
International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 5, December 2014

9

A Survey of Natural Language Query Builder Interface

for Structured Databases using Dependency Parsing

Rohini B. Kokare
Computer Engineering Department,

Vishwakarma Institute of Information Technology,
Savitribai Phule Pune University,

Kirti H. Wanjale
Computer Engineering Department,

Vishwakarma Institute of Information Technology,
Savitribai Phule Pune University,

ABSTRACT
Natural language query builder interface retrieves the required

data from database when query is given in natural language.

To retrieve the correct data from database, the user should

have sufficient technical knowledge of Structured Query

Language (SQL) statements. Natural Language Query Builder

Interface (NLQBI) will solve this problem. In natural

language parsing, getting highly accurate syntactic analysis is

a crucial step. Parsing of natural languages can be seen as the

process of mapping an input string or a sentence to its

syntactic representation. One of the parsing technique is

dependency parsing. Dependency parsing focuses on relations

between words which resolve ambiguity. Most of the recent

efficient algorithms for dependency parsing work by factoring

the dependency trees. Graph based dependency parsing

models are prevalent in dependency parsing because of their

state-of-art accuracy and efficiency. This paper covers some

recent developments in NLQBI systems and survey on

dependency parsing techniques.

Keywords

Natural Language Query Builder Interface(NLQBI), Natural

Language Processing(NLP), Dependency parsing, Structured

Query Language(SQL), Projective and Non-projective

Dependency Parsing, Data-driven Dependency Parsing,

Transition-based models, Pseudo-projective parsing, Graph

based models, Higher-order factorizations, Span

1. INTRODUCTION
Since the end of 1960‘s there have been a large number of

research works regarding the theories and implementations of

NLQBI‘s. Asking question to databases in natural language is

very convenient and easy method of accessing data especially

for casually users who do not understand complex database

query language. As the usage of databases has spread widely,

the concept of user interface presented new challenges to the

designers. The main goal of this system is to provide

communication between user and computer without recalling

any sort of database DDL or DML query syntax.

A Natural language query builder can be developed using

dependency parser. Dependency Parsing presents a number of

advantages when compared to syntactic parsing. Dependency

parsing has three main advantages. The very first, dependency

links that are formed between two words are close to semantic

relationships needed for the next step of interpretation.

Second, the dependency tree contains one node which

represents one word, instead of mid-level nodes that

represents words as in constituent trees, making the task of

parsing more straightforward. Third, dependency parsing

lends itself to word-at-a-time operation, i.e., parsing can be

done by accepting and attaching words as entered by user.

That means it does not wait for complete sentence to be

loaded for parsing. The objective of this survey is to study

different NLQBI systems, dependency parsing techniques and

their limitations. Also study and compare the existing

dependency parsers for the future work system.

Rest of the paper is organized as follows: Section II provides

a detailed overview of recent developments in NLQBI. In

section III different techniques used for developing NLIQBI

are described. In section IV provides dependency parsing

(DP) overview and different techniques of DP. Finally in

section V will conclude the paper.

2. RECENT DEVELOPMENTS IN

NLQBI

2.1 NaLIX
NaLIX (Natural Language Interface to XML) is a first generic

interactive natural language interface to XML databases. In

NaLIX, a complex English language sentence, which includes

aggregation, nesting, and value joins, is translated into an

XQuery expression that can be evaluated against an XML

database. Schema-Free XQuery is used in NaLIX which is a

database query language designed mainly for retrieving

information in XML.The main advantage of using this

Schema-Free Xquery is that mapping a query into exact

database schema is not necessarily required. NaLIX uses

syntax-based approach for generating, validating and

translating the parse tree to an XQuery expression. NaLIX

provides an Interactive Query Formulation where user can

either write their own natural language queries or they can

load query template files, and choose from a variety of

preloaded sample natural language queries. NaLIX facilitates

the users to save the whole query history or the set of selected

queries in it into a new template file so that user can reuse the

queries. NaLIX provides three different query result display

views to the users: text view, grid view and tree view.

2.2 PRECISE
PRECISE uses the relational database with a SQL as the

query language. PRECISE system was evaluated on two

databases domains: GEOQUERY domain and ATIS domain.

