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ABSTRACT 

Efficient task scheduling is essential for obtaining high 

performance in heterogeneous distributed computing systems. 

Several algorithms are proposed for heterogeneous distributed 

computing systems. In this paper, a new static scheduling 

algorithm is proposed called Highest Communicated Path of 

Task (HCPT) algorithm to efficiently schedule tasks on the 

heterogeneous distributed computing systems. Our algorithm is 

based on the list-scheduling technique. The algorithm not only 

is focused on reducing the makespan, but also provides better 

performance than the other algorithms in terms of speedup and 

efficiency. It consists of three phases, level sorting phase, task-

prioritizing phase and processor selection phase. From the 

theoretical analysis of the HCPT algorithm with other 

algorithms for a Directed A-cyclic Graph (DAG), the better 

performance is observed. 
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1. INTRODUCTION 
The availability of high-speed networks and diverse sets of 

resources lead to a new platform, called as heterogeneous 

platform. Such a platform contains interconnected resources 

with different computing capabilities and different computing 

speeds. To run an application in this heterogeneous 

environment, several issues need to be considered such as 

partitioning the application, scheduling the tasks, etc. We will 

refer to such a system as Heterogeneous Distributed 

Computing System (HDCS) [1].  

Task scheduling is of vital importance in HDCS since a poor 

task-scheduling algorithm can undo any potential gains from 

the parallelism presented in the application. In general, the 

objective of task scheduling is to minimize the completion time 

of a parallel application by properly mapping the tasks to the 

processors [2, 3, 4]. There are typically two categories of 

scheduling models: static and dynamic scheduling. In the static 

scheduling case, all the information regarding the application 

and computing resources such as execution time, 

communication cost, data dependency, and synchronization 

requirement is assumed available a priori. Scheduling is 

performed before the actual execution of the application. On 

the other hand, in the dynamic mapping a more realistic 

assumption is used. Very little a priori knowledge is available 

about the application and computing resources. Scheduling is 

done at run-time. In this paper, we focus on static scheduling 

[5, 6]. Static scheduling is classified into list-based, clustering 

and duplication based. List scheduling consists of two phases: a 

task prioritization phase, where a certain priority is computed 

and is assigned to each node of the DAG, and a machine 

assignment phase, where each task (in order of its priority) is 

assigned to machine that minimizes a suitable cost function. 

List scheduling is generally accepted as an attractive approach 

since it pairs low complexity with good results[4]. Examples of 

list-based algorithms are Heterogeneous Earliest Finish Time 

(HEFT) and Critical Path On Processor (CPOP) [7]. Another 

static scheduling category is task duplication based algorithms 

[8], in which tasks are duplicated on more than one processor 

to reduce the waiting time of the dependent tasks. The main 

idea behind duplication based scheduling is to utilize processor 

idling time to duplicate predecessor tasks. This may avoid 

transfer of results from a predecessor, through a 

communication channel, and may eliminate waiting slots on 

other processors [9]. 

In this paper, a new algorithm called Highest Communicated 

Path of Task (HCPT) is developed for static task scheduling for 

the HDCS with limited number of processors. The motivation 

behind this algorithm is to generate the high quality task 

schedule that is necessary to achieve high performance in 

HDCS. The developed algorithm is based calculating the 

average communication parents to give each node a priority, 

and the maximum child path with highest communication. 

Finally, our algorithm could decrease time of application. 

The remainder of this paper is organized as follows. Section 2 

discusses problem definition. Section 3 gives an overview of 

the related works. Section 4 presents our developed scheduling 

algorithm namely HCPT with examples. Section 5 discusses 

the results and finally this paper is concluded in section 6.  

