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ABSTRACT 

In a graph G, a vertex dominates itself and its neighbors. A 

subset S of V is called a dominating set in G if every vertex in 

V-S is adjacent to at least one vertex in S. The minimum 

cardinality taken over all, the minimal double dominating set 

which is called Fuzzy Double Domination Number and which 

is denoted as )(Gfdd .  A set VS   is called a Triple 

dominating set of a graph G if every vertex in V dominated by 

at least three vertices in S.  The minimum number of colours 

required to colour all the vertices such that adjacent vertices 

do not receive the same colour is the chromatic number

)(G . The minimum cardinality of a triple dominating set is 

called Triple domination number of G and is denoted by

)(GT . The connectivity )(G of a connected graph G is 

the minimum number of vertices whose removal results in a 

disconnected or trivial graph. For any graph, G a complete sub 

graph of G is called a clique of G. For a fixed positive integer 

k, the n-tuple domination problem is to find a minimum 

vertex subset such that every vertex in the graph dominated by 

at least k vertices in this set.  In this paper we find an upper 

bound for the sum of the Fuzzy Double Domination, Triple 

domination, Chromatic Number in fuzzy graphs and 

characterize the corresponding extremal fuzzy graphs.   
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1. INTRODUCTION 

Let ),( G be a simple undirected fuzzy graph. The 

degree of any vertex u in G is the number of edges incident 

with u and is denoted by )(ud .  The minimum and 

maximum degree of a vertex is denoted by )(G and 

)(G respectively, nP denotes the path on n vertices. The 

vertex connectivity )(G of a graph G is the minimum 

number of vertices whose removal results in a disconnected 

graph. The Chromatic Number χ is defined to be the minimum 

number of colours required to colour all the vertices such that 

adjacent vertices do not receive the same colour. For any 

graph G a complete sub graph of G is called a clique of G. 

The number of vertices in a largest clique of G is called the 

clique number of G.  A subset S of V is called a dominating 

set in G if every vertex in V-S is adjacent to at least one 

vertex in S. The minimum cardinality taken over all 

dominating sets in G is called the domination number of G 

and is denoted by . A Dominating set is said to be Fuzzy 

Double Dominating set if every vertex in V-S is adjacent to at 

least two vertices in S. The minimum cardinality taken over 

all, the minimal double dominating set is called Fuzzy Double 

Domination Number and is denoted by )(Gfdd .  If X is a 

collection of objects denoted generically by x, then a Fuzzy 

set A in X is a set of ordered pairs: 

}/)((,{( xxxAxA   , A µ(x) is called the 

membership function of x in A that maps X to the 

membership space M when M contains only the two points 0 

and 1.  Let E be the crisp set of nodes. A Fuzzy graph is then 

defined by, G(xi, xj) = {((xi, xj), Gµ(xi, xj)), 

ExExx ji  ),( }.  H(xi, xj) is a Fuzzy Sub graph of 

G(xi,  xj), if  Hµ(xi, xj) ≤ Gµ(xi, xj), ExExx ji  ),( , 

H(xi, xj) spans graph G(xi, xj) if the node set of H(xi, xj) and 

G(xi, xj) are equal, that is if they differ only in their arc 

weights. µ(x1)= 0.1, µ(x2)= 0.5, µ(x3)= 0.4, µ(x4)= 0.2 by [6].  

2. FUZZY GRAPH 
The first definition of Fuzzy graphs proposed [4] from the 

fuzzy relations introduced [20] and [9] introduced another 

elaborated definition, including fuzzy vertex and fuzzy edges. 

Several fuzzy analogs of graph theoretic concepts such as 

paths, cycle’s connectedness etc., the concept of domination 

in fuzzy graphs was investigate and presents the concepts of 

independent domination, total domination, connected 

domination and domination in Cartesian product and 

composition of fuzzy graphs [19].  Several authors have 

studied the problem of obtaining an upper bound for the sum 

of a domination parameter and a graph theoretic parameter 

and characterized the corresponding extremal graphs. In [8] 

proved that, pk  , 1 pc  also 

characterized the class of graphs for which the upper bound is 

attained also proved similar results for ᵞ and ᵞt.  The concept 

of complementary perfect domination number ᵞcp and proved 

that, 22  ncp  , and characterized the 

corresponding extremal graphs. In [5], they proved the result 

ᵞdd + χ ≤ 2n. They also characterized the class of graphs for 

which the upper bound is attained.  Let vϵV. The open 

neighborhood and closed neighborhood of v are denoted by 

N(v) and N[v]  =  N(v) ∪ {v} respectively.  If S ⊆ 𝑉 then 

N(S) = (𝑣) 𝑣∈𝑆, Vv and N[S] = N(S) ∪ S. If S ⊆ 𝑉 and 

uϵS then the private neighbor set of u with respect to S is 

defined by pn [u, S] = {v: N[v] ∩S = {u}}. We denote a cycle 

on n vertices by Cn, a path on n vertices by Pn and a complete 

graph on n vertices by Kn. A bipartite graph is a graph whose 

vertex set can be divided into two disjoint sets V1 and V2 such 

that every edge has one end in V1 and another in V2.  A 

complete bipartite graph is a bipartite graph where every 

vertex of V1 is adjacent to every vertex in V2. The complete 

bipartite graph with partitions of order 𝑣1 = 𝑚, and 𝑣2 = 𝑛 is 
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denoted by Km, n. A wheel graph, denoted by Wn is a graph 