PRECISE uses the Semantic Tractability Model. The parser

module of PRECISE is treated as a ―plug in‖ enabling us to

force the state of the art in parsing technology. The semantic

interpretation in PRECISE can be reduced to a graph

matching problem, which can solved by computing maximum

flow in the graph. Thus, it facilitates reliable and efficient

semantic interpretation. PRECISE adopts a heuristic based

approach.

2.3 ENLIGHT[13]
ENLIGHT (IntelligEnt Natural Language Interface) system is

a system whose goal is to develop an interface which retrieves

correct and exact information in the form of reply to a

nonformal query in a natural language English. This interface

was expected to be easy to use, quick and most importantly

satisfying the actual needs of the user. ENLIGHT uses a

shallow parsing approach thus facilitating the interface with

quick response time. ENLIGHT handle the linguistic

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 5, December 2014

10

phenomena like semantic symmetry and ambiguous

modification properly.

2.4 C-Phrase[9]
C-Phrase is a natural language interface system which enables

users to access the contents of PostgreSQL database. C-Phrase

is a web-based natural language front end to relational

databases. C-Phrase translates English queries to Codd‘s tuple

calculus, which is then translated to SQL and sent over the

database. C-Phrase also generates natural language

descriptions of tuple calculus, so that the queries may be

paraphrased back to the user. C-Phrase runs under LINUX

environment, connects with PostgreSQL databases via ODBC

and supports both select and update queries. C-Phrase can be

used in two primary cases: personalized and legacy. In the

personalized case, the user is able to build dynamically and

query to the personalized database by using administrative

tools. In the legacy case, C-Phrase imports the schema of an

already existing relational database over which an

administrator then authors a natural language interface. This

natural language interface is then made available to users

through a web-based query interface.

2.5 Intelligent Query Interface(IQI)
Intelligent Query Interface is used for Temporal Database

with Natural Language Processing in which Past, Present as

well as Future Data is adopted. This system also support for

validity time as the Temporal Database that holds the time

variant information. IQI for temporal data uses Probabilistic

Context Free Grammar by which it can access more than one

table as well the temporal data. The main purpose of this

system is focused for medical domain, but this is a

generalized system.

2.6 GINLINDB[11]
Generic Interactive Natural Language Interface to Databases

(GINLIDB) is designed by the use of UML and developed

using Visual Basic.NET-2005. The user interacts with

GINLIDB system in a user-friendly environment where no

knowledge of computers and database terms are required. The

interaction with this system is via suitable visual forms, and

controls like buttons, and menus. This system is generic in

nature given the appropriate database and knowledge base.

GINLIDB has additional feature of spell check, by which user

can correct the original query. User can extend the knowledge

base by adding new vocabulary to the existing knowledge

base. This system uses Augmented Transition Network

handler procedure.

2.7 HLIDB
Hindi Language Interface to databases (HLIDB) has been

developed in which user can input query in Hindi language

and can fetch the result in the same language. This system can

handle single and multiple column retrieval queries,

conditional queries and join queries. In this system, Hindi

Shallow Parser (developed by Language Technologies

Research Centre (LTRC) at IIIT, Hyderabad) has been used to

perform parsing of a sentence given in Hindi language.

2.8 PLIDB[11]
Punjabi Language Interface to databases (PLIDB) system uses

the agriculture database, having tables like Farmer, Crop, and

Sale. PLIDB accepts query in Punjabi language which is

translated into SQL query, by mapping the Punjabi language

words, with their corresponding English words with the help

of maintained database. Then, the query is executed. For

fetching the output in Punjabi language, PLIDB system uses

the Unicode driver in MS Access and stored data in Punjabi

language itself.

3. TECHNIQUES USED FOR

DEVELOPING NLQBI

3.1 Pattern-Matching
Many prototype systems relied on pattern matching where

user input is directly matched to the database. If the user input

matches one of the patterns then the system is able to build a

query for the database. In the pattern matching systems, the

database details were inter-mixed within the code which has

limitation for specific databases only and to the number and

complexity of the patterns. The pattern-matching systems are

simple as compared to other approaches. These systems are

easy to implement as no elaborate parsing and interpretation

modules are needed. Also, pattern-matching systems often

come up with some justification, when the input is not in the

range of sentences for which the patterns were designed to

handle. One of the best NLP system that use pattern-matching

approach is ELIZA. ELIZA rephrased the statements of the

users as questions and replies the answers of those questions

to the patient.