2. PROBLEM DEFINITION 
A DAG represents a parallel application. A DAG that is 

defined by the tuple (T, E), where T is a set of n tasks and E is 

a set of e edges represents a parallel application. Each ti ϵT 

represents a task in the parallel application, which in turn is a 

set of instructions that must be executed sequentially in the 

same processor without interruption. Each edge (ti,tj)ϵE 

represents a precedence constraint, such that the execution of 

tjϵT starts after tiϵT finishes its execution.  ti is a parent of tj and 

tj is a child of ti. A task with no parents (i.e. root) is called an 

entry task (tentry), and a task with no children (i.e. leaf) is called 

an exit task (texit). Each edge (ti,tj)ϵE has a value that represents 

the communication cost of that edge. A task can start execution 

on a processor, if all parents have finished their execution and 

all data required from its parents become available to that 

processor. The speed of the inter-processor communication 

network is negligible. Therefore, when two tasks are scheduled 

on the same processor the communication cost between them 

can be ignored. The HDCS is represented by a set P of m 

processors that have diverse capabilities. The n×m computation 

cost matrix C stores the execution costs of tasks. Each element 

Ci,jϵ C represents the estimated execution time of task ti on 

processor pj. Precise calculation of the running times of the 

tasks on the processors is unfeasible before running the 

application [10]. All processors in the HDCS are assumed to be 

fully connected. Communications between processors occur 

via independent communication units; this allows for 

concurrent execution of computation of tasks and 
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communications between processors. After scheduling all the 

tasks of a parallel application on the processors of a HDCS, the 

schedule length is defined as the longest finish time of the 

HDCS processors. Fig.1 presents an example of a parallel 

application consisting of five tasks and a HDCS with two 

processors, where the application is represented as a DAG and 

the execution costs estimated for the five tasks on the HDCS 

are shown as a computation cost matrix [11]. 

 

 a. DAG 

Task P0 P1 

t0 7 8 

t1 6 9 

t2 5 8 

t3 2 3 

t4 2 4 

 

 

b. Computation cost 

matrix 

Fig 1: Example of a DAG and Computation Cost Matrix. 

Definition (1) EST(𝑡𝑖 , 𝑃𝑗 ) [6]: Denotes the Earliest Start Time 

of a task 𝑡𝑖  on a processor 𝑃𝑗 and is defined as shown in 

Equation (1). 

EST(𝒕𝒊, 𝑷𝒋)=max{ TAvailable(𝑷𝒋) ,max{AFT(𝒕𝒌)+𝒄𝒌,𝒊}}……….(1) 

Where TAvailable(𝑃𝑗 ) is the earliest time at which processor 𝑃𝑗  is 

ready. AFT(𝑡𝑘) is the Actual Finish Time of a task 𝑡𝑘  (where tk 

is the parent of task ti and k=1, 2 ,…, n)on the processor 𝑃𝑗 . 

𝑐𝑘,𝑖 is the communication cost from task 𝑡𝑘  to task 𝑡𝑖 ,𝑐𝑘,𝑖  equal 

zero if the predecessor task 𝑡𝑘 is assigned to processor 𝑃𝑗 . For 

the entry task, EST (𝑡𝑒𝑛𝑡𝑟𝑦  ,𝑃𝑗 )=0.  

Definition (2): Denotes the Earliest Finish Time of a task 𝑡𝑖  on 

a processor 𝑃𝑗  (EFT(𝑡𝑖 , 𝑃𝑗 )) [6] and is defined in Equation (2). 

EFT(𝒕𝒊, 𝑷𝒋)= EST(𝒕𝒊, 𝑷𝒋)+ 𝒘𝒊,𝒋 …………………………..(2) 

Which is the Earliest Start Time of a task 𝑡𝑖on a processor 𝑃𝑗  

plus the computational cost 𝑤𝑖,𝑗 of 𝑡𝑖on a processor𝑃𝑗 . 

3. RELATED WORK 
In this section, we give an overview of some algorithms as 

related work. 

3.1 Critical Path on Processor Algorithm  
The CPOP algorithm consists of two phases: prioritizing phase 

and processor selection phase [7]. In task prioritizing phase, the 

algorithm selects the task with the highest (upward rank + 

downward rank) value at each step. We can calculate upward 

rank and downward rank by Equations (3, 4) respectively. 

Ranku(ni)=𝒘𝒊     + 𝒎𝒂𝒙𝒏𝒋∈𝒔𝒖𝒄𝒄(𝒏𝒊)  𝒄𝒊,𝒋    + 𝒓𝒂𝒏𝒌𝒖 𝒏𝒋  ……(3) 

Rankd(ni) =𝒎𝒂𝒙𝒏𝒋∈𝒑𝒓𝒆𝒅(𝒏𝒊)(𝒄𝒋,𝒊    + 𝒘𝒋    +  𝒓𝒂𝒏𝒌𝒅(𝒏𝒋)……(4) 

Where pred(ni) is the set of immediate predecessors of task ni. 

