
International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 4, December 2014

5

Task Scheduling Optimization in Heterogeneous

Distributed Systems

Aida A. Nasr
Computer Science & Eng. Dept.,

Faculty of Electronic Eng.
Menouf 32952, Egypt.

Nirmeen A. El-Bahnasawy
Computer Science & Eng. Dept.,

Faculty of Electronic Eng.
Menouf 32952, Egypt.

Ayman El-Sayed

Computer Science & Eng.
Dept.,Faculty of Electronic Eng.

Menouf 32952, Egypt

ABSTRACT

Efficient task scheduling is essential for obtaining high

performance in heterogeneous distributed computing systems.

Several algorithms are proposed for heterogeneous distributed

computing systems. In this paper, a new static scheduling

algorithm is proposed called Highest Communicated Path of

Task (HCPT) algorithm to efficiently schedule tasks on the

heterogeneous distributed computing systems. Our algorithm is

based on the list-scheduling technique. The algorithm not only

is focused on reducing the makespan, but also provides better

performance than the other algorithms in terms of speedup and

efficiency. It consists of three phases, level sorting phase, task-

prioritizing phase and processor selection phase. From the

theoretical analysis of the HCPT algorithm with other

algorithms for a Directed A-cyclic Graph (DAG), the better

performance is observed.

Keywords

Static task scheduling, heterogeneous distributed computing

systems, heuristic algorithm.

1. INTRODUCTION
The availability of high-speed networks and diverse sets of

resources lead to a new platform, called as heterogeneous

platform. Such a platform contains interconnected resources

with different computing capabilities and different computing

speeds. To run an application in this heterogeneous

environment, several issues need to be considered such as

partitioning the application, scheduling the tasks, etc. We will

refer to such a system as Heterogeneous Distributed

Computing System (HDCS) [1].

Task scheduling is of vital importance in HDCS since a poor

task-scheduling algorithm can undo any potential gains from

the parallelism presented in the application. In general, the

objective of task scheduling is to minimize the completion time

of a parallel application by properly mapping the tasks to the

processors [2, 3, 4]. There are typically two categories of

scheduling models: static and dynamic scheduling. In the static

scheduling case, all the information regarding the application

and computing resources such as execution time,

communication cost, data dependency, and synchronization

requirement is assumed available a priori. Scheduling is

performed before the actual execution of the application. On

the other hand, in the dynamic mapping a more realistic

assumption is used. Very little a priori knowledge is available

about the application and computing resources. Scheduling is

done at run-time. In this paper, we focus on static scheduling

[5, 6]. Static scheduling is classified into list-based, clustering

and duplication based. List scheduling consists of two phases: a

task prioritization phase, where a certain priority is computed

and is assigned to each node of the DAG, and a machine

assignment phase, where each task (in order of its priority) is

assigned to machine that minimizes a suitable cost function.

List scheduling is generally accepted as an attractive approach

since it pairs low complexity with good results[4]. Examples of

list-based algorithms are Heterogeneous Earliest Finish Time

(HEFT) and Critical Path On Processor (CPOP) [7]. Another

static scheduling category is task duplication based algorithms

[8], in which tasks are duplicated on more than one processor

to reduce the waiting time of the dependent tasks. The main

idea behind duplication based scheduling is to utilize processor

idling time to duplicate predecessor tasks. This may avoid

transfer of results from a predecessor, through a

communication channel, and may eliminate waiting slots on

other processors [9].

In this paper, a new algorithm called Highest Communicated

Path of Task (HCPT) is developed for static task scheduling for

the HDCS with limited number of processors. The motivation

behind this algorithm is to generate the high quality task

schedule that is necessary to achieve high performance in

HDCS. The developed algorithm is based calculating the

average communication parents to give each node a priority,

and the maximum child path with highest communication.

Finally, our algorithm could decrease time of application.

The remainder of this paper is organized as follows. Section 2

discusses problem definition. Section 3 gives an overview of

the related works. Section 4 presents our developed scheduling

algorithm namely HCPT with examples. Section 5 discusses

the results and finally this paper is concluded in section 6.