3.2 Syntax-Based Systems
In syntax-based systems, the user query is parsed and the

generated parse tree is directly mapped to an expression in

database query language. In syntax-based systems the

generated grammar defines the possible syntactic structures of

the user‘s questions. The main advantage of using syntax

based approach is that it delivers detailed information about

the sentence structure. A parse tree includes a collection of

information about the structure of a sentence; starting from a

single word and its part of speech extraction, clustering of

words to form a phrase structure, how related phrases can be

gathered together to form complex phrases. All these are

checked till the complete sentence is accessed and built.

Having this information, semantic meanings can be mapped to

certain production rules. The systems developed till now like

LUNAR, LADDER, use this semantic grammar approach.

3.3 Semantic Grammar Systems
The basic idea of a semantic grammar system is to make the

parse tree as simpler as possible. This is done by

simultaneously removing unnecessary nodes or combining

some of the nodes. Using this strategy, the semantic grammar

system can better reflect the semantic representation without

having complex parse tree structures. But semantic grammar

approach needs some prior knowledge of the elements in the

domain. Semantic grammar approach provides a special way

for assigning a name to a tree node thus resulting into less

ambiguity as compared to syntax based approach.

3.4 Intermediate Representation

Languages
Most current NLQBI systems first transform the natural

language question into an intermediate logical query which is

expressed in some internal meaning representation language.

This is done because of the difficulties of directly translating a

sentence into general database query languages using syntax

based approach. Here, a sentence is mapped into a logical

query language, and translate this logical query language into

a general database query language, such as SQL. NLQBI

system developed at the University of Essex is a good

example which uses a multi-stage transformation process. The

first logic query is in the form of λ-calculus, this is converted

to first-order predicate logic, which is again transformed to

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 5, December 2014

11

universal domain relational calculus and domain relational

calculus, then tuple relational calculus, and finally SQL. So,

in this process there can be more than one intermediate

meaning representation languages.

4. DEPENDENCY PARSING
Many existing parsers are used in commercial use but still

need some advancement and there was the need of

dependency parsers which can improve the overall system.

Dependency parsing is widely used in Natural Language

Processing. Dependency parsing is a technique where a

sentence is given in natural language as an input and produces

output in the form of dependency tree. Dependency structures

contain much of predicate argument information. Dependency

tree consists of lexical items linked by binary asymmetric

relations called dependencies which focus on relations

between words. The arcs (links) indicate certain grammatical

relation between words. Each word of the sentence has

dependency on exactly one parent. The tree starts with a root

node. Dependency also resolves ambiguity. A dependency

analysis of simple sentence is given below.

Fig.1. Dependency Parsing

4.1 Projective and Non-projective

Dependency Parsing
Projective dependency parsing means dependency tree having

no crossing edges. Non-Projective dependency parsing means

dependency tree with crossing edges.

Fig.2. Projective Dependency Graph

Fig.3. Non-Projective Dependency Graph

4.1.1 Projective Dependency Parsing
Eisner had developed a bottom-up dependency parsing

algorithm for Projective Dependency Parsing. Adding one

link at a time makes it easy to multiply the model‘s

probability factors. Runtime complexity of this algorithm is

O(n2). Instead of storing subtrees, spans are stored. Span is a

substring where no internal word links to any word outside of

the span. Non-constituent spans will be concatenated into

larger spans. In a span, only the end words are active

(meaning they still need a parent).

4.1.2 Non-Projective Dependency Parsing

4.1.2.1 Maximum Spanning tree:
The algorithm finds MST in directed graph which means

finding dependency tree with highest score. The scores are

independent of other dependencies. Score of dependency is

the sum of scores of dependencies in the tree. Runtime

complexity of this MST algorithm is O(n2).

