control

over these resources and management of resources is at the

mercy of numerous and deviating organizational

management strategies. From consumer's notion, a Grid is

really a collaborative problem-solving milieu, wherever one

or several personal jobs may be presented without

understanding where in fact the resources are as well as who

possess the resources. A Grid should assure the caliber of

support of job's execution. The consumers‘ resource

necessities in the Grids differ depending on their objects,

time constraints, priorities and budgets. Assigning their

projects to suitable resources in the Grids to ensure that

efficiency demands are pleased and expenses are topic for

their finances is definitely a very complex problem.

On the way to construct a Grid, the progress and exploitation

of several services is required. They accept low-level support

such as protection, data, listing, management and scheduling

(resource trading, reference provision, sighting of resources,

entry charge concession, resource collection, methods of

scheduling, QoS (Quality of Services), and running

performance management), and higher level services/tools

for software development. Two challenging facets of Grid

processing are management of resources and scheduling. The

surfacing of a number of new application necessities that

help Grids for successful information, data and resource

administration mechanisms. Planning a Grid architecture

that will match these demands is complicated because of

numerous machine issues. The difficulty of the allocation

issue and the dynamically adjusting efficiency features of

Grid assets (due to competition and failure of resources) are

in a way that intelligent schedulers for applications are

essential to assign and re-assign resource. With allocation

decisions below regional get a handle on, the possible of

instability exists as competitive software schedulers

continually conform to fluctuations of load they themselves

induce. A Grid fundamentally contains two different areas

i.e. compute and information [11].

This paper contemplates parallel tasks that consist of

separate, not dependent, and similar nature of jobs but

examine these tasks for numerous jobs which are somewhat

of small size i.e. much like the amount of accessible

resources. This paper is targeted on optimizing the efficiency

of numerous, competitive tasks or jobs. But, the SOA-based

RIADA approach heuristics for Grid offer important

components for planning powerful work management

methods (e.g. for performing suitable space-sharing among

jobs, choosing which assets are useful for which work,

deciding job duplication degrees for every single job). The

SOA-based RIADA approach heuristics provide main

elements for scheduling may then produce knowledgeable

evaluation by enchanting into consideration, the varying state

of the system, locality and measurement of the data and the

available pool of cycles utilized for processing. The designs

mentioned in this SOA-based RIADA can be used right as a

cause for creating, studying, and analyzing new algorithms of

resource management. But, it is comparatively difficult to

acquire analytic benefits regarding the usefulness of various

calculations of management and have to count on seen

evaluations and comparisons.

http://en.wikipedia.org/wiki/Distributed_system

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 10, December 2014

26

2. PROCESSING AND DATA GRID

Compute Grid: Administrating services for Grid computing,

discussing, administration (task of services management and

providing i.e. core resources) circulation of responsibilities

centered on configurable service-level policies.

Data Grid: offers the information and data administration

function allow knowledge entry, synchronization, and

circulation of a Grid.

Each has their beginnings in academia and study wherever

complicated diagnostic strategies running around big

knowledge models were getting the norm. The surfacing of

computational Grids as recent high-performance research

infrastructures provide the consumers use of research

methods at an unprecedented range in the real history of

computing. But, computational Grids change from past

research infrastructures simply because they display equally

similar and spread elements: a computational Grid is some

numerous and commonly spread research methods [12]. The

target is to produce the impression of an easy however big

and strong self-managing electronic-virtual PC out of a

sizable assortment of related heterogeneous programs

discussing numerous mixtures of resources. The emerging

standardization for discussing methods, combined with the

option of larger bandwidth are operating a probably similarly

big transformative part of Grid computing. Because it

migrates from the arms of beauty to the sphere of executive

via the applying of tried-and-true executive principles-

computing becomes a basic power in exactly the same way

that fuel and energy era and distribution is just a utility. The

grade of the service will soon be calculated by their capacity

to generally meet the supply-and-demand shapes of the

suppliers and consumers. The suppliers (also named

resource owners) and consumers (who would be the

consumers) have various targets, purposes, methods, and

need designs [5] As gird programs are stationed, many

different executive techniques to Grid allocation of resources

has been and can remain applied.

