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ABSTRACT 

The development in the field of quantum computing gives us 

a significant edge over classical computing in terms of time 

and efficiency. This is particularly useful for NP-hard 

problems such as graph layout problems. Since many real 

world problems are effectively solved by genetic algorithm 

(GA) and the performance of GA highly depends upon the 

setting of its parameters, therefore this paper focuses on a 

Quantum Inspired Genetic Algorithm (QIGA) and develops 

and evaluates adaptive strategies for the same. QIGA adapts 

ideas of Q-bits, superposition of Q-bits from quantum 

computing. The effectiveness and the applicability of adaptive 

QIGA is demonstrated by experimental results on the 

benchmark Knapsack, Maxcut and Onemax combinatorial 

optimization problems. The results show that adaptive QIGA 

is superior to QIGAs. 

Keywords 
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1. INTRODUCTION 
To  find the solution of combinatorial optimization problems 

randomness in the search gives high probability to search a 

good solution. Stochastic optimization is the general class of 

algorithms which employ some degree of randomness to find 

optimal (or near optimal) solutions to hard problems. The 

primary subfield of the stochastic search is Meta-heuristics 

[1]. Meta-heuristics approaches can be broadly categorized 

into two major classes: single solution search algorithms and 

population based search algorithms (e.g. evolutionary 

algorithm, swarm optimization techniques, ant colony 

optimization etc.). In Meta-heuristics, population based search 

methods (e.g. genetic algorithms, evolutionary strategies etc.) 

are very efficient as they keep around a sample of candidate 

solutions rather than a single candidate solution and find the 

optimal solution in less time [1]. This paper focuses on 

Quantum Inspired Genetic Algorithm. QIGA is a probabilistic 

population based algorithm as it works on the principles of 

quantum computing. It includes additional degree of 

randomness which helps in preserve diversity in the 

algorithm. 

The efficiency of the algorithm highly depends upon its 

parameter setting. If the  parameters are set to their optimal 

values, then algorithm may converge to the optimal solutions 

quickly. The setting of parameters is extremely hard   task   as 

they are problem specific and interdependent [2-6]. Thus, for 

a long time scientists and researchers are concentrating on 

finding techniques for effective use and change of parameters 

involved in the search methods to improve their performance 

[7-11]. 

In this paper, an adaptation technique is devised to update the 

parameters of Quantum Inspired Genetic algorithm (QIGA) 

that aims at biasing the distribution towards appropriate 

regions of the search space while maintaining sufficient 

diversity among individuals in order to widen the search 

space. 

2. QUANTUM INSPIRED GENETIC 

ALGORITHM (QIGA) 
In QIGA some of the features of quantum computing are 

implemented with the concepts of genetic algorithm [12-13]. 

Here QIGA, the representation of the population individual is 

inspired by the concept of Q-bit in quantum computing. 

Before start discussing about Q-bit individuals, the concept of 

Q-bits is first introduced in Quantum Computing by us. Q-bit 

is the basic building block of quantum computing [14]. Q-bit 

can be represented in a two dimensional state space. The basis 

states of this space are generally taken as orthonormal states 

[15]. QIGA uses a new representation for the probabilistic 

representation of an individual that is based on the concept of 

Q-bits. A Q-bit individual is a string of m Q-bits, which is 

defined below. 
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Here αi and βi are the probability of getting 0 and 1 

respectively at position i. Also |αi|2+ |βi|2=1, for i=1,2,...m. 

A population of n Q-bit individuals, Q(t)={qt1,qt2,…,qtn}, at 

generation t, with a Q-bit individual qtj is defined as [12] 

𝐪𝐣
𝐭 =  

𝛂𝐣𝟏
𝐭

𝛃𝐣𝟏
𝐭  

𝛂𝐣𝟐
𝐭

𝛃𝐣𝟐
𝐭  

𝛂𝐣𝟑
𝐭

𝛃𝐣𝟑
𝐭  

⋯
⋯ 

𝛂𝐣𝐦
𝐭

𝛃𝐣𝐦
𝐭  , j=1,2,…m. 

where m is the number of Q-bits, i.e., the string length of the 

Q-bit individual. 