The algorithm targets scheduling of all critical tasks (i.e., tasks 

on the critical path of the DAG) onto a single processor, which 

minimizes the total execution time of the critical tasks. If the 

selected task is noncritical, the processor selection phase is 

based on earliest execution time with insertion-based 

scheduling. The algorithm has an O(n2p) time complexity for n 

nodes and p processors.   

3.2 Path-based Heuristic Task Scheduling 

Algorithm  
The PHTS algorithm is proposed for a bounded number of 

heterogeneous processors consisting of three phases namely, a 

path-prioritizing phase, task selection phase, and processor 

selection phase [12]. Path prioritizing phase for computing the 

priorities for all possible paths. Each path is assigned by a 

value called rank (pj), is given in Equation 5. 

Rank(pj)= 𝒘 𝒊𝒕𝒊𝝐𝒑𝒋
+𝒄𝒊,𝒔𝒖𝒄𝒄(𝒕𝒊)           ……………………………(5) 

Where 𝑤 𝑖  is the average computation cost of a task ti. It is 

computed by 𝑤 𝑖= 𝑤𝑖,𝑗/𝑚𝑚
𝑗=1 , and 𝑐𝑖,𝑠𝑢𝑐𝑐 (𝑡𝑖)           is the 

communication cost of edge from task ti to its successor, if 

exists.  

In task selection phase, the algorithm selects the unscheduled 

tasks from the paths in the sorted path list. During the task 

selection, the algorithm applies the following conditions on 

each task: 

 The task should not be scheduled earlier. 

 The task has no parents or its parents are scheduled. 

Finally, a processor selection phase where the selected task is 

assigned to a processor in the set of processors that minimizes 

its finish execution time using the insertion-based scheduling 

policy [6].The algorithm has an O(np) time complexity for n 

nodes and p processors.   

3.3 Expected Completion Time Based 

Scheduling Algorithm (ECTS) 
ECTS algorithm consists of two phases namely, task 

prioritization phase and processor selection phase. The task-

prioritizing phase consists of two stages such as level wise task 

priority stage and task selection stage [13]. In the first stage, 

the algorithm computes the priority for every task at each level 

by using Expected Completion Time (ECT) value. Average 

Computation Cost (ACC) and Maximum Data Arrival Cost 

(MDAC) compute this ECT. Next Equations (6, 7, 8) explains 

ACC, MDAC and ECT respectively. 

ACC(ti)= 
𝑾𝒊,𝒋

𝒎 
𝒎
𝒋=𝟏 ………………………………………(6) 

Where Wi,j is the estimated execution time to complete task ti 

on processor mj. 

MDCA(ti)= max ti ϵ pred(tj) (ci,j)……………………………(7) 

Where ti is the set of predecessors of task tj. 

ECT(ti)=ACC(ti)+MDCA(ti)………………………………(8) 

The second stage related to the task selection in which the tasks 

are selected from all levels based on their priority. Moreover, 

in the second phase, the selected tasks are assigned to the best 

processor, which minimizes its EFT. 

4. OUR SCHEDULING ALGORITHM 
The developed Highest Communicated Path of Task (HCPT) 

algorithm consists of three phases, level sorting, task 

prioritization, and processors selection. The detailed 

explanation of each phase of the algorithm is given below: 

Level sorting phase: In this phase, the given DAG is traversed 

in a top-down fashion to sort tasks at each level in order to 

group the tasks that are independent of each other. 
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Task prioritizing phase: In this phase, the HCPT algorithm 

selects level and gives a priority to its tasks. It computes the 

priority for each task according to new attribute called Rank as 

shown in Equation (9). 

Rank(ti)= MCP(ti)+𝒎𝒂𝒙𝒕𝒋∈𝒔𝒖𝒄𝒄(𝒕𝒊)  𝒄𝒊,𝒋    +  𝑹𝒂𝒏𝒌 𝒕𝒋  …….(9) 

Where MCP(ti) refers to Mean Communication of  Parents. It is 

computed by Equation (10). 