3. RESOURCE MANAGEMENT
Challenging for the successful usage of Grids for compute-

intensive jobs is that of management of resources due to

insufficient management and job scheduling methods that

account fully for volatility of resource, the conventional

utilization of Grids has dedicated to high-throughput

programs that include vast quantities (i.e. purchases of

magnitude bigger than the amount of accessible resources) of

distinct tasks. Management of Resources [4, 5] is a main job

in virtually any Grid system. Resource may possibly contain

―conventional‖ resources such as for instance cycles of

computations, system bandwidth, and storage methods,

Common resource administration and managing methods

which were proposed are Globus GRAM [15], WMS [16],

from EDG [17], Grid Way [9], SGE (Sun Grid Engine) [10],

Condor [18] and the Euro Grid-Unicore [19] reference broker

projects.

For a Grid to successfully support many different purposes,

the resource managing (RMS) that is main to its function

should handle the problems and issues under along with

dilemmas such as for example problem threshold and

security [2]. Dilemmas are (a) encouraging versatility,

extensibility, and scalability; (b) letting techniques with

various administrative procedures to inter-operate while

keeping website autonomy; (c) co-allocating assets; (d)

encouraging eminence of services; and (e) conference

computational price limitation. Applying these styles, Grid

techniques may be position to the classes as revealed in

Figure-1 [1].

Figure-1. A nomenclature of Grid Systems

As a result of problems such as for instance extensibility,

flexibility, autonomy of site, QoS, co-allocation,

management and administration of resources in Grid systems

is extra difficult than in conventional distributed milieu for

Computing (DCEs). In general a Grid application may have a

number of various parts mapped onto different resources.

Such circumstances, the RMS should work with a worldwide

abstraction of the application to accredit and allocate node

i.e. resources [3].

Whenever a work is given into a Grid scheduling system the

phrases ―scheduling‖ is not to be puzzled with ―reservation‖

of methods in advance to enhance the quality of service.

Occasionally the word ―resource broker‖ can be used instead

of ―scheduler,‖ but term resource broker implies that some

kind of bartering ability is factored into scheduling. The

scheduling system has got the task to pick an appropriate

source and then to manage the task execution. Your choice

which source should be utilized is the outcome of a dating

method between give in requested and accessible resources.

But, in this dating method, we truly need some flexible

scheduling systems and techniques with appropriate

heuristics that may take into account the characteristics of the

network to enable effective scheduling of source extensive

jobs to practical research resources. A ―meta scheduler‖ can

help the seeking of methods across multiple machines for

jobs and can accomplish fill managing of workloads across

multiple sites. Each site even offers a unique regional

scheduler to ascertain how their work queue is processed. A

meta-scheduling system performs on the foundation that the

―new task‖ which must be accomplished has to make itself

proven to a ―matchmaker.‖ That matchmaker works as a

gate way to the Grid. It selects methods from a worldwide

directory.

As interaction technologies, storage and computational

technologies gradually increase, significantly huge,

complicated, and resource-intensive jobs are increasingly

being produced both in study institutions and in industry. It is

a popular surveillance that computational resources are

deteriorating to meet the demand of these applications. The

standard computational and research Grid is rolling out

service driven research architecture with a brilliant regional

source administration and scheduling strategy. In Globus

Tookit4 [20] (GT4, the official implementation of the

existing Grid standards), eight high-level Grid services

described by Open Grid Company Architecture (OGSA)

[21] are implemented using Web Services process to provide

functionalities such as for example source administration,

scheduling, etc. As these series are expected be stateful and

services regarding internet are usually stateless, Services For

Web Reference Platform (WSRF) [22] was introduce so the

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 10, December 2014

27

stateful data can be preserved as WS-Resources between

various support invocations. Stateful resources do not only

contain old-fashioned Grid resources such as for example

equipment, but any such thing which includes state and needs

to be restored across multiple support interactions. These

included entities such as for example sessions, class account,

recommendations, and subscriptions to topics. While WS-RF

efforts to reconcile the referencing of stateful resources with

stateless support relationships, it however keeps a combining

between support endpoint addresses and source identifies.