with n vertices formed by connecting a single vertex to all 

vertices of Cn-1. H{m1, m2,........,mn) denotes the graph 

obtained from the graph H by pasting mi edges to the vertex 

viϵV(H), 1 ≤ i ≤ n , H(Pm1, Pm2…..,Pmn) is the graph obtained 

from the graph H by attaching the end vertex of Pmi to the 

vertex vi in H, 1 ≤ I ≤ n. Bistar B(r,s) is a graph obtained from 

K1,r and K1,s by joining its Centre vertices by an edge.  

In a graph G, a vertex dominates itself and its neighbors. A 

subset S of V is called a dominating set in G if every vertex in 

V is dominated by at least one vertex in S. The domination 

number γ(G) is the minimum cardinality of a dominating set. 

In [2] introduced the concept of double domination in graphs. 

A set S ⊆ 𝑉 is called a double dominating set of a graph G if 

every vertex in V is dominated by at least two vertices in S 

The minimum cardinality of double dominating set is called 

double domination number of G and is denoted by dd(G). A 

vertex cut, or separating set of a connected graph G is a set of 

vertices whose removal results in a disconnected graph. Let 

κ(G) denoted by connectivity or vertex connectivity of a 

graph G. The Connectivity κ(G) of a connected graph G is the 

minimum number of vertices whose removal results in a 

disconnected or trivial graph. A matching M is a subset of 

edges so that every vertex has degree at most one in M. 

Several authors have studied the problem of obtaining an 

upper bound for the sum of a domination parameter and a 

graph theoretic parameter and characterized the corresponding 

extremal graphs. In [8] proved that γ(G) + κ(G) ≤ n and 

characterized the corresponding extremal graphs .  

We use the following theorems. 

Theorem 1.1: For any connected graph G,    

nGdd )( . 

Theorem 1.2: For any connected graph G,  

1)()(  GG
. 

Theorem 1.3: For any graph G, 
nGdd )(

 by [3]. 

Theorem 1.4: For any graph G, 
)()( GG  

 by [3].  

The main aim of domination in graph theory is a good model 

for many location problems in operations research and other 

application-oriented problems.  In a graph G, a vertex is to be 

dominating itself and all of its neighbors.  A dominating set of  

G = (V, E) is a subset D of V such that every vertex in V is 

dominated by some vertex in D. The domination number n(G) 

is the minimum size of a dominating set of G. Domination and 

its variations have been extensively studied in the literature 

then among the variations of domination, the n-tuple 

domination was introduced in [2, 3 and 8]. For a fixed positive 

integer n, an n-tuple dominating set of   G = (V, E) is a subset 

D of V such that every vertex in V is dominated by at least k 

vertices of D. The n-tuple domination number xn(G) is the 

minimum cardinality of an n-tuple dominating set of G. The 

special case when n = 1 is the usual domination. The case 

when n = 2 was called double domination in [2], where exact 

values of the double domination numbers for some special 

graphs are obtained. The same paper also gives various bounds 

of double and n-tuple domination number terms of other 

parameters. Nordhaus - Gaddum type inequality for double 

domination was given in [1]. 

This paper contains sharp upper bound for the sum of the 

Fuzzy Double and Triple Domination Number, chromatic 

number, connectivity of a characterized the corresponding 

extremal Fuzzy graphs. Finally, the n-tuple domination 

problems from an algorithmic point of view and in particular a 

linear-time algorithm for the 2-tuple domination problem in 

trees were studied. Note that not every graph has an n-tuple 

dominating set. In fact, a graph G has an n-tuple dominating 

set if and only if nG 1)( , where (G) is the 

minimum degree of a vertex in G. As any nontrivial tree has 

at least two leaves, only consider 2 - tuple domination for 

trees.  To establish our algorithm, we employ a labeling 

method similar to those for variations of domination in tree-

type graphs. Suppose G = (V, E) is a graph in which every 

vertex v is associated with a label, ))(),(()( vkvtvM  , 

where, },{)( RBvt  and k(v) is a nonnegative integer. The 

interpretation of the label is that we want to find a dominating 

set D containing all vertices u with t(u) = R  is called required 

vertices, such that each vertex v is dominated by at least n(v) 

vertices in D. More precisely, an M-dominating set of 

),( EVG  , is a subset D of V satisfying the following 

conditions [17]: 

Theorem 1.5:  If t (v) = R, then v ϵ D.   

Theorem 1.6: If
)(|][| vnDvNG 

, Vv , where, 

},{}{][ EuvvuvvNG  
is the closed 

neighborhood of the vertex v. 

The M-domination number M(G) is the minimum cardinality 

of an M-dominating set in G. Notice that 2-tuple domination 

is M-domination with M(v) = (B, 2) for all vertices v in V. 