2. PROBLEM DEFINITION
A DAG represents a parallel application. A DAG that is

defined by the tuple (T, E), where T is a set of n tasks and E is

a set of e edges represents a parallel application. Each ti ϵT

represents a task in the parallel application, which in turn is a

set of instructions that must be executed sequentially in the

same processor without interruption. Each edge (ti,tj)ϵE

represents a precedence constraint, such that the execution of

tjϵT starts after tiϵT finishes its execution. ti is a parent of tj and

tj is a child of ti. A task with no parents (i.e. root) is called an

entry task (tentry), and a task with no children (i.e. leaf) is called

an exit task (texit). Each edge (ti,tj)ϵE has a value that represents

the communication cost of that edge. A task can start execution

on a processor, if all parents have finished their execution and

all data required from its parents become available to that

processor. The speed of the inter-processor communication

network is negligible. Therefore, when two tasks are scheduled

on the same processor the communication cost between them

can be ignored. The HDCS is represented by a set P of m

processors that have diverse capabilities. The n×m computation

cost matrix C stores the execution costs of tasks. Each element

Ci,jϵ C represents the estimated execution time of task ti on

processor pj. Precise calculation of the running times of the

tasks on the processors is unfeasible before running the

application [10]. All processors in the HDCS are assumed to be

fully connected. Communications between processors occur

via independent communication units; this allows for

concurrent execution of computation of tasks and

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 4, December 2014

6

communications between processors. After scheduling all the

tasks of a parallel application on the processors of a HDCS, the

schedule length is defined as the longest finish time of the

HDCS processors. Fig.1 presents an example of a parallel

application consisting of five tasks and a HDCS with two

processors, where the application is represented as a DAG and

the execution costs estimated for the five tasks on the HDCS

are shown as a computation cost matrix [11].

 a. DAG

Task P0 P1

t0 7 8

t1 6 9

t2 5 8

t3 2 3

t4 2 4

b. Computation cost

matrix

Fig 1: Example of a DAG and Computation Cost Matrix.

Definition (1) EST(𝑡𝑖 , 𝑃𝑗) [6]: Denotes the Earliest Start Time

of a task 𝑡𝑖 on a processor 𝑃𝑗 and is defined as shown in

Equation (1).

EST(𝒕𝒊, 𝑷𝒋)=max{ TAvailable(𝑷𝒋) ,max{AFT(𝒕𝒌)+𝒄𝒌,𝒊}}……….(1)

Where TAvailable(𝑃𝑗) is the earliest time at which processor 𝑃𝑗 is

ready. AFT(𝑡𝑘) is the Actual Finish Time of a task 𝑡𝑘 (where tk

is the parent of task ti and k=1, 2 ,…, n)on the processor 𝑃𝑗 .

𝑐𝑘,𝑖 is the communication cost from task 𝑡𝑘 to task 𝑡𝑖 ,𝑐𝑘,𝑖 equal

zero if the predecessor task 𝑡𝑘 is assigned to processor 𝑃𝑗 . For

the entry task, EST (𝑡𝑒𝑛𝑡𝑟𝑦 ,𝑃𝑗)=0.

Definition (2): Denotes the Earliest Finish Time of a task 𝑡𝑖 on

a processor 𝑃𝑗 (EFT(𝑡𝑖 , 𝑃𝑗)) [6] and is defined in Equation (2).

EFT(𝒕𝒊, 𝑷𝒋)= EST(𝒕𝒊, 𝑷𝒋)+ 𝒘𝒊,𝒋 …………………………..(2)

Which is the Earliest Start Time of a task 𝑡𝑖on a processor 𝑃𝑗

plus the computational cost 𝑤𝑖,𝑗 of 𝑡𝑖on a processor𝑃𝑗 .

3. RELATED WORK
In this section, we give an overview of some algorithms as

related work.