This may minimize its capacity to take care of conditions

concerning nodes at the edges that will not have straight

available addresses that is considered as static.

4. IMPORT OF RESOURCE

CONSUMPTION

Usually, people calculate utilization of resource by the total

amount of computational facet of the corresponding form of

resources used. Like usually use of CPU is assessed by the

number of time slots used. At present, users learned this

measuring convention in computational Grids. The price

options derive from computational units of source utilization

in the economic-model source allocation strategies for a

computational Grid. Based with this cost hurt system, in

order to assign their jobs to suitable source manufacturers,

consumers must be sensitive of the quantity and forms of

resource components they meet for a specific task to estimate

the fee and predicate the execution. Nevertheless, not like

most conventional computational podiums, also exactly the

identical types of resources in computational Grids range

over a broad variety of capabilities. The jobs in

computational Grids typically require extensive sources that

have different capabilities. An average example is a task that

involves a big degree difference in clock charges of CPUs. It

is maybe not appropriate to gauge the CPU utilization just

based on the number of time slots expected, because the

computational capabilities of time slots of different CPU

units should not merely reveal enough time slots but

additionally the differentiation of bodily capabilities of the

CPUs. However, it becomes excessively complex for users to

gauge whether they should outsource a resource extensive

task if different CPU units have different prices. Meanwhile,

the available source in a Grid could change at different times.

Ergo, also identical task must certainly be evaluated at every

time when they'll be executed. Also, different users have

different efficiency conditions and requirements. They want

to find the least expensive sources that could satisfy their

efficiency requirements. It is also complicated to utilize the

price of computational source units to represent users

different preferences. Price of source usages must certainly

be produced to hide the differentiation of bodily capabilities

of exactly the same form of sources, also reflecting different

consumer tastes in a Grid.

 For the sake of simplicity, this paper use CPUs (processors)

at 5 distinct sites because the example resource to explain

how to product the capabilities of a resource by taking into

consideration the specific efficiency it may achieve based on

specific tasks instead of utilizing the utilization of resource

units. To start, consider an easy observation showing the

basic idea behind the job-oriented system of measuring the

value of resource utilization in this paper.

Assume you can find three processors P1, P2, and P3 which

may have various rates of speed (Here, we don't establish

what correct indicating of the rate of a CPU. Maybe it's

calculated by MIPs, time charges, clock or some other sort of

common units) from the greatest to the cheapest respectively.

CP1

CP2

CP3

Figure 2: Similar performance by diverse Processors

Provided the identical work, these three processors could end

it in various timeframe (Here a presumption is manufactured

that most different situations are same, e.g., same level of

RAM associating with each processor). Figure 2 reveals the

performance and efficiency of every processor. The same

efficiency range shows the fact these three models P1, P2,

and P3 end the identical work within H1, H2, and H3 hours

of CPU respectively. The total amount of function they did is

same; nevertheless they applied various quantity of time. If a

resource user provides exactly the same work to P1, P2, and

P3 , how if the model manager cost an individual for

applying various processors? If all processors may meet the

timeline of work, the resource consumer would rather

perhaps not to cover additional for employing P1. However,

if the timeline of the task is limited or tight, he might be

ready to cover more for employing P1. Thus, to be able to

collection appropriate rates provide applying P1, P2, and P3

to implement the identical work, the resource manufacturers

require to take into account equally the various features of

the processors and the consumers' performance.

