
International Journal of Computer Applications (0975 8887)
Volume 108 - No. 10, December 2014

Estimation of Parameters for Model Matching using
Genetic Algorithms

Sheeba PS
Lokmanya Tilak College of Engineering

Koperkhairane
Navi Mumbai

ABSTRACT
This paper develops an optimization procedure to estimate the pa-
rameter values of a given dynamic system. The actual nonlinear
model of the system is assumed available with the approximate
range of parameter values. The model used in this work is the PS4
actuator with nozzle dynamics which is used for the liquid upper
stage control system of PSLV. The objective is to estimate the pa-
rameter values so that the error between actual system output and
the simulated output is minimized. This is achieved through Ge-
netic Algorithms(GA) which is a global optimization technique.
GAs are stochastic algorithms based on Darwin’s theory of sur-
vival of the fittest. They are inspired by biological phenomena of
natural genetics and natural selection. The basic elements of natu-
ral genetics- reproduction, crossover and mutation- are used in
the genetic search procedures. GA is proved robust and efficient in
finding optimal solutions in complex problem spaces.
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1. INTRODUCTION
In order to deal in a systematic and efficient way with problems
involving time dependent behavior we must have a description of
the objects or process involved called a model. In many cases the
processes are so complex that it is not possible to obtain reason-
able models using physical insight. In such cases one is forced to
use identification techniques. An identification experiment is per-
formed by exciting the system and observing its input and out-
put over a time interval. These signals are normally recorded in a
computer mass storage for subsequent information processing. We
then try to fit a parametric model of the process to the recorded in-
put and output sequences. Optimization methods play an important
role in modeling, because a model is not usually developed as an
end in itself. Rather, the model is formulated in order to determine
the values of free parameters that produce an optimum measure of
goodness. Parameter estimation is defined as the experimental de-
termination of values of parameters that govern the dynamic and/
or nonlinear behavior, assuming that the structure of the process
model is known. Optimization is the art of obtaining the best result
under given circumstances. There is no single method available for
solving all optimization problems efficiently. The optimum seek-
ing methods are also known as mathematical programming tech-

niques. Genetic Algorithms, Simulated Annealing and Neural Net-
work methods represent a new class of mathematical programming
techniques.
The classical methods of optimization are useful in finding the op-
timal solution of continuous and differentiable functions. These
methods are analytical and make use of the techniques of differ-
ential calculus in locating the optimum points. Since some of the
practical problems involve objective functions that are not con-
tinuous and/or differentiable, the classical optimization techniques
have limited scope in practical application. Since standard estima-
tion algorithms employ gradient based searches and are subjected
to entrapment in local minima, there is a need for a global opti-
mization technique such as evolutionary programming.[2]
Optimization techniques, having reached a degree of maturity over
the past several years, are being used in wide spectrum of in-
dustries, including aerospace, automotive, chemical, electrical and
manufacturing industries. With rapidly advancing computer tech-
nology, computers are becoming more powerful, and correspond-
ingly, the size and the complexity of the problems being solved
using optimization techniques are also increasing. Optimization
merthods, coupled with modern tools of computer-aided design,
are also being used to enhance the creative power of conceptual
and detailed design of engineering systems.
Traditional optimization and search methods are classified as: cal-
culus based, enumerative and random search methods. Calculus
based methods subdivide into direct and indirect methods. Indi-
rect methods seek local extrema by solving the usually nonlinear
set of equations resulting from setting the gradient of the objective
function equal to zero. On the other hand, direct methods seek op-
tima by hopping on the function and move in a direction related
to the local gradient. This is simply the notion of hill climbing to
find the local best, climb the function in the steepest permissible
direction. Both the methods are local in scope: the optimum they
seek are best in a neighborhood of the current point and in many
cases miss the higher peak. Also calculus based methods depend
upon the existence of derivatives. Many practical spaces have little
respect for the notion of a derivative and the smoothness this im-
plies. The real world of search is fraught with discontinuities and
vast multimodal noisy search spaces. For this reason and because
of their inherently scope of search, we must reject calculus based
methods. In enumerative schemes, within a finite search space or
discretized infinite search space, the search algorithms starts look-
ing at objective function values at every point in the space one at a
time. Many practical spaces are simply too large to searching one at
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a time and still have a chance of using the information to some prac-
tical end. Random search algorithms have achieved increasing pop-
ularity as researchers have recognized the shortcomings of calculus
based and enumerative schemes. Yet, random walks and random
schemes that search and save the best must also be discounted be-
cause of the efficiency requirement. In our haste to discount strictly
random search methods, one must be careful to separate them from
randomized techniques [1]. The genetic algorithm is an example
of a search procedure that uses random choice as a tool to guide a
highly exploitative search through a coding of a parameter space.
In recent years, some optimization methods that are conceptu-
ally different from the traditional mathematical programming tech-
niques have been developed [3]-[7]. These methods are based on
certain biological, molecular and neurological phenomena. Genetic
algorithms are based on the principle of natural genetics and natural
selection. Simulated annealing is based on the simulation of ther-
mal annealing of critically heated solids. In neural network based
methods, the problem is modeled as a network consisting of several
neurons and the network is trained suitably to solve the optimiza-
tion problem efficiently [2], [3]. A system identification problem
using genetic algorithms is addressed in [9]. A similar problem of
identification of parameters of an induction motor using Genetic
Algorithms is developed in [10]. In a recent paper [11], genetic al-
gorithm is used to estimate the parameters of a warranty cost model
for a Malaysian automotive industry. A numerical technique based
genetic algorithm to determine the electrical parameters of photo-
voltaic solar cells is developed in [12].
Many practical optimum design problems are characterized by
mixed continuous discrete variables and discontinuous and non
convex design spaces. If standard nonlinear programming tech-
niques are used for this type of problem they will be inefficient,
computationally expensive, and in most cases find a relative opti-
mum that is closest to the starting point. Genetic Algorithms are
well suited for solving such problems and in most cases they can
find the global optimum solution with a high probability.