3.1 Critical Path on Processor Algorithm
The CPOP algorithm consists of two phases: prioritizing phase

and processor selection phase [7]. In task prioritizing phase, the

algorithm selects the task with the highest (upward rank +

downward rank) value at each step. We can calculate upward

rank and downward rank by Equations (3, 4) respectively.

Ranku(ni)=𝒘𝒊 + 𝒎𝒂𝒙𝒏𝒋∈𝒔𝒖𝒄𝒄(𝒏𝒊) 𝒄𝒊,𝒋 + 𝒓𝒂𝒏𝒌𝒖 𝒏𝒋 ……(3)

Rankd(ni) =𝒎𝒂𝒙𝒏𝒋∈𝒑𝒓𝒆𝒅(𝒏𝒊)(𝒄𝒋,𝒊 + 𝒘𝒋 + 𝒓𝒂𝒏𝒌𝒅(𝒏𝒋)……(4)

Where pred(ni) is the set of immediate predecessors of task ni.

The algorithm targets scheduling of all critical tasks (i.e., tasks

on the critical path of the DAG) onto a single processor, which

minimizes the total execution time of the critical tasks. If the

selected task is noncritical, the processor selection phase is

based on earliest execution time with insertion-based

scheduling. The algorithm has an O(n2p) time complexity for n

nodes and p processors.

3.2 Path-based Heuristic Task Scheduling

Algorithm
The PHTS algorithm is proposed for a bounded number of

heterogeneous processors consisting of three phases namely, a

path-prioritizing phase, task selection phase, and processor

selection phase [12]. Path prioritizing phase for computing the

priorities for all possible paths. Each path is assigned by a

value called rank (pj), is given in Equation 5.

Rank(pj)= 𝒘 𝒊𝒕𝒊𝝐𝒑𝒋
+𝒄𝒊,𝒔𝒖𝒄𝒄(𝒕𝒊) ……………………………(5)

Where 𝑤 𝑖 is the average computation cost of a task ti. It is

computed by 𝑤 𝑖= 𝑤𝑖,𝑗/𝑚𝑚
𝑗=1 , and 𝑐𝑖,𝑠𝑢𝑐𝑐 (𝑡𝑖) is the

communication cost of edge from task ti to its successor, if

exists.

In task selection phase, the algorithm selects the unscheduled

tasks from the paths in the sorted path list. During the task

selection, the algorithm applies the following conditions on

each task:

 The task should not be scheduled earlier.

 The task has no parents or its parents are scheduled.

Finally, a processor selection phase where the selected task is

assigned to a processor in the set of processors that minimizes

its finish execution time using the insertion-based scheduling

policy [6].The algorithm has an O(np) time complexity for n

nodes and p processors.

3.3 Expected Completion Time Based

Scheduling Algorithm (ECTS)
ECTS algorithm consists of two phases namely, task

prioritization phase and processor selection phase. The task-

prioritizing phase consists of two stages such as level wise task

priority stage and task selection stage [13]. In the first stage,

the algorithm computes the priority for every task at each level

by using Expected Completion Time (ECT) value. Average

Computation Cost (ACC) and Maximum Data Arrival Cost

(MDAC) compute this ECT. Next Equations (6, 7, 8) explains

ACC, MDAC and ECT respectively.

ACC(ti)=
𝑾𝒊,𝒋

𝒎
𝒎
𝒋=𝟏 ………………………………………(6)

Where Wi,j is the estimated execution time to complete task ti

on processor mj.

MDCA(ti)= max ti ϵ pred(tj) (ci,j)……………………………(7)

Where ti is the set of predecessors of task tj.

ECT(ti)=ACC(ti)+MDCA(ti)………………………………(8)

The second stage related to the task selection in which the tasks

are selected from all levels based on their priority. Moreover,

in the second phase, the selected tasks are assigned to the best

processor, which minimizes its EFT.