MCP(ti)=( 𝑪𝒋,𝒊
𝒏
𝒋=𝟏 )/n ……………………………………(10) 

Where n is the number of Parents, 𝑪𝒋,𝒊is the communication 

between parent tj and task ti. The algorithm starts from texit 

where Rank (texit)=MCP(texit). Fig. 2 shows HCPT algorithm 

steps. After the algorithm assigns a priority for each task in 

selected level, it creates a new Tasks List (TL), in which the 

HCPT algorithm sorts all level tasks in decreasing order to 

execute the next phase. 

Processor Selection Phase: the HCPT algorithm calculates 

EFT of task ti by Equation (2) for each processor, and selects 

the processor that has a minimum EFT to assign the task by 

using the insertion-based scheduling policy [7].  

 

Generate the DAG 

Sort the DAG levels according to dependency ordering 

For each level Lk 

{ 

  For each task ti in Lk 

      Compute  

           Rank(ti)= MCP(ti)+𝒎𝒂𝒙𝒕𝒋∈𝒔𝒖𝒄𝒄(𝒕𝒊)  𝒄𝒊,𝒋    +  𝑹𝒂𝒏𝒌 𝒕𝒋    

  End for 

  Create new Tasks List TL 

  Sort all tasks in decreasing order of Rank value in TL 

  For each processor 𝑃𝑚  in the processor set (𝑃𝑚  є Q) do 

        Compute EFT(𝑡𝑖 , 𝑃𝑚 ) value  

  End for 

  Assign task 𝑡𝑖  to the processor pm that minimizes EFT   

using the insertion based scheduling policy 

} 

End for       

 

Fig 2: Highest Communicated Path of Task (HCPT) 

Algorithm. 

The insertion-based scheduling policy considers the possible 

insertion of a task in an earliest idle time slot between two 

already-scheduled tasks on a processor. The length of an idle 

time-slot, i.e., the difference between execution start time and 

finish time of two tasks that were consecutively scheduled on 

the same processor, should be at least capable of computation 

cost of the task to be scheduled. Additionally, scheduling on 

this idle time slot should preserve precedence constraints. Time 

complexity is the amount of time taken to assign every task to 

specific processor according to specific priority. Our algorithm 

has O(N2P) time complexity for N number of tasks and P 

number of processors. 

Case Study: 
Considering the application DAG shown in Fig.3, Table 1 

shows the computation matrix. Initially the HCPT algorithm 

sorts tasks into levels by applying level sorting phase. DAG in 

Fig. 3 has four levels. Task t0 and t1 belong to L0, t2 and t3 

belong to L1 and so on. In the task-prioritizing phase, the 

algorithm gives a priority for each task according to equation 9. 

It starts from the exit tasks (L3) where Rank(texit)=MCP(texit). 

Rank(T6)=(16+4)/2=10 and Rank(t7)=(10+2+8)/3=6.667, then 

the algorithm go to the next level L2. Rank (t4)=(17+8)/2 

+10+6.667=29.167 and Rank(t5)=(4+1)/2+2+6.667=11.167 and 

so on. The algorithm sorts tasks of each level according Rank 

value. Table 2 shows the stepwise trace of the HCPT 

algorithm.  In processor selection phase, the HCPT algorithm 

computes EFT for every task at each processor and assigns the 

task to the processor with minimum EFT. The generated 

schedule length after applying the HCPT algorithm and other 

algorithms shown in Fig.4. The schedule length generated by 

PHTS, CPOP, ECTS and HCPT algorithms respectively are 

109, 125, 101 and 99. Therefore, the HCPT algorithm has 

shorter execution length than the other algorithms. This leads 

to good utilization of processors in the system. 

Table 1.Computation Matrix 

ti P0 P1 

t0 12 7 

t1 63 2 

t2 48 22 

t3 12 36 

t4 59 31 

t5 6 25 

t6 10 49 

t7 42 18 

 

Fig 3: The Application DAG 
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Table 2. Stepwise Trace of HCPT algorithm 

Lk ti 

Rank(ti)=MCP(ti) + 

𝒎𝒂𝒙𝒕𝒋∈𝒔𝒖𝒄𝒄(𝒕𝒊)
 𝒄𝒊,𝒋    +  𝑹𝒂𝒏𝒌 𝒕𝒋   

Priority 

1 
t0 0+14+60.167=74.167 1 

t1 0+16+10=26 2 

2 
t2 3+8+29.167=40.167 2 

t3 14/1+17+29.167=60.167 1 

3 
t4 (17+8)/2+10+6.667=29.167 1 

t5 (1+4)/2+(2+6.667)=11.167 2 

4 
t6 (4+16)/2+0=10 1 

t7 (10+2+8)/3+0=6.667 2 

 

(a) PHTS)      (b) CPOP      (c) ECTS          (d) HCPT 

Fig 4: The schedules generated by Algorithms. 