3. TAXONOMY OF ADAPTATION 
In many cases, the QIGA algorithm did not include any 

controlling parameters that can be changed during the 

execution of the algorithm, rather they were considered as 

external fixed parameters manually tuned. But, it was realized 

that for the optimal convergence these parameter values must 

be changed during the evolution process. An intelligent step in 

the development of EAs is to include parameter control to the 

evolving algorithm that updates the parameters of the 

algorithm during run [16]. These parameter controls can be 

categorized as shown in figure 1 [17]: 
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Fig.1 Parameter Setting in GA [17] 

4. METHODOLOGY 
Present section presents components of QIGA, and proposed 

adaptive QIGA. 

4.1 Representation of Individual 
There are two types of individuals (chromosomes) that are 

used in the proposed QIGA [4]: 

1. Probabilistic Quantum chromosome 

2. Binary solution chromosome  

A quantum chromosome is one dimensional array containing 

real numbers. This chromosome is divided in two halves. First 

half contains the amplitude, square of which gives the 

probability of getting one at the corresponding index position. 

The other half contains the standard deviations for adapting 

the mutation step size based on normal distribution 

corresponding to index positions of first half. Thus the 

quantum chromosome is double in size of the solution 

chromosome of the problem. 

Binary solution chromosome or simply solution chromosome 

of the problem is a one dimensional array that contains 0 or 1 

in it according to the probability of one in the quantum 

chromosome at the corresponding index position. 1 or 0 

represents inclusion or exclusion respectively of the index in 

the solution (whatever the index position represents). An 

example of solution chromosome is presented in figure 5 in 

which item number 2, 3 and 29 are included among 30 items.  

4.2 Operators used in QIGA 
The components that are used in adaptive QIGA are as 

follows: 

1)   Fitness function:             To evaluate the fitness of the 

given solution chromosome there is a fitness function that is 

used and it is problem dependent [13] (generally taken as 

objective function of the problem).  

2) Selection procedure: Recombination and mutation is 

applied on some selective quantum individuals of the 

population. For the selection of these individuals there are 

many procedures [13]. In the present paper group selection is 

used that is described by the following example. Let the 

population be divided into three equal groups according to the 

fitness of the individuals (i.e. best, medium and least fit).  Let 

us select 50% from best fit individuals, 30% from medium fit 

individuals and 20% from least fit individuals to accomplish 

selection [13]. 

 

 

3) Recombination: There are two recombination (crossover) 

operators used for quantum individuals in this work [13].     

  a). Multi point crossover,   

       b). Uniform crossover 

4) Mutation:  The mutation strategy described here is 

inspired by [7]. To mutate a quantum individual a random 

number is 

drawn from normal distribution with mean 0 and standard 

deviation σ and then this random number is added or 

subtracted to the values at all positions of first half of the 

quantum individual Q according to the success of the solution 

chromosome as follows: 

qi‟= qi ± σi‟* N(0,1), i=1,2,3…m 

where qi‟ is the new value of quantum individual at position i, 

qi is the old value of quantum chromosome at position i, σi‟ is 

the standard deviation used for quantum chromosome value at 

index i, m is the length of solution chromosome and N(0,1) 

gives the random number from the normal distribution with 

mean 0 and standard deviation1 (similarly N(0,σ) gives 

normal distribution with mean 0 an standard deviation 1 by 

multiplying it with σ).  

In this procedure standard deviations σi also mutate itself as 

follows: 

σi‟ = c*σi 

Where c = (1-qi) or qi and σi is the previous value of standard 

deviation. Here overall mutation scale is governed by the 

value of σ, which is why it is commonly referred to as step 

size. 

Index1      Index 2      Index 3    …  Index 28    Index29    Index 30 

Fig. 2. Solution Chromosome 

4.3 Proposed Adaptations on QIGA 
The motivation of adaptation in various parameters is that to 

obtain best overall performance of QIGA on complex 

problems [18]. With the probabilistic representation of 

quantum individuals as described previously, adaptations 

applied to the parameters of QIGA are described below. 