2. BIOLOGICAL BACKGROUND OF GA
The fundamental unit of information in living systems is the gene.
In general, a gene is defined as a portion of a chromosome that
determines or affects a single character or phenotype. It comprises
a segment of deoxyribonucleic acid (DNA), commonly packaged
into structures called chromosomes. This genetic information is ca-
pable of producing a functional biological product which is most
often a protein.
The genes which determine the characters of an individual are car-
ried in the chromosomes and an individual usually has many genes
for the determination of various different characters. The genes on
the same chromosome do not assort out independently during their
inheritance. The tendency of two genes to remain together in the
same chromosome during hereditary transmission is called linkage.
Genes located in the same chromosome show linkage. These linked
genes may either remain together during the process of inheritance
and, thus showing complete linkage or they may be separated, thus,
displaying the incomplete linkage. The incomplete linkage takes
place due to the occurrence of new combinations or recombina-
tions of linked genes. The recombination, infact, occurs through a
process known as crossing over. The crossing over is a process that
produces new combinations or recombinations of genes by inter-
changing corresponding segments between chromosomes.
A little amount of DNA synthesis takes place during the crossing
over process and that little amount of DNA is thought to repair
the broken chromosomes. Crossing over provides a direct evidence

of the linear arrangement of genes in the chromosomes. Since, new
combinations of genes are obtained by crossing over which produce
variations in the organisms, therefore it is a necessary feature of
evolution.
DNA is a relatively stable polymer and nucleotides generally dis-
play a very low tolerance for alterations in genetic information. An
inheritable change in the phenotype or any change in a DNA se-
quence is called a mutation. In general, this operation is rare and
random. The process of mutation is blind to its consequences; it
throws up every possible combination of mutants, and natural se-
lection then favours those which are better adapted to their envi-
ronment. Favourable mutations that confer some advantages to the
cell in which they occur are rare, being sufficient to provide the
variations necessary for natural selection and thus evolution.

3. GENETIC ALGORITHMS
Genetic Algorithms are search algorithms based on the mechanics
of natural selection and natural genetics. They combine survival
of the fittest among string structures with a structured yet random-
ized information exchange to form a search algorithm with some
of the innovative flair of human search. The Darwanian theory of
evolution states that good characteristics, which help a member of
the population survive, will gradually dominate the population as
the members with bad characteristics die off. In every generation,
a new set of artificial creatures (strings) is created using bits and
pieces of the fittest of the old and occasional new part is tried for
good measure. While randomized, Genetic Algorithms are no sim-
ple random walk. They efficiently exploit historical information
to speculate on new search points with expected improved perfor-
mance. A GA maintains a population of candidate solutions where
each solution is usually coded as a binary string called a chromo-
some. A chromosome- also referred to as a genotype- encodes a
parameter set for a set of variables being optimized. Each encoded
parameter in a chromosome is called a gene. A decoded parameter
set is called a phenotype. A set of chromosomes forms a population
which is evaluated and ranked by a fitness evaluation function. The
initial population is usually generated at random.[1]

3.1 How Genetic Algorithms are different from
traditional methods?

GAs differ from traditional methods of search and optimization in
four ways:

(1) GAs work with a coding of the parameter set, not the parame-
ters themselves

(2) GAs search from a population of points, not a single point
(3) GAs use payoff (objective function) information, not deriva-

tives or other auxiliary knowledge
(4) GAs use probablistic transition rules, not deterministic rules.