5. METHODOLOGY OF

SURVEILLANCE
As opposed to monitoring task incognito, our in depth

analysis investigated the time that the resource spent

allocated to the activity during the course of the simulation,

access frequencies which is the major data requirement

related to applications, the attributes (resources) accessed by

job with their combinations and their access frequency in

addition to the size of computation, on a consumer-by-

consumer source. That analysis revealed numerous

enormously tempting results. Let Q = q1, q2,

……..,qq function as group of consumer queries (applications

). Next every query qi and each feature Aj, relate an attribute

usage value, represented as use (qi, Aj), and defined as

follows:

Use (qi , Aj)= 1 0 ; if Attribute Aj is referenced by

qi

 1

eq (1)

Straight Performance Line

H3 H2 H1

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 10, December 2014

28

q1: access A1, A2, A5, A6, and A7, given cond1.

q2: access A1, A2, A4, and A6of while relation R1

“

“

“

q40:access A1, A2, A3, A4 and A7for each A4 = value

Relating to the considered 40 jobs , the feature utilization

prices may be defined. These utilization values establish in

matrix eq1, wherever (i, j) indicates Use (qi, Aj), total

calculations aren't revealed here.

Utilization of Attributes values is not adequately standard to

create the cornerstone of attribute or feature breaking and

fragmentation, because the values do not signify the weight

of application frequencies. This paper includes the frequency

measure along with the feature or attribute affinity measure

aff(Ai, Aj), measuring the link between two attributes of a

connection in accordance with how they are accessed by

queries (applications) , which can be described w.r.t. the set

of applications Q= {q1,q2…….qq}.

𝐚𝐟𝐟 𝐀𝐢, 𝐀𝐣

= 𝐫𝐞𝐟𝐥 𝐪𝐤 𝐚𝐜𝐜𝐥 (𝐪𝐤)

𝐊 | 𝐮𝐬𝐞 𝐪𝐤, ,𝐀𝐢 =𝟏 ^ 𝐮𝐬𝐞(𝐪𝐤, ,𝐀𝐢)

Wherever ref1(qk) is the amount of accesses to feature or

attributes (Ai, Aj) for every running of request qe site S1 and

acc1 (qe) is the application form entry volume evaluate, for

ease, think that ref1(qk)=1 for many qe and S1.If the

application form wavelengths are:

We tested and evaluated our heuristics in simulation on

various Grid platforms, but, here discussion centers around

the platform on which remarkable results has been found,

namely the GridSim platform. Figure 3 illustrate the

occasions when the most functioning ten consumers

submitted tasks to the Grid during phase that's been analyzed

in depth. A bar against an individual and a date suggests that

the user has submitted jobs during that day. The main

surveillance to be produced from that figure3 is that,

although they were the most functioning consumers, all of

them didn't submit jobs all the time. Moreover, you will find

very obvious patterns of task submission. For example User

(u9) and User (u8) utilize the Grid for extended periods of

time. User (u2) and User (u4) utilize the Grid for 1-2 days of

concentrated activity followed by a period of inactivity that's

at the very least equally long. By using worksheet software,

many different statistical analysis that verifies our heuristics

has been performed.

Figure 3: User Movement in Analysis

Figure 4 shows the particular circulation task arrivals within

a arbitrarily chosen about three day phase. The particular

figure 4 exhibits the three details collection, a consumer for

every day, the place every ray exhibits the sheer numbers of

tasks which were submitted in a 6 minute period. Exactly

what is so visible via figure 2 is for every day job

submissions don't arise using a common circulation

nevertheless people distribute more and more jobs

throughout a single go as well as then you'll find extended

phases when virtually no tasks usually are give in. The actual

cause of this particular tendencies is users infrequently

distribute jobs personally nevertheless, alternatively,

automatic systems submitter making use of computational

work-flow tools, like the OMII-BPEL ecosystem [23]

condor's DAGMan[24] or just using layer website programs

Figure 4: Work Submission Tarif during three arbitrarily

elected days

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 10, December 2014

29

On the whole, fascinating surveillance revealed in Figure 4.

The figure 4 demonstrates the allocation of task length for the

four most functioning consumers. It demonstrates a large

proportion of tasks that user (9) give in are less than an hour

or so, at the same time as u7 regularly give in long executing

tasks, the size of which regularly surpasses 10 hours. User5

give in jobs by having an middling length of approximately 7

hours and his task distributions is that consumers utilize

identical pair of computational applications over

comprehensive interlude of time, contained by or across

sessions, and pertain them to distinct studies and data sets.