Crossover adaptation: The adaptive crossover operator used 

here is the “selective crossover” that uses a number of 

crossovers and among them only one at a time is selected for 

pair of individuals. For the application of this adaptive 

crossover an extra crossover bit (crbit) is used in each 

population individuals. The value of this bit is decided 

according to the progress in the algorithm due to given 

crossover and this crbit then decides which crossover would 

be used in the next iteration [19]. Pseudo code for the 

“selective crossover” is given below. 
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Choose i and j as parents 

crossover begin 

if(crbit(i)==crbit(j)==1) 

 use two point crossover to produce child 

 if(success) 

  crbit(child)=crbit(i) 

 end 

end 

if(crbit(i)==crbit(j)==0) 

 use uniform crossover to produce child 

 if(success) 

  crbit(child)=crbit(i) 

 end 

end 

if(crbit(i)~=crbit(j)) 

 if(rand(0,2)<1) 

  use two point crossover to  produce child. 

 else 

  use uniform crossover to produce child 

 end 

 If(success) 

  crbit(child)=choose between crbit(i) and crbit(j) 

 end 

end 

Crossover rate adaptation:  The probability of crossover Pc 

is adapted according to the fitness values of the individuals. 

The adaptation of pc allows the individuals having fitness 

values i.e.over- average to maintain their genetic material, 

while forcing the individuals with sub- average fitness values 

to disrupt [11].  

If (fcmax>=favg) Pc=(fmax-fcmax)/(fmax-favg) 

else  Pc=1  

end 

Here fmax is the maximum fitness among the individuals 

fitness values, favg is the average of all the fitness values and 

fcmax is the maximum fitness value among the fitness values 

of the individuals undergo crossover. 

Mutation step adaptation: In this work a novel adaptation 

for adapting the step size of mutation operator describes                             

previously is used. The standard deviations (step size) σi is 

mutated (or self adapted) itself as follows: 

(Child is the quantum individual obtained with success as a 

result of crossover and mutation.) 

 

 

Take corresponding solution individual  

If (ith  bit of the solution is 1)   

 c= (1-qi) 

else 

 c= qi 

end 

σi‟= c* σi 

4.4 Proposed Algorithm 
With the previously described components of GA, 

representation of individuals in QIGA and adaptation on 

QIGA, the proposed adaptive QIGA is presented in figure 3.  

Table 1 describes variants of QIGAs and adaptive QIGAs for 

which experiments are conducted in this paper. Table 2 shows 

parameter used for the conventional QIGA and adaptive 

QIGA.                                 

 

Fig. 3. Proposed Adaptive QIGA 

5. RESULTS AND DISCUSSIONS 
In this section the performance of QIGA shown in figure 4 

and adaptive QIGA techniques are compared for different 

combinatorial optimization problems, namely, Knapsack, 

Maxcut and Onemax problems. Table 1 presents the different 

types of QIGA used in this work. 

While executing the algorithms the best fitness/ profit 

achieved is plotted against the iteration number. To compare 

the convergence of the described algorithms in Table 1, each 

algorithm is executed 30 times. Then best graph among these 

30 runs is taken out for each and compared with all other 

algorithms. 

To study the time efficiency of these algorithms, they are 

executed with different population sizes and the time elapsed 

for each algorithm with different population sizes is recorded. 

These time graphs are then compared with each other. 

 

Pseudo code of adaptive QIGA 

begin 

t    0 

Initialize Q(t) 

while(not termination-condition) do 

begin 

t t + 1 

Make P(t) by observing the states of 

Q(t-1). 

Apply adaptive crossover and adaptive mutation 

on Q(t-1) to  give Q(t).  

Repair P(t) (if required). 

Evaluate P(t). 

Self adapt crossover rate and mutation step size 

for Q(t). 

       Store the best solutions among P(t) into B(t). 

end 

Find the global best solution 

end 
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5.1 Knapsack Problem 
First benchmark problem taken in this work is Knapsack 

problem. In knapsack problem, there are „n‟ items, each of 

which is associated with weight and profit pair. Then select or 

reject each item in order to maximize total profit while total 

weight should not exceed by a certain bound. 

Mathematical formulation of this problem is shown below 

[20-21]. 