These fundamental differences allow GAs to be more robust than
conventional deterministic search and optimization routines.

3.2 GA Procedure
The first step in using GAs is to code the problem space. This is
done by mapping the design variables into chromosomes through
the use of an arbitrary alphabet. The alphabet of choice for GAs
is binary, or 1’s and 0’s. Use of binary allows the GA to associate
high fitness with similarities in the string. Other coding, while vi-
able, require a more expensive decoding process, and may not allow
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Fig. 1. Flowchart for GA

the GA to recognize similarities in ”good” members of the popula-
tion. An initial population of genetic strings with randomly chosen
genes is created first. The size of the population remains constant
throughout the genetic optimization. Various genetic operators are
applied at given probabilities to generate new members. In order to
form successive generations, parents are chosen from the current
population based on their fitness. One generation after another is
created until some stopping criterion is met. The implementation
flow chart of Genetic Algorithm is as shown in Fig.1.

3.3 Genetic Operators
A GA in its simplest form uses three operators: selection, crossover
and mutation.[1]

3.3.1 Selection. Selection or reproduction, is the process of cre-
ating a new generation. This is accomplished by copying strings or
individuals from the last generation into the population of the new
generation, based upon the evaluation of the individuals assigned
fitness value.
The reproduction operator may be implemented in algorithmic
form in a number of ways. Perhaps the easiest is to create a biased
Roulette wheel where each current string in the population has a
Roulette wheel slot sized in proportion to its fitness. For propor-
tionate selection scheme, the selection procedure is as follows:

—Sum the fitness of all the population members; named as total
fitness Fsum

—Generate a random number n between 0 and total fitness Fsum

—Return the first population member whose fitness added to the
fitness of the preceding population members is greater than or
equal to n.

For example, the circumference of the Roulette wheel is Fsum for
all five chromosomes. Chromosome 4 is the fittest chromosome and

occupies the largest interval. Whereas chromosome 1 is the least fit
which corresponds to a smaller interval within the Roulette wheel.
To select a chromosome, a random number is generated in the inter-
val [0, Fsum] and the individual whose segment spans the random
number is selected.
Another method of selection for this methodology is called Rank
Based Selection. This procedure sorts the population based on fit-
ness value ie., all members must be ranked from best to worst ac-
cording to the value of objective function. A roulette wheel is im-
plemented where the ith ranked member in the population is given
an interval [φi−1, φi] whose size depends on the population size,
N , and its rank i, in the population:

φi = φi−1 +
2(N − i+ 1)

N(N + 1)

where φ0 = 0 and i = 1, 2, ...N.
A uniform random number is then generated between 0 and 1; and
the member i is selected as a parent if the number lies in the interval
[φi−1, φi]. [8]

3.3.2 Crossover. Crossover is operator responsible for introduc-
ing most new solutions into the population. This is done by select-
ing, at random, two parent strings. These strings are then crossed to
produce two offsprings. The operation is applied by first drawing a
random number to determine the crossover point. The gene string
is then split at same point in both parents. The genetic informa-
tion contained in the strings is then swapped between the randomly
determined crossing points. This process of sharing information be-
tween different strings gives GAs much of their power.

3.3.3 Mutation. Mutation is the process of randomly changing
one bit of information in the string. The change is accomplished by
changing a single gene from 0 to 1 or 1 to 0. Mutation prevents the
GA from loosing potentially important information or stagnating
during the solution process. Mutation has the effect of providing
a push from a particular solution which may be a local optimum
rather than the global one sought. mutation is considered to be a
secondary operator to crossover and reproduction that provides an
insurance policy against premature convergence and loss of infor-
mation.

3.3.4 Schema Theory. Consider a simple three dimensional
space, and assume that the searching space of the solution of a
problem can be encoded with three bits, this can be represented
as a simple cube with the string 000 at the origin. The corners in
this cube are numbered by bit strings and all adjacent corners are
labeled by bit strings that differ by exactly 1 bit. If’*’ represents a
don’t care or ’wild card’ match symbol, then the front plane of the
cube can be represented by the special string 0**.
Strings that contain ”*” are referred to as schematic and each
schema corresponds to a hyperplane in the search space. A schema
represents all strings (a hyperplane or subset of the search space),
which match it on all positions other than ’*’. It is clear that every
schema matches exactly 2r strings, where ’r’ is the number of don’t
care symbols, ’*’, in the schema template. Every binary encoding
is a ’chromosome’ which corresponds to a corner in the hypercube
and is a member of the 2L − 1 different hyperplane, where L is the
length of the binary encoding. Moreover, 3L hyperplanes can be
defined over the entire search space. Because GA operate on pop-
ulation of strings, one can track the proportional representation of
a single schema representing a particular hyperplane in a popula-
tion. One can also indicate whether that hyperplane will increase or
decrease its representation in the population overtime, when fitness
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based selection is combined with crossover to produce offspring
from existing strings in the population.