The dialogue of the observed illustrations above implies that

the behaviors of consumers who give in tasks to a Grid is not

at all random, but, rather, follows conventional patterns. It's

this observation that can be utilized and exploit desire to

boost the class of scheduling decisions that meta-schedulers,

portals or Grid federations have to build. The fundamental

thought is that, because job submission take place in

distinctive patterns and the periods of jobs can differ between

minutes and days, conventional prediction techniques may

give up improved scheduling decisions than the standard

technique of submitting we use this insight to derive the two

major hypotheses of this paper. The analysis is not confined

to extracting the statistical characteristics of these resources,

but delves also into expressing techniques of exploiting

theses resources in performing. The second hypothesis of this

paper is that the quality of Grid scheduling can be improved

with techniques that use SOA mechanism.

Security problems come up when services tend to be

concatenated. Objects, called processes, of a concatenate

service application may run for prolonged length of time and

also has to be vigorous in the face of remote-service failures.

Figure 5: Task Length by Users

Long-running processes, such as user7 constantly submits

prolonged running jobs, the size of which oftenly exceeds 10

hours seeing that shown in figure 4 may possibly degrade

performance of server perhaps to the level associated with

inducing the server so that server deny services to the

consumers. To control these problems, the developer must

normally enhance or else standard simple interaction protocol

with logic which e.g. monitors any time used up anticipating a

solution in addition to which causes some kind of remediation

when an increased period of time has elapses. Faults in theses

protocols can result in wellbeing violations in addition to may

very well be exploited by attackers.

In order to build secure SOAs require the skill to layout, and

package services as mechanism to state compositions and

motive concerning world-wide well being properties of safety

in addition to QoS. Here is situated the trouble; Safety in

addition to QoS will be elaborate nonfunctional complex

problems, whose effects are world-wide therefore complicated

and tricky to verify. SOAs must make certain safety through

guaranteeing any qualifying measures of services and

information necessary to sustain clients, be that they human

consumers and also other (composite) services. By safety,

means, integrity shouldn't be give and take as a side-effect of

authorized use; whereas by amount of service, means, to add

issues of instability availability and QoS.

The protocols illustrate communication and interaction

between numerous services perhaps running and managing on

several distinct servers, and could include expeditions on

remote server resources. Additionally, it is also possible that

many major services running and managing in parallel

execute operations on several dissimilar resources seeing as

part of a particular transaction. To appropriately put into

practice a distributed transaction from corner to corner

manifold constituent services needs intricate rules of message

exchange among the constituents. If the constituent series are

urbanized in an ad hoc manner, delicate implementation

blemish could end in security troubles and degraded ranks of

service.

6. CONCLUSION AND FUTURE WORK
However, our RIADA heuristics present important

components for modeling efficient resource management

policies (for doing suitable space-sharing among tasks,

techniques for choosing which resources are utilized for

which task , for determining job duplication levels for task)

and in future one can enhance the caliber of Grid scheduling

by embedding techniques that utilize SOA (Service Oriented

Architecture) mechanisms.

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 10, December 2014

30

7. REFERENCES
[1] Klaus K, R buyya and M Maheswaran. A taxonomy and

survey of Grid resource management systems for

distributed computing 2002. Softw. Pract. Exper.,

32:135-164.

[2] Sinha PK. Distributed Operating Systems: Concepts and

Design. 1997. IEEE Press: NewYork, NY.

[3] Vahdat A. Toward wide-area resource allocation

Proceedings of the International Conference on Parallel

and Distributed Processing Techniques and Applications.

1999. 02:930-936.

[4] Czakowski, K., Foster, I., Karonis, N., Kesselman, C.,

Martin, S., Smith, W., Tuecke, S. A Ressource

management architecture for metacomputing systems. In

4th Workshop on job scheduling strategies for Parallel

Processing. Orlando, FL, 1998.