  Max  𝐩𝐢
𝐧
𝐢=𝟏 𝐱𝐢 

  Such that  𝐰𝐢
𝐧
𝐢=𝟏 𝐱𝐢 ≤ 𝐜 

  xiЄ{0,1} 

pi>=0 and wi>=0 i=1,2...,n 

Where pi is the profit on ith item and wi is the weight of ith 

item. 

 

(a) Number of items are 24 

 

(b) Number of Items are 100 

 

(c) Number of Items are 250 

 

(d) Number of Items are 500  

Fig. 5. Comparisons of Various QIGAs and Adaptive 

QIGAs on Best Profit vs. Number of Iterations Graphs for 

Knapsack Problem with Parameter Setting shown in 

Table 2. 

Experiments were conducted for the following problem 

instances: 24, 100, 250 and 500. Figure 5 and 6 shows the 

performance of the algorithms on knapsack problem. Figure 5 

plots best profit vs. number of iterations and figure 6 plots the 

average profit vs. number of iterations for variants of QIGA 

and adaptive QIGA. In both figure 5 and figure 6, part (a) is 

for item size 24, (b) for 100, (c) for 250 and (d) for 500. 

In general, figure 5 shows that the adaptive QIGAs with all 

adaptation gives better results than the conventional QIGAs in 

terms of convergence to optimal values. According to figure 5 

(a) all the algorithms converges to the optimum value for a 

small sized problem, while figure 5 (b), (c), (d) show that 

adaptive QIGA converges to higher values than the 

conventional QIGAs. However, even though aQIGA gives 

good results than conventional QIGA converges prematurely 

to some local optima and is not able to escape from that 

optima. But, this is not the case with mtpQIGA and 

mucQIGA. They converge monotonically to the optimum 
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Table 1 

Variants of QIGA and Adaptive QIGA 

QIGA Description 

aQIGA All adaptations on QIGA described in previous 

section  

mtpQIGA Mutation step adaptation on QIGA with two point 

crossover 

mucQIGA Mutation step adaptation on QIGA with uniform 

crossover 

tpQIGA QIGA with two point crossover 

ucQIGA QIGA with uniform crossover 

mtpQIGA Mutation step adaptation on QIGA with two point 

crossover 

 

 

Table 2 

Parameters for QIGA and Adaptive QIGA 

Parameter Value 

Maximum iterations 1000 

Population size 50 

Initial crossover rate 0.5 

Mutation rate(conventional QIGA) 0.1 

1st crossover point n/3 

2nd crossover point 2*n/3 

Initial standard deviation (adaptive QIGA) All 1 
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values. These figures also show that uniform crossover works 

well with conventional QIGA and using two point crossover 

with mutation step adaptation on QIGA gives the best results 

for knapsack problem among all kinds of QIGAs. 

 

(a)  Number of Items are 24 

 

(b) Number of Items are 100 

 

(c) Number of Items are 250 

 

(d) Number of Items are 500 

Fig. 6. Comparisons of Various QIGAs and Adaptive 

QIGAs on Average Profit vs. Number of Iterations 

Graphs for Knapsack Problem with Parameter Setting 

shown in Table 2. 

5.2 Maxcut Problem 
Second benchmark problem used here is Maxcut problem. 

Maxcut problem is graph based problem, in which there is a 

weighted graph and find two disjoint subsets of that graph  (or 

partition of the graph) in such a way that the sum of  the 

weights wij on the edges going from one subset to another is 

maximized. In this work, the representation of the solution for 

this problem is taken as the binary string (x1, x2,…,xn) where 

each digit corresponds to a vertex. If a digit is 1 then hat 

vertex is said to be included in subset 1, otherwise it is said to 

be included in subset 2 [22]. Mathematical formulation of this 

problem is shown below. 