Also, G has an M-dominating set, i.e.,
)(GM is finite, if and 

only if |NG[v]| > n(v) for all vertices Vv . If G contains 

exactly one vertex x, then 
0)( GM . When M(x) = (B,0), 

1)( GM ,when M(x)ϵ{(B,1); (R,0); (R,1)}, and 

)(GMM ,  otherwise. 

3. MAIN RESULTS 
Theorem 3.1: For any connected fuzzy graph G, 

nGGfdd 2)()( 
 and the equality holds if and only 

if 2KG  . 

Proof: 

nnnnGGfdd 2)1(1)()(  
. 

If 
nGGfdd 2)()(  

. Then the only possible case is       

fdd = n and χ = n. Since χ = n, G = Kn. But for Kn, fdd = 2, 

so that 2KG  . Converse is obvious. 

Theorem 3.2: For any connected fuzzy graph G,        fdd (G) 

+ χ(G) = 2n –1 if and only if 3KG  . 

Proof: Assume that fdd (G) + χ(G) = 2n – 1.  

This is possible only if fdd = n and χ = n - 1 (or)  

fdd = n – 1, χ = n. 

Case (i): Let fdd = n and χ = n – 1. 

Since χ = n – 1, G contains a clique K on n – 1 vertices. Let x 

be a vertex other than the vertices of Kn – 1. Since G is 
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connected, x is adjacent to ui for some i in Kn – 1. Then 

{x,ui,uj} is fdd– set, so that fdd = 3. Since fdd = n, we have 

n = 3. Hence K = K2. Let u, v be the vertices of K2. Let x be 

adjacent to u. Then fdd = 2, which is a contradiction. Hence, 

no fuzzy graph exists. 

Case (ii): If fdd = n – 1 and χ = n. 

Since χ = n, G = Kn. But for Kn, fdd (G) = 2, so that n = 3. 

Hence, 3KG  . Converse is obvious. 

Theorem 3.3: For any connected fuzzy graph G [6], fdd(G) + 

χ(G) = 2n–2 if and only if K4 or G1 given in Fig. 1.  

 

Fig. 1 

Proof: If G is K4 or G1, then clearly,  fdd(G) +χ(G =2n–2.  

Conversely, assume that  

fdd(G) + χ(G) = 2n – 2. 

This is possible only if fdd = n 

and χ = n – 2(or) fdd = n – 1  

and χ = n – 1 (or) fdd = n – 2                      

and χ = n.                            

Case (i): Let fdd = n and χ = n – 2.                                         

Since χ = n–2, G contains a clique K on n –2 vertices. Let 

S={x, y} ϵ V - S. Then <S> = K2 or K2. 

Subcase (a): Let <S>=K2. Since G is connected, x is adjacent 

to some ui of Kn – 2. Then {y, ui, uj} for i ≠ j in Kn – 2 is an 

fdd - set, so that fdd= 3 and hence n = 3. But χ = n – 2= 1, 

which is a contradiction. Hence no fuzzy graph exists. 

Subcase (b): Let <S> = K2. Since G is connected, x is 

adjacent to some ui of Kn – 2. Then y is adjacent to the same 

ui of Kn – 2 or adjacent to uj of Kn – 2 for i ≠j. In both the 

cases {x, y, ui, and uj} is an fdd set. Since fdd = n, we have 

n=4. Hence K=K2. Let u, v be the vertices of K2. Without 

loss of generality, let x and y both be adjacent to u. Then   

fdd = 3, which is a contradiction. Hence no fuzzy graph 

exists. Now without loss of generality, let x be adjacent to u 

and y be adjacent to v. In this case also no fuzzy graph exists. 

Similarly, we prove the following cases. 

Case (ii): Let f dd = n – 1 and χ = n – 1. 

Case (iii): Let fdd = n – 2 and χ = n. 

Theorem 3.4: For any connected graph G [6], fdd(G)+χ(G) = 

2n – 3 if and only if 4PG  or any one of the following 

fuzzy graphs in the Fig. 2. 

Proof: If G is any one of the graph given in the figure, then 

clearly fdd (G) + χ(G) = 2n – 3.  

Conversely assume that fdd(G) + χ(G) = 2n–3. This is 

possible only if  fdd = n and χ = n – 3  

(or) fdd = n – 1 and   χ = n – 2  

(or) fdd = n – 2 and χ = n – 1  

(or) fdd = n – 3 and  χ = n. 

 

                                     Fig. 2 

Similarly we prove the following cases: 

Case (i):   Let fdd = n and χ = n – 3. 

Case (ii): Let fdd = n–1 and χ = n – 2. 

Case (iii): Let fdd = n – 2 and χ = n – 1. 

Case (iv): Let fdd = n – 3 and χ = n. 

Theorem 3.5: For any connected graph G [6], fdd(G)+χ(G) = 

2n – 4 if and only if G  K6 or any one of the following 

graphs given in the Fig. 3.  

Proof: If G is any one of the graph given in the figure, then 

clearly fdd (G) + χ(G) = 2n – 4.  

Conversely, assume that fdd (G) + χ(G) = 2n – 4. This is 

possible only if, fdd = n and χ = n – 4  

(or)  fdd = n – 1 and   χ = n – 3  

(or)  fdd = n – 2 and χ = n – 2  

(or)  fdd = n – 3 and χ = n – 1  

(or)  fdd = n – 4 and χ = n. 