4.1.2.2 Chu-Liu-Edmonds Algorithm
The main goal of Chu-Liu-Edmonds Algorithm [24] is to find

the highest scoring tree for the input sentence. For each word

in the graph, the incoming edge is found with the highest

weight. After this check if the result obtained is a tree. If it is a

tree then it‘s a MST else it is a cycle.

4.2 Data Driven Dependency Parsing
In Natural Language Processing a common set of

characteristics can be generally assumed about the used

grammars: the lexical items that define the nodes are the word

forms; the parsing is concerned with only one layer (mono-

stratal) of relations and the syntax of dependencies is assumed

to be sufficient. Carrol and Charniak [22] propose the first

dependency parsers to use data in their models, but their

parser is, actually, grammar-driven. Their model is based on a

formal dependency grammar and uses the corpus data only to

solve disambiguations left by the grammar based model. In

other words, this parsing consists in the derivation of all

analysis that are permissible according to the grammar and the

selection of the most probable analysis according to the

generative model. Other parsers improve Carroll and

Charniak‘s results while still being based on a formal

dependency grammar in combination with a generative

probabilistic model, such as the work of Eisner and

Collins[21]. Samuelsson‘s probabilistic model goes on by

allowing non-projective dependency graphs and producing

labeled dependencies [19]. However, only recently, models

that are not based on a formal grammar and are generated

purely based on corpus data have been proposed.

4.3 Transition Based Models
In Transition-based models (or Deterministic Discriminative

parsing) a deterministic parser is used to construct

dependency structures by having the next action of the parser

predicted by a classifier trained in the available data. In this

case, no formal grammar is used when inducing the parser

model. In Support Vector Machines classifiers predict the next

action of a parser in order to build an unlabeled dependency

structure [18]. In these systems the parsing is done according

to a shift-reduce parsing technique. In this parsing, the parser

is considered to be initially located at the beginning of the

sentence and during each step, it selects actions from three

different actions. Let the target words be wi –1 the word

before the parser – and wi+1 – the word after the parser, the

three different parser actions are mentioned as follows:

1. Shift: The parser simply moves one word along the

sentence, adding no dependency relation. The target words

change from wi and wi+1 to wi+1 and wi+2.

2. Right: Builds a dependency relation between words wi and

wi+1 with the right word wi+1 as head of the left word wi;

reduces the target words into wi+1 , making wi−1 and wi+1

the new target words.

3. Left: Builds a dependency relation between words wi and

wi+1 with the left word wi as head of the right word wi+1 ;

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 5, December 2014

12

reduces the target words into wi, making wi−1 and wi the new

target words.

The processing of a sentence consists in passing it from left to

right until no more dependency relations can be added. Since

each passing may use up to n steps and up to n−1 passes may

be required, the worst time complexity is O(n2). Additionally,

the framework of inductive parsing proposed by Nivre et

al.[19] enhances this approach with three main differences.

First, this frame- work builds labeled dependency graphs, i.e.,

the dependency arcs have types according to what kind of

dependency relation they represent. It also constructs the

complete dependency graph in only a single pass over the

data. Finally, instead of using Support Vector Machines,

Nivre et al. [17] uses Memory-Based Learning in its

classifiers.

4.4 Pseudo Projective Parsing
One of the major drawbacks in transition-based models is its

inability of dealing with non-projective arcs. Only arcs

between neighboring words or reduced words can be created

when structure of parser is given thus limiting it to arcs under

a transitive closure arcs or projective arcs. Nevertheless, a

pseudo- projective approach can be applied to overcome this

limitation. In pseudo-projective parsing, a preprocess step

turns every non-projective arcs into projective ones. Also

while doing this, the information regarding the non-

projectivity is added in the label of the arc, generating a new

label. This new label allows the new projective arc to be

turned back to the original non-projective arc. When the

parsing classifier learns to correctly label the arcs, it will also

learn to predict the new pseudo-projective labels. Therefore,

after a pseudo-projective parser is applied, a post processing

step that is applied changes the pseudo-projective arcs back

into their corresponding non-projective arcs. This pseudo-

projective approach significantly improves overall parsing

accuracy for non-projective corpus, obtaining the best

reported performance for robust non-projective parsing of

Czech [25].