3.3.5 Effect of Selection. Since a schema represents a set of
strings, a fitness value f(s,t) with schema ”s”, and the average fit-
ness of the schema can be associated. f(s,t) is then determined by
all the matched strings in the population. If propotional selection is
used in the reproduction phase the number of matched strings of a
schema ”s” in the next generation can be estimated.
Let ζ(s, t) be the number of strings matched by schema ”s” at
the current generation. The probability of its selection (in a single
string selection) is equal to f(s,t)

F (t)
, where F(t) is the average fitness

of the current population. The expected number of occurences of
”s” in the next generation is

ζ(s, t+ 1) = ζ(s, t)
f(s, t)

F (t)
(1)

Let

ε =
f(s, t)− F (t)

F (t)
(2)

If ε > 0, it means that the schema has an above average fitness and
viceversa.

ζ(s, t) = ζ(s, 0)(1 + ε)t (3)

3.3.6 Effect of Crossover. During the evolution of GA, the ge-
netic operations are disruptive to current schemata, therefore, their
effects should be considered. Assuming that the length of chro-
mosomes is L and one-point crossover is applied, in general, a
crossover point is selected uniformly among L-1 possible positions.
This implies that the probability of destruction of a schema ”s” is

Pd(s) =
δ(s)

L− 1
(4)

or the probability of a schema ”s” survival is

Ps(s) = 1− δ(s)

L− 1
(5)

where δ is the defining length of the schema ”s” defined as the
distance between the outermost fixed positions.
Assuming the operation rate of crossover is Pc, the probability of a
schema ”s” survival is:

Ps(s) = 1− Pc
δ(s)

L− 1
(6)

A schema ”s” may still survive even if a crossover site is selected
between fixed positions, the above equation can be modified as

Ps(s) ≥ 1− Pc
δ(s)

L− 1
(7)

3.3.7 Effect of Mutation. If the bit mutation probability is Pm,
then the probability of a single bit survival is 1 − Pm. Denoting
the order of schema ”s” by o(s), the probability of a schema ”s”
surviving a mutation is,

Ps(s) = (1− Pm)O(s) (8)

Since Pm << 1, this probability can be approximated by

Ps(s) ≈ 1− o(s)Pm (9)

Combining the effect of selection, crossover and mutation, a new
form of the reproductive schema growth equation is derived

δ(s, t+ 1) ≥ δ(s, t)
f(s, t)

F (t)
[1− Pc

δ(s)

L− 1
− o(s)Pm] (10)

From this equation, it can be concluded that a high average fitness
value alone is not sufficient for a high growth rate. Indeed, short,
low order, above average schemata receive exponentially increas-
ing trials in subsequent generations of a GA. This conclusion is
so important that, it is given a special name: Schema Theorem or
Fundamental Theorem of Genetic Algorithms. [1]

4. CASE STUDY
In this case study, GA is applied to estimate the parameter values of
the PS4 actuator with nozzle dynamics which is used for the liquid
upper stage control system of PSLV.

4.1 Test Signal
The test signal used here is pseudo random binary sequences
(PRBS) Fig 2. PRBS are probably the most convenient inputs for
the purposes of identification by correlation integral techniques.
These sequences are of periodic nature, their periods being rela-
tively short, and yet their auto correlation integral provides a sat-
isfactory approximation of a delta function. PRBS are two stage
signals which may be generated by using a shift register of order n.
The register state variables are fed with 0 or 1. Every initial state
vector is allowed except the all zero state. When the clock pulse is
applied, the value of the kth state is transferred to the (k + 1)th

state and a new value is introduced into the first state through the
feedback path. This feedback is applied through the modulo-two
gate (or gates) from the outputs of two (or more) stages of the shift
register so that a single (or multiple) closed loop is formed. For a
shift register with n states, the maximum period of sequence gen-
erated is 2n. Infact, 2n is an upper bound which cannot be attained
as the occurrence of all zero state must be prevented. The maxi-
mum possible period is N = 2n − 1. A PRBS input with period
63 is used as the test signal in this experiment. The auto correlation
function of PRBS input signal, denoted by x(t) is given by,