We can prove the similar result based on the following cases: 

Case (i): If fdd = n and χ = n – 4. 

Case (ii): Let fdd = n –1 and χ = n – 3. 

Let u1, u2, u3 be the vertices of K3. Without loss of 

generality, let u1 be adjacent to all the vertices of S and if   

d(x) = d(y) = d(z) = 1, then G  G1.  

In all other cases, no new graph exits. 

Case (iii) Let  fdd= n – 2 and χ = n – 2. 

Case (iv) Let fdd = n – 3 and χ = n –1. 

Case (v) Let fdd = n – 4 and χ = n. 

Since χ = n then G = Kn. But for Kn, fdd = 2,  

so that n = 6. Hence 6KG  . 
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                                   Fig. 3 

The authors can obtain large classes of graphs with very 

lengthy proof for which fdd (G) + χ(G) = 2n – 5,         

fdd(G) + χ(G) = 2n –6 and fdd(G) + χ(G) = 2n – 7. 

Definition 3.1: If every vertex in V is dominated by at least 

three vertices in S. Then a set S ⊆ 𝑉 is called Triple 

dominating set of a graph G. The minimum cardinality of 

Triple dominating set is called Triple domination number of G 

and is denoted by Tγ(G). The connectivity κ(G) of a 

connected graph G is the minimum number of vertices whose 

removal results in a disconnected or trivial graph. Choose 

S={v1, v2, v3} ϵ V(G).  If N[S] = V(G), a dominating set 

obtained in the way given above is called a Triple dominating 

set [7].  

Example 3.1: For the graph K3, Tγ(G) = 3, and κ(G) = 2.  

We have Tγ(G) + κ(G) = 5  

Example 3.2: For the graph K4, Tγ(G) = 3, and κ(G) = 3.  

We have Tγ(G) + κ(G) = 6  

Example 3.3. For the graph K5, Tγ(G) = 3, and κ(G) = 4.  

We have Tγ(G) + κ(G) = 7  

Example 3.4. For the graph K6, Tγ(G) = 3, and κ(G) = 5.  

We have Tγ(G) + κ(G) = 8  

Theorem 3.6: For the complete graph Kn, we have  

(i) Tγ(G) + κ(G) = 2n - 1, when n = 3  

(ii) Tγ(G) + κ(G) ≤ 2n - 1, when n = 4 

(iii) Tγ(G) + κ(G) ≤ 2n - 2, when n = 5 

(iv) Tγ(G) + κ(G) ≤ 2n - 3, when n = 6. 

Theorem 3.7: [1] For any graph Kn, we have   

γ(G)≤γN(G) ≤ Tγ(G) .Where γN(G) is the degree equitable 

domination number of G.  

Theorem 3.8: For any graph G, Tγ(G) ≤ n.  

Theorem 3.9: For any connected graph G, κ(G) = n - 1 if 

G is isomorphic to Kn.  

Theorem 3.10: For any connected graph G, Tγ(G) = 3 if 

G is isomorphic to Kn , n ≥ 3  

Theorem 3.11: For the graph Km,n where m = n. There exists 

a Triple dominating set with matching M  

Theorem 3.12: Let G1 and G2 be any two graphs of Triple 

dominating sets then G1 + G2 is a graph of Triple dominating 

set of G1 or G2.  

Proof : Let G1 and G2 be any two graphs having triple 

dominating sets .By taking sum of G1 and G2, we have every 

vertex in G1 is adjacent to every vertex in G2. Therefore by 

the definition of triple dominating set, we have By choosing S 

is the Triple dominating set of G1 or G2 and 

N[S]=V(G1+G2). Hence S is the Triple dominating set of G1 

or G2.  

Theorem 3.13: Every complete graph Kn has a Triple 

dominating set if n ≥ 3.  

Proof : Given the graph G is complete when n ≥ 3, Choose 

S={v1,v2,v3}ЄV(G), If N[S] = V(G), A dominating set 

obtained is a Tγ(G) = 3.  

Theorem 3.14: For any connected graph G, Tγ(G)+κ(G)=2n - 

1 if and only if G is isomorphic to K3. Proof: Case 1: Tγ(G) 

+ κ(G) ≤ n + δ ≤ n + n - 1= 2n - 1. Let Tγ(G) + κ(G) = 2n - 1 

then Tγ(G) = n and κ(G) = n - 1. Then G is a complete graph 

on n vertices. Since Tγ(Kn) = 3 we have n = 3. Hence G is 

isomorphic to K3. The converse is obvious.  

Case 2: Suppose Tγ(G) = n - 1 and κ(G) = n then n ≤ δ(G) is 

impossible which is a contradiction to κ(G) =  n - 1. Hence 

Tγ(G) = n - 1 and κ(G) = n is not possible.  

Theorem 3.15: For any connected graph G,            Tγ(G) + 

κ(G) = 2n - 2 if and only if G is isomorphic to K4 or C4.  

Proof: Tγ(G) + κ(G) = 2n  - 2, then there are two cases to be 

considered.  