4.5 Graph Based Models
Another type of models that do not use a formal grammar as

basis in their parsing are graph-based models. While

transition-based models try to locally find the best dependency

relations, the graph-based models learn a model of the

globally best dependency graph given an input sentence.

Generally, graph-based models define a scoring or probability

function over a set of all possible parsers. During the learning

stage, the set of parameters of this function is estimated.

Further, during the parsing stage, the graph that maximizes

the score given by this function is built, which constructs the

dependency graph. Most systems that use graph-based models

differ mainly in the type and structure of the scoring function,

the method to estimate the function‘s parameters and the

search algorithm that infers the best parse given a score.

Recent advances in dependency parsing have shown that

employing higher-order subtree structures in graph-based

parsers can substantially improve the parsing accuracy. This

work explores a new reranking approach for dependency

parsing that can utilize complex subtree representations by

applying efficient sub-tree selection methods[1]. The task of

reranking is similar to that of parsing, except that the search of

the parse tree is performed on a K-best list with selected parse

candidates, instead of searching in entire search space and

accordingly subtree is extracted.

An effective POS (Part-Of-Speech) tag pruning strategy

which can greatly improve the decoding efficiency is a related

work with graph-based DP for Chinese language. Several

joint models and their corresponding decoding algorithms

which can incorporate different feature sets are proposed in

this paper. The experimental results show that joint models

can significantly improve the state-of-the-art POS tagging

parsing accuracies [3].

4.5.1 Graph Based Algorithms

4.5.1.1 First Order Factored Parsing

Algorithm[8]
A ―first-order‖ factorization is a technique, which decomposes

a dependency tree into its individual dependencies. Eisner

[20] introduced a widely-used dynamic programming

algorithm for first-order parsing which laid the foundation for

higher order factorization in the field of graph-based

dependency parsing. The algorithm has two main components

the complete span and the incomplete span. An incomplete

span is constructed from a pair of complete spans, and a

complete span is created by aggregating the incomplete span

with the other half of the constituent. Hence it is a recursive

process. A complete span is a ‗half-constituent‘ of a

dependency tree part. This half-constituent is headed by a

head h and is modified by a modifier m. Similarly, an

incomplete span can be thought of as a ‗partial half-

constituent‘, because, modifiers are added so that it can be

extended to m. This can be given in figure 4

Fig. 4. First Order Parsing

4.5.1.2 Second Order Factored Parsing

Algorithm[8]
In a second order factored algorithm a part contains two

dependencies. This can be done in the following ways:

A. Sibling Factorization: This was introduced by McDonald et

al. [14] where the dynamic programming structures were

modified to explore the possibility of extending the parts to

include the sibling information i.e. it decomposes the

dependency tree into sibling parts. That is two words with a

shared head word. Here, a sibling information is a triplet <

h,m,s >. Extending from the previous algorithm, (h,m) and

(h,s) are dependencies and s and m are successive modifiers to

the same side of h. In this case, the dynamic programming

structure has been augmented to include an extra structure

called sibling spans. The region between successive modifiers

and of a head is represented by the sibling spans. The parser

combines incomplete span that represents the innermost

dependency with a sibling span. Even in this case, each

derivation is still defined by a span and split point only. This

is given in figure 5.

B. Grandchild Factorization: In this algorithm, the

information of a grandchild is a triplet < h,m,c >. Extending

from the same first order factorization, (h,m) and (m,c) are

now the dependencies here. Again, for this case, the dynamic

programming structure is modified to include the identity of

the outermost modifier of the head of the complete span. The

grandchild relation changes the parsing algorithm in terms of

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 5, December 2014

13

the computational complexity. That is the complexity

increases from O(n3) to O(n4).

Fig 5. Second Order Algorithm

4.5.1.3 Third Order Factored Parsing

Algorithm[2][8]
Third order parsing algorithms was introduced by Koo &

Collins [8] which basically extends the above approaches.

This is mostly by augmenting the grand-parent index. The

efficiency of the third order algorithms is due to a

fundamental asymmetry in the structure of a directed tree. The

parsing algorithm is divided into three different models.