5. RESULTS AND DISCUSSIONS 

5.1 Simulation Environment 
A simulator had been built using visual C# .NET 4.0 on 

machine with configuration: Intel(R) Core(TM) i3 CPU M 350 

@2.27GHz,  RAM of 4.00 GB, and the operating system is 

window 7, 64-bit. 

To test the performance of HCPT algorithm with the other 

algorithms a set of randomly generated graphs created by 

varying a set of parameters that determines the characteristics 

of the generated DAGs. These parameters described as follows: 

 DAG size: n (i.e. the number of tasks in the DAG). 

 Density: 

We use "sameprob" and "layrprob" methods to generate the 

DAG [14, 15]. Let A denote a task connection matrix with 

elements a(i,j), where 0≤ i ≤ n, and  0≤ j ≤ n, represent the task 

number (t0 is the entry dummy node and tn is the exit dummy 

node). When a(i,j)=1, ti precedes task tj, when a(i,j)=0, ti and tj 

are independent of each other. In the "sameprob" edge 

connection method, a(i,j) is determined by independent random 

values defined as follows: 

P[a(i,j)=1]=p for 1≤i<j≤n and P[a(i,j)=0]=1-p for 

1≤i<j≤n, P[a(i,j)=0]=1 if i≥j, where p indicates the 

probability that there exists an edge (precedence constraint) 

between ti and tj . In another method, "layrprob'', firstly the 

number of levels L in the task graph is generated. Next, the 

number of independent tasks in each level is randomly 

decided. Finally, edges between levels are connected with 

the same probability p , as is "sameprob''. 

 With six different numbers of processors varying from 2, 4, 

8, 16, 32 and 64 processors. For each number of processors, 

six different DAG sizes have been generated varying from 

10, 20, 40, 60, 80 and 100 tasks. In each experiment, the 

probability p and number of levels are assigned from the 

corresponding sets given below: 

 SETp={0.3, 0.5, 0.6, 0.7, 0.8, 0.9} 

 L={No. Tasks/3, No. Tasks/4, No. Tasks/5, No. Tasks/6, 

No. Tasks/8} according to number of tasks. 

Performance improvement ratio has been calculated for each 

parameter; schedule length, speedup and efficiency. 

5.2 Results  
5.2.1 Schedule length  
Schedule length is the maximum finish time of the exit task in 

the scheduled DAG. From Fig.5, 6, 7, 8, 9, it is noted that the 

schedule length decreases after applying HCPT algorithm, 

because the HCPT algorithm uses the average communication 

parents and the maximum child path with highest 

communication to compute priority of each task, which are the 

most important values for each task. The improvement ratio in 

schedule length is 16.5%. Table 3 shows, the schedule length 

of CPOP, PHTS, ECTS, and our algorithm HCPT of 20, 60,100 

tasks at 8 and 32 processors, sample of experimental results. 

5.2.2 Speedup: 
Speedup of a schedule is defined as the ratio of the schedule 

length obtained by assigning all tasks to the fastest processor, 

to the schedule length of an application [4]. Equation (11) 

describes the speedup ratio. 

Speedup=
[ 𝒘(𝒊,𝒋)𝒏𝒊𝝐𝑽 ]𝒑𝒋𝝐𝑷

𝑴𝒊𝒏

𝑺𝑳
…………..………………… (11) 

Where 𝑤 𝑖, 𝑗  means the weight of task ti on processor pj and 

SL means the schedule length. Speedup is a good measure for 

the execution of an application program on a parallel system. 

The results of the comparative study according to the speedup 

parameter have been presented in Fig. 10, 11, 12, 13, 14, and 

15. According to the results, it is clear that speedup of  HCPT 

algorithm is better than speedup of the other algorithms, 

because all processors have finished tasks execution earlier 

than other algorithm, so our proposed algorithm outperforms 

the other algorithms in speedup parameter. The improvement 

ratio in speedup is 15.85%. Table 4 shows, the speedup of 

CPOP, PHTS, ECTS, and our algorithm HCPT of 20, 60,100 

tasks at 8 and 32 processors, sample of experimental results. 