(i) Tγ(G) = n - 1 and κ(G) = n - 1  

(ii) Tγ(G) = n and κ(G) = n – 2  

Case 1: Tγ(G) = n - 1 and κ(G) = n - 1 , Then G is a complete 

graph on n vertices, Since Tγ(G) = 3, We have n = 4 . Hence, 

G is isomorphic to K4.  

Case 2: Tγ(G) = n and κ(G) = n – 2, Then n – 2 ≤ δ(G). If      

δ = n - 1, Then G is a complete graph, which is a 

contradiction. Hence δ(G) = n – 2. Then G is isomorphic to 

Kn – M where M is a matching in Kn. Then Tγ(G) = 3 or 4, If 

Tγ(G) = 3 then n =3. Which is a contradiction to κ(G) =1≠ n-2 

and N[S] ≠ V(G), Thus Tγ(G) = 4. Then n = 4 and hence G is 

isomorphic toK4 - e or C4 with 𝑀 =1 or 2 respectively.  

Theorem 3.16: For any connected graph G, Tγ(G)+κ(G)=2n – 

3, if and only if G is isomorphic to K4 (or) K4 – e (or) K1,3 

(or) K5 – M, Where M is a matching on K5 with 𝑀 =1.  

Proof: Let Tγ(G) + κ(G) = 2n – 3, Then there are three cases 

to be considered  

(i) Tγ(G) = n - 2 and κ(G) = n – 1  

(ii) Tγ(G) = n - 1 and κ(G) = n – 2 

(iii) Tγ(G) = n      and κ(G) = n – 3. 

Case 1: Tγ(G) = n - 2 and κ(G) = n - 1, Then G is a complete 

graph on n vertices, Since Tγ(G) = 3 and 𝛿(𝐺) = n is not 

possible, We have n = 5. Hence G is isomorphic to K5.  

Case 2: Let Tγ(G) = n - 1 and κ(G) = n– 2, then   n - 2 ≤ δ(G). 

If δ = n - 1 then G is a complete graph, Which gives a 

contradiction to κ(G) = n – 2. If δ(G) = n - 2, then G is 
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isomorphic to Kn – M, where M is a matching in Kn, then 

Tγ(G) = 3 or 4. If Tγ(G) = 3 then n = 4, then G is either C4 or 

K4 –  e.  But Tγ(G) = 4 ≠ n – 1.  Hence G is isomorphic to  

K4 – e where ‘e’ is a matching in K4. If Tγ(G) = 4, then n = 5 

and hence G is isomorphic to K5 - M where M is a matching 

on K5 with 𝑀 = 1.  

Case 3:   Let  Tγ(G)  =  n and κ(G) = n – 3 then  n - 3 ≤ δ(G). 

If δ = n - 1 then G is a complete graph, which gives a 

contradiction to κ(G) = n-3. If δ(G) = n - 2, Then G is 

isomorphic to Kn – M, where M is a matching in Kn, then 

Tγ(G) = 3 or 4.  Then n = 3 or 4, Since n = 3 is impossible, 

We have n=4, Then G is either K4 – e or C4. For these two 

graphs κ(G) ≠ n - 3 which is a contradiction. Hence δ = n - 3. 

Let X be the vertex cut of G with 𝑋 = n - 3 and let V– X ={x1, 

x2, x3}, X = {v1, v2, ............, vn-3}.  

Sub Case 3.1: 𝑉 – 𝑋 = 𝐾3 Then every vertex of V - X is 

adjacent to all the vertices of X. Then {(V-X)∪{𝑣1}} – M is a 

Triple dominating set of G, where M is a matching in Kn and 

hence Tγ(G) ≤ 4, this gives n ≤ 5, since n ≤ 3 is impossible, 

we have n = 4 or 5. If n = 4 then G is isomorphic to K1, 3, 

which is a contradiction to the definition of matching. If n = 5 

then the graph G has Tγ(G) = 3 or 4,  which is a contradiction 

to κ(G) = n – 3.  

Sub case 3.2: 𝑉 − 𝑋 = 𝐾1 ∪ 𝐾2. Let x1, x2 ϵ E(G), then x3 is 

adjacent to all the vertices in X and x1, x2 are not adjacent to 

at most one vertex in X,  if  v1  ∉  N(x1)   ∪   N(x2)   then   

{(V-X) ∪ {𝑣1}} is a triple dominating set of G and hence 

Tγ(G) ≤ 4, this gives n = 4. For this graph κ(G) = 1 which is a 

contradiction to κ(G) = n - 3. So all vi ϵ N(x1) or vi ϵ N(x2) or 

both, then {( V- X) ∪{𝑣𝑖} } is a triple dominating set of G. 

Hence Tγ(G) ≤ 4, then n = 4.   Hence G is isomorphic to C4 or 

k3(1, 0’, 0). But Tγ[k3(1 ,0`, 0)] = 3 ≠ n. Which are 

contradiction then the converse is obvious. 

Theorem 3.17: For any connected graph G,            Tγ(G) + 

κ(G) = 2n – 4 if and only if G is isomorphic to K6 or K4-e or 

K1,4 or K3(1,0,0) or B(1,2) or K5 - M where M is a matching 

on K5 with 𝑀 = 1.  