Model 0: All grandchildren: Here, a grandchild is a part that

contains the information of the triplet < g,h,m >, where (g,h)

and (h,m) are dependencies. This is showm in figure 6. For

this both complete and incomplete spans are augmented with

g-spans. Hence, in other words, it basically represents the

same first-order algorithm, but now it includes the indices of

the grandparent. Here, each derivation copies the grandparent

index g into smaller g-spans. This actually causes each g-

span to have non-contiguous structure. This is basically an

extension of the second order grand-child factorization.

Fig. 6. Third Order Model 0

Model 1: All grand-siblings: In this case, decomposition of

each tree into a set of grand-sibling parts is done which

consist of the sibling parts and the grandchild parts. i.e., a

grand-sibling is a quadruple < g,h,m,s > where (h,m,s) is

basically the sibling part from above and (g,h,m) is the

grandchild parts. It‘s almost like a hybrid of the

aforementioned approaches. This is explained in figure 7.

Fig. 7. Third Order Model 1

Model 2: Grand-siblings and tri-siblings: In this model, the g-

span-based techniques is combined with a third-order sibling

parser, resulting in a parser that captures both grand-sibling

parts and tri-sibling parts—4-tuples of indices (h,m,s,t) such

that both (h,m,s) and (h,s,t) are sibling parts. This is explained

in figure 8. To parse this factorization, a new type of

dynamic-programming structure is introduced: sibling-

augmented spans, or s-spans. Here an incomplete s-span is

denoted as Ih,m,s where Ih,m is a normal incomplete span and s

is an index lying in the strict interior of the range [h,m], such

that (h,m,s) forms a valid sibling part. Unlike Model 1, Model

2 produces grand-sibling parts only for the outermost pair of

grandchildren.

Fig. 8. Third Order Model 2

5. EXISTING PARSERS
There are some existing parsers available which are developed

by using different dependency parsing techniques. These are

mentioned in table 1 with their techniques used and their

limitations.

Table 1 Comparison of existing dependency parsers

Parser Methodology Limitations

MaltParser Data-driven transition

based deterministic

parser, grade of

incrementality

No automatic

feature engineering

so big impact on

quality of results

MSTParser Graph-based parser, it

is non-deterministic

and non-incremental

by nature

Very complex

machine learning

approach, lot of

time and resources

to train the model

required

Standford

Parser

Phrase structure

grammar parser, works

with plain text

Compact due to

two stages so long

parsing time

Minipar Rule-based

dependency parser for

English, neither

deterministic nor

incremental

Performs worse as

far as quality of

results are

concerned

MDParser Transition-based

system, which has all

the application-

oriented properties

Relies on machine

learning,

projectivity is not

considered

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 5, December 2014

14

6. CONCLUSION
Recently there are many developments in the field of

NLQBI‘s in the last few decades. Some NLQBI systems

which are discussed in this survey have been developed for

the commercial use but still need some advancement. Hence

there was need of different parsing techniques like

dependency parsing which improves the overall system.

NLQBI systems are more efficient, simple, precise and user

friendly. Different dependency parsing algorithms are

discussed with limitations of one overcome in the next

algorithm. One of the advantage of dependency parsing is that

it resolves ambiguity. There are many natural language query

builder interfaces that are developed but there are no query

builders that are developed using dependency parsing

approach. There are many parsers that are developed using

dependency parsing techniques but have some performance

issues which will be solved in future research. At the last, the

purpose of this research is to study the techniques and

limitations of existing systems and overcome the problems in

the future work.

 Future work is to develop a natural language query builder

interface for structured databases using dependency parsing

approach. To build an algorithm which will improve the

overall system in terms of feature models(like word forms,

POS i.e part-of-speech, dependency type)