 Max   𝐰𝐢𝐣. [𝐧
𝐣=𝐢+𝟏 𝐱𝐢(𝟏 −𝐧−𝟏

𝐢=𝟏 𝐱𝐣) + 𝐱𝐣(𝟏 − 𝐱𝐢)] 

 Such that xi, xjЄ{0,1} 

Experiments were conducted for the following problem 

instances: nodes 80 and edges 3128, nodes 125 edges 375, 

nodes 216 edges 648. Figure 7 and 8 shows the performance 

of the algorithms on Maxcut problem. Figure 7 plots best 

fitness vs. number of iterations and figure 8 plots the average 

fitnesst vs. number of iterations for variants of QIGA and 

adaptive QIGA shown in Table 1 on Maxcut problem. In both 

figure 7 and figure 8, part (a) is for nodes 80 and edges 3128, 

(b) for nodes 125 edges 375, (c) for nodes 216 edges 648. 

In general, figure 7 shows that the adaptive QIGAs with all 

adaptation gives better results than the conventional QIGAs in 

terms of convergence to optimal values. According to figure 

7(a) except mtpQIGA and mucQIGA all the algorithms 

converges to the same local optima for a small sized problem, 

while figure 7 (b), (c) show that adaptive QIGA converges to 

higher values than the conventional QIGAs. However, even 

though aQIGA gives good results than conventional QIGA 

converges prematurely to some local optima and is not able to 

escape from that optima. But, this is not the case with 

mtpQIGA and mucQIGA. They converge monotonically to 

the optimum values. These figures also show that uniform 

crossover works well for conventional QIGA as well as QIGA 

with mutation step adaptation for problem size 80 and 100 but 

for problem size 216, two point crossover gives good results 

with conventional QIGA as well as QIGA with mutation step 

adaptation.  
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(b) Number of Nodes are 125 with 375 Edges 

 

(c)  Number of Nodes are 216 with 648 Edges. 

Fig. 7. Comparisons of Various QIGAs and Adaptive 

QIGAs on Best Profit vs. Number of Iterations Graphs for 

Maxcut Problem with Parameter Setting shown in Table 

2. 

 

(a) Number of Nodes are 80 with 3128 Edges 

 

(b) Number of Nodes are 125 with 375 Edges 

 

(c) Number of Nodes are 216 with 648 Edges. 

Fig. 8. Comparisons of Various QIGAs and Adaptive 

QIGAs as on Average Profit vs. Number of Iterations 

Graphs for Maxcut Problem with Parameter Setting 

Shown in Table 2. 

5.3 Onemax Problem 
The third benchmark problem used is Onemax problem. The 

Onemax problem consists of maximizing the number of ones 

of a bit string. The optimum value is 1*n, where n is the 

length of the bit string. Mathematical formulation of this 

problem is shown below. 

 Max  𝒙𝒊
𝒏
𝒊=𝟏  Such that        xi Є{0,1} 

Experiments were conducted for the following problem 

instances: bit string length 50, bit string length 500 and bit 

string length 1000. Figure 9 and 10 show the performance of 

the algorithms on Onemax problem. Figure 9 plots best fitness 

vs. number of iterations and figure 10 plots the average 

fitnesst vs. number of iterations for variants of QIGA and 

adaptive QIGA shown in Table 1 on Onemax problem. In 

both figure 9 and figure 10, part (a) is for bit string length 50, 

(b) for bit string length 500, (c) for bit string length 1000. 

In general, figure 9, 10 show that the adaptive QIGAs with all 

adaptation gives better results than the conventional QIGAs in 

terms of convergence to optimal values. According to figure 9 

(a), (b) and (c) show that adaptive QIGA converges to higher 

values than the conventional QIGAs. However, even though 

aQIGA gives good results than conventional QIGA converges 

prematurely to some local optima and is not able to escape 

from that optima. But, this is not the case with mtpQIGA and 

mucQIGA. They converge monotonically to the optimum 

values. These figures also show that uniform crossover works 

well with conventional QIGA and using two point crossover 

with mutation step adaptation on QIGA gives the best results 

for onemax problem among all kinds of QIGAs.  
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(b) Number of Bits is 500 

 

  (c) Number of Bits is 1000. 

Fig. 9. Comparisons of Various QIAGs and Adaptive QIGAs on Best 

Profit vs. Number of Iterations Graphs for Onemax Problem with 

Parameter Setting shown in Table 2. 