[5] Buyya, R., Abramson, D., Giddy, J. Nimrod/G. An

Architecture for a Resource Management and Scheduling

System in a Global Computational Grid. In: International

Conference on High Performance Computing in Asia—

Pacific Region (HPC Asia 2000). Beijing , China,

2000(IEEE Computer Society)

[6] Nabrzyski, J., Schopf, J.M., Weglarz., J. (eds). Grid

Resource Management. Kluwer, Boston, MA 2003(Fall)

[7] Andretto, P., Borgia, S., Dorigo, A., Gianelle, A.,

Mordacchini, M., et al. Practical approaches to Grid

workload & resource management in the EGEE project.

In. CHEP 2004, Interlaken, Switzerland, 2005.

[8] http://www.glite.org/, May 2006. European Data Grid

Project http://eu-dataGrid.web.cern.ch/eu-dataGrid/

[9] Huedo, E., Montero, R.S., Liorente, I. M. A Framework

for adaptive execution on Grids. Softw. Prac. Exp.

2004.34, 631-651.

[10] Dss Sun Grid Engine ,

http://www.sun.com/software/Gridware/

[11] Manikandan. T., Thamizharasi, M., Chitra, R.Distributed

Heterogeneous Data Management in Grid Computing .

[12] Alexandre, D., Christian, P., Thierry, P. Network

Communications in Grid Computing: At a Crossroads

Between Parallel and Distributed Worlds.

[13] Ian, F., Carl, K., Steven, T. The Anatomy of the Grid

 Enabling Scalable Virtual Organizations.

[14] Chervenak, A., Ian, F., Carl. K., Salisbury, C.,Tuecke, S.

The data Grid: Towards an architecture for the

distributed management and analysis of large scientific

datasets.

[15] J. Nabrzyski, J.M. Schopf, J. Weglarz (Eds). Grid

Resource Management. Kluwer Published, Fall 2003.

[16] Andretto, P.,Borgia, S., Dorigo, A., Gianelle, A.,

Mordacchini ,M., et al. Practical Approaches to Grid

Workload & Resource Management in the EGEE

Project, CHEP04, Interlaken, Switzerland.

[17] European Data Grid Project: http://eu-

dataGrid.web.cern.ch/eu-dataGrid/

[18] Basney, J., Livny, L., Mazzanti, P., Utilizing Widely

Distributed Computational Resources Efficiently with

Execution Domains. Computer Physics Communications,

2001.

[19] Brooke, J.,Fellows, D., MacLaren, J. Resource

Brokering: The EUROGRID/GRIP Approach, UK e-

Science All Hands Meeting, Nottingham, UK, 31 Aug. -

3 Sep. 2004

[20] Globus Alliance (2005), Globus Toolkit 4.0 (GT4).

http://www-unix.globus.org/toolkit/docs/4.0/GT4Facts/.

[21] Foster, I., Kesselman, C., Nick, J. M. &Tuecke, S.

(2002), The Physiology of the Grid: An Open Grid

Service Archetecture for Distributed Systems

Integration.

http://www.globus.org/research/papers/ogsa.pdf.

[22] Foster, I., Czajkowski, K., Ferguson, D., Frey, J.,

Graham, S., Maguire, T., Snelling, D. and Tuecke, S.

(2005), ‗Modeling and managing state in distributed

systems: the role of ogsi and wsrf‘, Proceedings of the

IEEE 93(3), 604–612.

[23] Emmerich, W., Butchart, B., Chen, L., Wassermann, B.

and Price, S. (2005). Grid Service Orchestration using

the Business Process Execution Language (BPEL).

Journal of Grid Computing, 3(3-4):283-304.

[24] Frey, J., et al., ―Condor-G: A Computation Management

Agent for Multi-Institutional Grids,‖ Cluster Computing,

vol. 5, 2002, pp. 237-246.

IJCATM : www.ijcaonline.org

http://www.glite.org/
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://www.sun.com/software/Gridware/
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://www.globus.org/research/papers/ogsa.pdf
http://dx.doi.org/10.1007/s10723-005-9015-3
http://dx.doi.org/10.1007/s10723-005-9015-3