7. REFERENCES
[1] Mo Shen, Daisuke Kawahara, and Sadao Kurohashi,

―Dependency Parse Reranking with Rich Subtree

Features‖ IEEE transactions on audio, speech, and

language processing, vol.22, no.7, July 2014

[2] Emily Pitler, ―A Crossing-Sensitive Third-Order

Factorization for Dependency Parsing‖, Transactions of

the Association of Computational Linguistics -- Volume

2, Issue 1, 2014

[3] Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, and

Wenliang Chen, ―Joint Optimization for Chinese POS

Tagging and Dependency Parsing‖ IEEE transactions on

audio, speech, and language processing, vol.22, no.1, Jan

2014

[4] Preeti Verma, Kulwant Kaur, ―Recent Developments in

Natural Language Interface to Database Systems‖,

International Journal of Innovation and Research in

Computer Science, 2014

[5] Martins, M. Almeida, and N. A. Smith, ―Turning on the

turbo: Fast third-order non-projective turbo parsers‖ In

Proceedings of ACL (Short Papers), pages 617–622,

2013

[6] Bohnet and J. Kuhn, ―The best of both worlds – a graph-

based completion model for transition-based parsers.‖ In

Proceedings of EACL, pages 77–87. 2012

[7] Himani Jain, Parteek Bhatia ―Hindi Punjabi Language

Interface to databases‖,Journal of Global Research in

Computer Science, Volume 2, No. 4, Part 1 (1995), 29–

81, April 2011

[8] T. Koo and M. Collins, ―Efficient third-order

dependency parsers‖, in Proc. ACL ‘10, pp. 1–11, 2010

[9] C-Phrase System Guide (version 1.0 beta)Michael

Minock Copyright 2010

http://www.cs.umu.se/~mjm/guide.pdf

[10] Amandeep kaur ―Punjabi Language Interface to

databases‖, ME Thesis,Thapar University, june 2010

[11] Faraj A. El- Mouadib,Zakaria Suliman Zubi,Ahmed A.

Almagrous, I. El- Feghi, ―Interactive Natural Language

Interface (GINLIDB)‖, ISSN: 1109-2750 664 Issue 4,

Volume 8, April 2009

[12] Yunyao Li, Huahai Yang, and H. V. Jagadish,

―NALIX:an Interactive Natural Language Interface for

Querying XML‖, 2006

[13] Manish R. Joshi, ―The ENLIGHT SystemIntelligEnt

Natural Language Interface‖, Department of Computer

Science, North Maharashtra University, Jalgaon 2006

[14] Ryan McDonald, ―Discriminative Training and Spanning

Tree Algorithms for Dependency Parsing‖, Ph.D. thesis,

University of Pennsylvania, Philadelphia, PA, USA, July

2006

[15] Ryan McDonald, Fernando Pereira ,―Non-projective

Dependency Parsing using Spanning Tree Algorithms‖

2005

[16] J. Nivre and J. Nilsson, ―Pseudo-projective dependency

parsing‖, In Proc. ACL, 2005

[17] Nivre, J., Hall, J. and Nilsson, J, ―Memory-Based

Dependency Parsing‖, In Ng, H. T. and Riloff, E. (eds.)

Proceedings of the Eighth Conference on Computational

Natural Language Learning (CoNLL), pp. 49-56, 2004

[18] J. Nivre, ―An efficient algorithm for projective

dependency parsing‖, In Proc. of IWPT-2003, pages

149–160, 2003

[19] Christer Samuelsson, ―A theory of stochastic grammars‖,

In Proceedings of NLP-2000, pages 92{ 105. Springer

Verlag, 2000

[20] Eisner J, ―Bilexical grammars and their cubic-time

parsing algorithms‖, In Bunt, H. C. and A. Nijholt,

editors, New Developments in Natural Language

Parsing, pages 29–62. Kluwer Academic Publishers,

2000

[21] Jason M. Eisner,‖Three New Probabilistic Models for

Dependency Parsing: An Exploration‖, CIS Department,

University of Pennsylvania 200 S. 33rd St., Philadelphia,

PA 19104-6389, USA, 1996

[22] Glenn Carroll and Eugene Charniak, "Two Experiments

on learning probabilistic dependency grammers from

corpora", Technical Report, TR-92, Department of

Computer Science, Brown University, 1992

[23] J. Edmonds, ―Optimum branchings‖, Journal of research

of National Bureau of standards, 71B:233-240, 1967

[24] Y. J. Chu and T. J. Liu, ―On the shortest arborescence of

a directed graph Science‖ Sinica, 14:1396–1400, 1965

[25] Kubon, V, ―A Robust Parser for Czech‖, Dissertation at

MFF UK, Praha, manuscript.

[26]

IJCATM : www.ijcaonline.org