5.4 Time Graphs  
Graphs in figure 11 show the comparison of time to maximum 

number of generations taken by various QIGAs with adaptive 

QIGAs for Knapsack, Maxcut and Onemax problems. The 

maximum number of generations was fixed to 1000. The 

algorithms were compared for different population sizes. 

For Knapsack problem, the graph in figure 11 (a) with number 

of items 250 shows that conventional QIGA with two point 

crossover takes least time, while adaptive QIGA with two 

point crossover and mutation step adaptation takes maximum 

time. Adaptive QIGA lies in between these two algorithms.  

For Maxcut problem, the graph in figure 11 (b)  with number 

nodes 80 and number of edges 3128 shows that adaptive 

QIGA takes least time, while QIGA with uniform crossover 

and mutation step adaptation takes less time than conventional 

QIGA with population size 11-50 and 85-100. 

For Onemax problem, the graph in figure 11 (c) with bit string 

length 500 shows that adaptive QIGA takes least time, while 

QIGA with uniform crossover and mutation step adaptation 

takes less time than conventional QIGA with population size 

25-55 and 88-100. 

 

(a)  Number of Bits is 50 

 

(b) Number of Bits is 500 

 

   (c) Number of Bits is 1000 

Fig. 10. Comparisons of Various QIAGs and Adaptive 

QIGAs on Average Profit vs. Number of Iterations 

Graphs for Onemax Problem with Parameter Setting 

shown in Table 2. 

 

(a) Knapsack Problem with Number of Items = 250 
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(b) Maxcut Problem with 80 Nodes and 3128 Edges 

 

 

(c) Onemax problem with 500 bits. 

Fig. 11. Time vs. Population Size Graphs with Various QIGAs and 

Adaptive QIGAs. 

5.5 Convergence and Success Rate 
Additional experiments were carried out for the algorithms in 

Table 1 shown in appendix 1 for the benchmark problems. 

The results of these experiments are presented in Table 3. The 

problem instances used were different from the ones described 

in the previous sections. The parameter setting for the QIGAs 

is same as described in Table 2. Following inferences can be 

drawn from the results obtained: 

1) Number of iterations taken by adaptive QIGAs to reach 

the optimal solution is less than that for the conventional 

QIGAs which shows that the adaptive QIGAs converge to 

the optimal solutions faster than the conventional QIGA. 

2) The difference of the optimal solution obtained with 

adaptive QIGAs and known optimal solution is less than 

that with the conventional QIGAs. 

3) Also, the success rate of getting an optimum solution 

(number of occurrences of the optimal solution in the 

population before termination) is higher for adaptive 

QIGAs.  

4) Mean fitness of the solutions obtained is also calculated 

which shows that on an average adaptive QIGA gives 

better results than   conventional QIGAs in each iteration. 

 The experiments were conducted on the variants of 

QIGAs and adaptive QIGAs with various small as well as 

large problem instances and it was found that adaptive QIGAs 

works well for both types of problem instances. 

6. CONCLUSION 
Effectiveness and efficiency of an evolutionary algorithm 

depends on many factors, for example, representation of the 

solutions, operators, variation in operators, parameter settings 

etc. Among these factors the adequate parameter setting 

affects the performance of the algorithm very much. 

Therefore, the adaptive control on strategy variables in 

Genetic algorithm and hence in QIGA plays an essential role 

for successful search process.  

In this work,  adaptation of various parameters in QIGA is 

presented that self adapts crossover type, crossover rate and 

mutation step size.  The experiments on the benchmark 

problems (namely 0/1 Knapsack problem, Maxcut problem 

and Onemax problem) have been attempted with variants of 

QIGA and adaptive QIGA. The experiments shows that with 

the choice of proper adaptive control parameters in QIGAs 

increase the efficiency of the algorithm and decrease the tasks 

done manually that leads to inaccuracy and very much time 

consumption. It is also found that adaptive QIGAs converge 

faster than the conventional QIGA and give better results. 

The work can be extended in the following directions: 

i. Implement parallel adaptive QIGA to make it time 

efficient. 

ii. Apply adaptation on other parameters of QIGA e.g. 

population size, mutation rate, selection procedure etc., so 

that it can converge rapidly to the optimal value. 
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