φxx(τ) =
1

T

∫ T

0

x(t)x(t+ τ)dt

The cross correlation function is given by

φxy(τ) =
1

T

∫ T

0

x(t)y(t+ τ)dt

From the above equations, we can find the impulse response g(t)
which is given by

g(t) =
1

T
φ−1
xxφxy

4.2 Genetic Approach
The model used in the experiment is the PS4 actuator with nozzle
dynamics. The aim is to estimate the value of motor inertia (Jm),
viscous damping coefficient reflected to the motor side (Bm), noz-
zle inertia (Jnoz) and natural frequency of nozzle (ωnoz) so that
the error between the actual system output and the estimated out-
put is minimized.
The actual values of the unknown parameters which was exper-
imentally determined in VSSC were available. In this work, the
range of parameter values were selected as one octave above and
one octave below of the actual value. The approximate range of
parameter values are:

Jm ε [5.96e− 06, 2.384e− 05]kgms2
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Fig. 2. PRBS input

Bm ε [1.06e− 05, 4.32e− 05]kgms

Jnoz ε [0.6375, 2.55]kgms
2

ωnoz ε [47.1239, 188.4956]rad/s

From the given range of parameter values, randomly generated an
initial population. The parameter values were appropriately scaled
and coded. Each parameter value was represented as a 6 bit binary
string. The strings were placed end to end so as to form chromo-
somes. The selection of parent chromosome is based on the notion
of ”fitness” which governs the extent to which an individual can in-
fluence future generation. Rank based parent selection was utilized.
For this, a Roulette wheel was implemented. Random numbers be-
tween the interval 0 and 1 were generated by means of RAND com-
mand in Matlab. A particular member was selected if the random
number generated falls between the specified interval according to
the ranking formula. Higher ranked individuals were given a higher
interval and the lower ranked individual were given a smaller inter-
val so that there exists a probability of higher ranked member to
be selected more. After parent selection, crossover operation was
applied. One-point crossover was utilized. This was done by ran-
domly choosing a crossover point between two parent strings using
the Matlab command UNIFRND. After crossover operation, mu-
tation was applied with a probability of 0.016. This was done by
randomly selecting a member from the population and mutating a
randomly chosen bit position. After crossover and mutation, the pa-
rameter were converted from binary to decimal and rescaled. The
fitness function for the new population was computed. For param-
eter estimation problem, the fitness of a particular chromosome is
roughly proportional to the inverse of the error. Actual system out-
put was stored in the computer memory. For each parameter combi-
nation, the simulated output was compared with the actual system
output. The sum of squares of error values between the actual sys-
tem output and the simulated output for each parameter combina-
tions were computed. After crossover and mutation, the parameter
values were converted from binary to decimal and rescaled. The fit-
ness function for the new population was computed. The new popu-
lation was combined with the old population and ranked according
to the fitness value. Parents for second generation were obtained by
using the rank based selection scheme. The process was repeated
for a specific number of generations or until no improvement in the
fitness function value is reached.

Fig. 3. Comparison of outputs

Fig. 4. Initial Population

4.3 Simulation Results
The optimum values of the parameters are estimated by using the
proposed algorithm. The initial population was shuffled with the
actual parameter values. The estimated parameters after 5 genera-
tions were found to be very much close to the actual values. From
the simulation results it was found that if the initial population con-
tains the optimal values anywhere in the population, then GA will
converge to the Global optimal solution. Tables for initial and final
populations are shown in Fig. 4 and 5 respectively. Comparison of
outputs are shown in the Figure 3.

5. CONCLUSION AND SCOPE OF FURTHER
WORK

In this paper, GA was used to estimate the parameter values of the
PS4 actuator with nozzle dynamics. The investigation presented in
this paper confirms the possibility of employing GA in parameter
estimation for model matching. Although the conventional GA was
tested, results are acceptable. It was found that if the initial popula-
tion does not contain the optimal parameter values, the crossover
operation was not sufficient to get the optimum solution, and it
was the mutation operator which helped in arriving at the optimum
value. When the actual values of the parameters are shuffled into
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Fig. 5. Final Population

the population, the GA was found to be converging to the global
optimum with the crossover operator.
GAs applied to parameter estimation problem is esentially powerful
since it can be applied in situations where gradient methods fail
and is not susceptible to problem with local minima. In problems
where multiple objective optimization is required, as in the case of
system identification in which a number of input signals are to be
simultaneously tested, the GA approach can be modified to provide
a technique to solve such problem.
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