Proof: Let Tγ(G) + κ(G) = 2n – 4. Here there are four cases to 

be discussed  

(i) Tγ(G) = n – 3 and κ(G) = n – 1  

(ii) Tγ(G) = n – 2 and κ(G) = n – 2  

(iii) Tγ(G) = n – 1 and κ(G) = n – 3  

(iv) Tγ(G) = n       and κ(G) = n – 4  

Case 1: Tγ(G) = n – 3 and κ(G) = n – 1, Then G is a complete 

graph on n vertices, since Tγ(G) = 3 we have n = 6 . Hence, G 

is isomorphic to K6.  

Case 2: Tγ(G) = n – 2 and κ(G) = n –  2,       then n – 2 ≤ 𝛿. If 

𝛿 = 𝑛 – 1, then G is a complete graph which is a contradiction. 

If 𝛿 = 𝑛 − 2, then G is isomorphic to Kn-M is a matching in 

Kn, then Tγ(G) = 3 or 4. If Tγ(G) = 3 then n = 5 then G is 

either C5 or K5 - e. If Tγ(G) = 4 then n = 6 and hence G is 

isomorphic to K6 - e.  

Case 3: Tγ(G) = n – 1 and κ(G)  =  n – 3, Then    n – 3 ≤ 𝛿. If 

𝛿 = 𝑛 − 1 then G is isomorphic to Kn-M where M is a 

matching in Kn. Then Tγ(G)=3 or 4, then n = 3 or 4. Since 

n=3 is impossible, we have n = 4, then G is either K4 - e or C4 

for these to graphs Tγ(G) = 2 ≠ 𝑛 − 3, Which is a 

contradiction. Hence 𝛿 = 𝑛−3.  Let X is the vertex cut of G 

with 𝑋 = 𝑛 − 3 and V – X = {x1,x2,x3}, X = {v1,v2, ,,., vn-3}  

Subcase 3.1: 𝑉 − 𝑋 = 𝐾3. Then every vertex of V - X is 

adjacent to all the vertices of  X then {(V - X) ∪ {𝑣1}} − 𝑀 is 

a Triple dominating set of G where M is a matching in Kn and 

hence Tγ(G) ≤ 4, this gives n ≤ 5, since n ≤ 3 is impossible, 

we have n = 4 or 5. If n = 4 then G is isomorphic to K1,3. This 

is a contradiction. If n = 5 then the graph G has Tγ(G) = 3 or 

4, which is a contradiction to κ(G) = n – 3.  

Subcase 3.2: 𝑉−𝑋=𝐾1∪𝐾2. Let x1x2∈𝐸(𝐺), then x3 is 

adjacent to all the vertices in X and x1, x2 are not adjacent to 

at most one vertex in X.            If v1 ∉ N(x1)    ∪    N(x2) then 

{(V-X)∪{𝑣1}} is a Triple dominating set of G and hence 

Tγ(G) ≤ 4, this gives n = 5 , for this graph κ(G) = 2, which is a 

contradiction.  So all vi 𝜖 N(x1) or vi 𝜖 N(x2) or both, then 

{(V-X)  ∪  {𝑣1}} is a Triple dominating set of G. Hence 

Tγ(G) ≤ 4 and then n = 4 or 5. If n = 4 is impossible, we have 

n = 5. Then G is isomorphic to C5 or C3 (P3, 0, 0). But 

κ[C3(P3,0,0)] = 1 ≠ n - 3. Hence G is isomorphic to C5. 

Case 4:  Tγ(G)  = n and κ(G)  =  n  – 4. Then,  n – 4 ≤ 𝛿.    If 

𝛿 = n - 1 then G is a complete graph which is a contradiction. 

If 𝛿 = n - 2 then G is isomorphic to Kn-M, where M is a 

matching in Kn. Then Tγ(G) = 3 or 4 then n = 3 or 4, which is 

a contradiction to κ(G) = n – 4. Suppose 𝛿 = n - 3. Let X be 

the vertex cut of G with 𝑋 = 𝑛 − 4 and let X = {v1,v2, . ., vn- 4}, 

V - X = {x1, x2, x3, x4}.  If 𝑉 − 𝑋 contains an isolated vertex 

then 𝛿 ≤ 𝑛 − 4, Which is a contradiction. Hence 𝑉 − 𝑋 is 

isomorphic to K2 ∪ K2. Also every vertex of V - X is 

adjacent to all the vertices of X. Let x1x2, x3x4 ∈ E(G). Then 

{x1, x2, x3, v1} is a triple dominating set of G. Then Tγ(G) ≤ 4. 

Hence n ≤ 4, Which is a contradiction to κ(G) = n – 4. Thus 

𝛿(𝐺) = n - 4.  

Subcase 4.1: 𝑉 − 𝑋 = 𝐾4. Then every vertex of V - X is 

adjacent to all the vertices in X. Suppose E(𝑋) = ∅. Then       

𝑋 ≤ 4 and hence G is isomorphic to Ks,4 where S =  1, 2, 3, 4. 