5.2.3 Efficiency: 
Efficiency as the speedup divided by the number of processors 

used [4] that is described in Equation (12). 

Efficiency=
𝑺𝒑𝒆𝒆𝒅𝒖𝒑

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓𝒔 𝒖𝒔𝒆𝒅
  …………… (12) 

The efficiency of the parallel computers is an indication to 

what percentage of a processors time is being spent in useful 

computation. From Fig. 16, 17, 18, 19, 20, 21. It is noted that, 

HCPT algorithm has better performance than the other 
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algorithms. The improvement ratio in efficiency which has 

been achieved by HCPT algorithm is 16.4%. Table 5 shows, 

efficiency of CPOP, PHTS, ECTS, and our algorithm HCPT of 

20, 60,100 tasks at 8 and 32 processors, sample of 

experimental results. 

 

Fig  5: Schedule Length with 4 Processors. 

 

 Fig.  6: Schedule Length with 8 Processors. 

 

Fig.  7: Schedule Length with 16 Processors. 

 

Fig.  8: Schedule Length with 32Processors. 

 

Fig.  9: Schedule Length with 64 Processors. 

Fig. 10: Speedup with 10 Tasks. 

 

Fig.  11: Speedup with 20 Tasks. 

 

Fig.  12: Speedup with 40 Tasks. 
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Fig.  13: Speedup with 60 Tasks. 

 

Fig.  14: Speedup with 80 Tasks. 

Fig.  15: Speedup with 100 Tasks. 

 

Fig.  16: Efficiency with 10 Tasks. 

Fig. 17: Efficiency with 20 Tasks. 

 

Fig.  18: Efficiency with 40 Tasks. 

Fig.  19: Efficiency with 60 Tasks. 

Fig. 20: Efficiency with 80 Tasks. 
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Fig. 21: Efficiency with 100 Tasks. 

Table 3. Schedule Length of Algorithms (Result Samples) 

NO. 

Processors 

NO. 

Tasks 
HCPT ECTS PHTS CPOP 

8 

20 139 149 155 166 

60 404 405 402 533 

100 647 690 684 1087 

NO. 

Processors 

NO. 

Tasks 

HCPT 

 
ECTS PHTS CPOP 

32 

20 70 75 71 144 

60 224 256 251 484 

100 543 550 572 1036 

 

Table 4. Speedup of Algorithms (Result Samples) 

NO. 

Processors 

NO. 

Tasks 
CPOP PHTS ECTS HCPT 

8 

20 2.120 1.739 2.323 2.352 

60 2.505 3.35 3.551 3.716 

100 2.762 3.729 3.535 3.860 

NO. 

Processors 

NO. 

Tasks 

HCPT 

 
ECTS PHTS CPOP 

32 

20 2 2.573 2.699 2.699 

60 2.233 3.355 3.333 3.347 

100 2.770 5.466 5.575 5.575 

 

Table 5. Efficiency of Algorithms (Result Samples) 

NO. 

Processors 

NO. 

Tasks 
CPOP PHTS ECTS HCPT 

8 

20 0.223 0.3 0.306 0.309 

60 0.3 0.424 0.467 0.468 

100 0.268 0.414 0.443 0.461 

NO. 

Processors 

NO. 

Tasks 
HCPT ECTS PHTS CPOP 

32 

20 0.061 0.095 0.095 0.096 

60 0.075 0.146 0.146 0.147 

100 0.08 0.146 0.144 0.146 

6. CONCLUSION 
In this paper, a new Highest Communicated Path of Task 

(HCPT) algorithm is presented for heterogeneous distributed 

computing systems (HDCS). This algorithm based on Rank 

value to give a priority to each task.  According to the 

simulation results, it is found that the HCPT algorithm is better 

than ECTS, PHTS andCPOP algorithms in terms of schedule 

length, speedup and efficiency. Performance improvement ratio 

in schedule length, speedup and efficiency respectively are 

16.5%, 15.85% and 16.4%. The HCPT algorithm can be tested 

on real applications and the development can be made on 

efficiency. Task duplication can be added also as a future work 

to increase the efficiency of the algorithm. The HCPT can 

apply on directed cyclic graph as a future work. 
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