If S ≠ 1, 2 then Tγ(G) = 3 or 4, which is a contradiction to 

Tγ(G) = n. Hence G is isomorphic to K3,4 or K4,4. Suppose 

E(𝑋) = ∅. If any one of the vertex in X say vi is adjacent to all 

the vertices in X and hence Tγ(G) ≤ 3 which gives n ≤ 3, 

which is a contradiction. Hence every vertex in X is not 

adjacent to at least one vertices in X then {v1, v2, v3, v4} is a 

triple dominating set of G and hence Tγ(G) ≤ 4 then n ≤ 4. 

Which is a contradiction to κ(G) = n - 4.  

Subcase 4.2: 𝑉−𝑋 = 𝑃3 ∪ 𝐾1.  Let x1 be the isolated vertex in 

𝑉 − 𝑋 and (x1, x2, x3) be a path then x1 is adjacent to all the 

vertices in X and x2, x4 are not adjacent to at most two 

vertices in X and hence {x1. x5, x2. v1, v2. x5, v1. v2, x3. v1}, 

where v1 ∈ N(x1) ∩ X, v2 ∈ N(x2) ∩ X and  v3 ∈ N(x3) ∩ X, 

is a triple dominating set of G and hence Tγ(G)   ≤   5,    thus 

n = 5, then G is isomorphic  to  P5 or C4(1, 0, 0)  or  

K3(1,1,0) or (K4-e)(1, 0, 0, 0). All these graph Tγ(G) ≠ n. 

This is a contradiction.  

Subcase 4.3: V – X = K3 ∪ K1.  Let x1 be the isolated vertex 

in V − X and {x2, x3, x4} be a complete graph, Then x1 is 

adjacent to all the vertex in X and x2, x3, x4 are not adjacent to 

at most two vertices in X and hence {x2, x3, x4, x5, v1.x1} 

where v1, v2 ∈ X - N(x2 ∪ x3) is a Triple dominating set of G 

and hence n = 5. All these graph Tγ(G) ≠ n.   

Subcase 4.4: V – X = K2 ∪ K2. Let x1x2, x3x4 ∈ E(G). 

Since 𝛿(G) = n – 4, each xi is non-adjacent to at most one 

vertex in X then at most one vertex say v1 ∈ X, such that 

N(v1)∩(V−X) = 1. If all vi ∈ X such that N(vi) ∩ (V−X) ≥ 3, 

then {x1. v1, x2, x3, x4} is a triple dominating set of G and 

hence   n = 4. This is a contradiction. Then each xi is non-

adjacent to at most one vertex in X then at most one vertex 
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say v1 or v2 ∈  X such that N(v1) ∩ (V − X) = 2 and 

N(v2)∩(V−X) = 2 and N(vi) ∩ (V−X) ≥ 3, i ≠1 then {v1. v2, 

x1, x2, x3, x4} is a triple dominating set of G and hence n = 5. 

Which is a contradiction to (v1) ∩ (V − X) = 2 and 

N(v2)∩(V−X) = 2 and N(vi) ∩ (V − X) ≥ 3. The converse is 

obvious. 

4. DOMINATION IN TREES 
To give an algorithm for the 2-tuple domination problem in 

trees, in fact establish one for the M-domination problem in 

trees. Believe that the approach has potential for other classes 

of graphs. First give the following theorem which is the base 

of the algorithm notice that it works for general graphs. 

Theorem 4.1: [17] Suppose G = (V, E) is a nontrivial 

graph in which every vertex v has a label M(v) = (t(v), n(v)).  

Let x be a leaf adjacent to y. 

(1) If k(x) > 2 or n(y) > |NG[y]|, then G has no M- dominating 

set. 

(2) If k(x) = 2 or n(y) = |NG[y]|, then M(G) = M'(G') + 1, 

where G' is obtained from G by deleting x and M' is 

obtained from M by relabeling y  with  t'(y)  =  R  and 

n'(y) = max {n(y) –1, 0}. 

(3) If t(x)  =  R and k(x)  <  2 and k(y)  <  |NG[y]|,  then      

M (G) = M'(G’) + 1; where G' is obtained from G by 

deleting x and M' is obtained from M by re labeling y with 

k'(y) = max {n(y) – 1, 0}. 

(4) If M(x) = (B, 1) and n(y) < |NG[y]|, then  M(G) = M'(G'); 

where G' is obtained from G by deleting x and M is 

obtained from M by re labeling y with t'(y) = R. 

(5) If M(x) = (B, 0) and n(y) < |NG[y]|, then M(G) =M(G-x). 

Proof: 

(1). This follows from the definition of M-domination. 

(2). Suppose D' is a minimum M'-dominating set of G’.  

Then y ϵ D', since t'(y) = R.  Hence, D = D' U {x} is an        

M-dominating set of G, since |NG[x] D| ≥ 2 ≥ n(x).  

Thus, M'(G') + 1 = |D'| + 1 = |D| ≥ M (G). 

On the other hand, suppose D is a minimum    M- dominating 

set of G. Then x,yD, since n(x) = 2 or k(y)= |NG[y]|.  Hence, 

D' = D\{x} is an M'-dominating set of G', since y € D' and 

|NG’[y]D’| = |NG[y]  D| - 1 >  max{n(y)–1, 0} = n'(y).  

So, M (G) = |D| =|D'| + 1 ≥ M'(G’) + 1.  These complete the 

proof of M (G) = M'(G’) + 1. 

(3). Suppose D’ and M’- dominating set of G, since 

|NG[x]D| ≥ 1 > k(x).  Thus, M>(G')+1=|D'|+1 = |D| > M(G). 

On the other hand, suppose D is a minimum    M - dominating 

set of G.  Then xϵD, since t(x) = R. Hence, D' = D\{x} is an 

M' - dominating set of G,  

since |NG'[y]  D| = |NG[y]  D| - 1 > max{n(y) –1, 0}= n'(y).  

So, M (G) = |D| = |D'| + 1 ≥ M'(G') +1. These complete the 

proof of M(G) = M'(G’) +1. 

(4). Suppose D' is a minimum M'- dominating set of G. Then 

y ϵ D', since t(y) = R. Consequently, D is an M-dominating set 

of G as M(x) = (B, 1). Thus, M'(G’) = |D'| > M (G). 

On the other hand, suppose that D is a minimum M-

dominating set of G. If x  D, then y ϵ D, since n(x) = 1.   

And D is an M' - dominating set of G’. Therefore, M(G) = |D| 

> M'(G').  We may now assume that x ϵ D. Let D = D\{x}.  If 

y ϵ D’ and |NG'[y]  ∩  D'| > k(y), then D' is an M-dominating 

set of G' and so M(G) = |D| > |D'| > M > (G). So now y  D1 

or |NG'[y]  D| < k(y) |NG[y]| - 1 = |NG'[y]|.  For the case 

when y D, let z  =  y, for the case when y  ϵ  D',  choose a 

vertex   z ϵ NG – X [y] \ D'.    Then, in any case, y ϵ DU{z} and 

so D' U{z} is an M' - dominating set of G'.  

Hence, M (G) = |D| = |D’ U {z}| > M'(G’).   

These complete the proof of  M(G) = M'(G’). 

(5). Suppose D' is a minimum M-dominating set of G - x. 

Then D' is also an M-dominating set of G, since t(x) = B and 

n(x) = 0.  Therefore, M (G - x) =|D|  >  M (G). 

On the other hand, suppose that D is a minimum M-

dominating set of G. If x  D, then D is also an M-dominating 

set of G-x. Thus, M (G) = |D| > M (G-x).  We may now 

assume that x ϵ D. Let D’ = D\{x}. If | NG-x[y] D’ | > k(y), 

then D’ is an M - dominating set of G-x and  M(G) = |D| > |D'| 

> M (G - x).  So, now |NG-x[y]D’|<n(y) |NG[y]|-1=|NG-x[y]|.   

Choose a vertex Z ϵ NG-x[y]\D.   Then D' U {z} is an M-

dominating set of G-x. Hence, (G)=|D|= |D’U{z}|> M(G-x).  

These complete the proof of  M (G) = M(G - x). The 

following linear-time algorithm for the M-domination 

problem in trees can studied based on the above theorem. 

5. ALGORITHM 
The Algorithm for an M-dominating set of a tree [17]. 

INPUT:   A tree T= (V,E) in which each vertex v is labeled 

by M(v) = (t(v), n(v)). 

OUTPUT:  A minimum M-dominating set D of T. 

METHOD:  

D ← 0; 

T’ ← T; 

While (T' has at least two vertices) do 

choose a leaf x adjacent to y in T’; 

  if (k(x) > 2 or n(y) >|NT’[y]\) then 

stop since there is no M-dominating set;  

else if (n(x) = 2 or n(y) = |NT’ [y]|) then  

t(y)=R and n(y)=max{n(y)-1,0}and D←DU{x};  

else if {* now n(x) < 2 and n(y) < |NT, [y]| *}     

            (t(x) = R) then 

      k(y) = max {n(y) – 1, 0} and D ← D U {x};  

else if {* now t(x) = B, n(x) < 2, n(y)  |NT,[y] *}  

            (n(x) = 1) then  

 t(y) = R; T' ← T' - x {* delete x from T' *};  

end while; 

suppose the only vertex of T' is x; 

if (n(x) > 1) then  

STOP as there is no M-dominating set;  

else if (t(x) = R or n(x) = 1) then  

D ← D U {x}. 

6. CONCLUSION 
In this paper found an upper bound for the sum of Triple 

domination number and connectivity of graphs and 

characterized the corresponding extremal graphs. Similarly 

Triple domination number with other graph theoretical 

parameters can be considered.  And finally the N - tuple 

domination problem from an algorithmic aspect studied. In 

particular, it gives a linear-time algorithm for the 2 - tuple 

domination problem in trees. Note that not every graph has an 

N - tuple dominating set. In fact, a graph G has an N - tuple 
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dominating set if and only if (G) + 1 ≥ n, where (G) is the 

minimum degree of a vertex in G.  As any nontrivial tree has 

at least two leaves only consider 2 - tuple domination for 

trees. 
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