4. OUR SCHEDULING ALGORITHM
The developed Highest Communicated Path of Task (HCPT)

algorithm consists of three phases, level sorting, task

prioritization, and processors selection. The detailed

explanation of each phase of the algorithm is given below:

Level sorting phase: In this phase, the given DAG is traversed

in a top-down fashion to sort tasks at each level in order to

group the tasks that are independent of each other.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 4, December 2014

7

Task prioritizing phase: In this phase, the HCPT algorithm

selects level and gives a priority to its tasks. It computes the

priority for each task according to new attribute called Rank as

shown in Equation (9).

Rank(ti)= MCP(ti)+𝒎𝒂𝒙𝒕𝒋∈𝒔𝒖𝒄𝒄(𝒕𝒊) 𝒄𝒊,𝒋 + 𝑹𝒂𝒏𝒌 𝒕𝒋 …….(9)

Where MCP(ti) refers to Mean Communication of Parents. It is

computed by Equation (10).

MCP(ti)=(𝑪𝒋,𝒊
𝒏
𝒋=𝟏)/n ……………………………………(10)

Where n is the number of Parents, 𝑪𝒋,𝒊is the communication

between parent tj and task ti. The algorithm starts from texit

where Rank (texit)=MCP(texit). Fig. 2 shows HCPT algorithm

steps. After the algorithm assigns a priority for each task in

selected level, it creates a new Tasks List (TL), in which the

HCPT algorithm sorts all level tasks in decreasing order to

execute the next phase.

Processor Selection Phase: the HCPT algorithm calculates

EFT of task ti by Equation (2) for each processor, and selects

the processor that has a minimum EFT to assign the task by

using the insertion-based scheduling policy [7].

Generate the DAG

Sort the DAG levels according to dependency ordering

For each level Lk

{

 For each task ti in Lk

 Compute

 Rank(ti)= MCP(ti)+𝒎𝒂𝒙𝒕𝒋∈𝒔𝒖𝒄𝒄(𝒕𝒊) 𝒄𝒊,𝒋 + 𝑹𝒂𝒏𝒌 𝒕𝒋

 End for

 Create new Tasks List TL

 Sort all tasks in decreasing order of Rank value in TL

 For each processor 𝑃𝑚 in the processor set (𝑃𝑚 є Q) do

 Compute EFT(𝑡𝑖 , 𝑃𝑚) value

 End for

 Assign task 𝑡𝑖 to the processor pm that minimizes EFT

using the insertion based scheduling policy

}

End for

Fig 2: Highest Communicated Path of Task (HCPT)

Algorithm.

The insertion-based scheduling policy considers the possible

insertion of a task in an earliest idle time slot between two

already-scheduled tasks on a processor. The length of an idle

time-slot, i.e., the difference between execution start time and

finish time of two tasks that were consecutively scheduled on

the same processor, should be at least capable of computation

cost of the task to be scheduled. Additionally, scheduling on

this idle time slot should preserve precedence constraints. Time

complexity is the amount of time taken to assign every task to

specific processor according to specific priority. Our algorithm

has O(N2P) time complexity for N number of tasks and P

number of processors.

Case Study:
Considering the application DAG shown in Fig.3, Table 1

shows the computation matrix. Initially the HCPT algorithm

sorts tasks into levels by applying level sorting phase. DAG in

Fig. 3 has four levels. Task t0 and t1 belong to L0, t2 and t3

belong to L1 and so on. In the task-prioritizing phase, the

algorithm gives a priority for each task according to equation 9.

It starts from the exit tasks (L3) where Rank(texit)=MCP(texit).

Rank(T6)=(16+4)/2=10 and Rank(t7)=(10+2+8)/3=6.667, then

the algorithm go to the next level L2. Rank (t4)=(17+8)/2

+10+6.667=29.167 and Rank(t5)=(4+1)/2+2+6.667=11.167 and

so on. The algorithm sorts tasks of each level according Rank

value. Table 2 shows the stepwise trace of the HCPT

algorithm. In processor selection phase, the HCPT algorithm

computes EFT for every task at each processor and assigns the

task to the processor with minimum EFT. The generated

schedule length after applying the HCPT algorithm and other

algorithms shown in Fig.4. The schedule length generated by

PHTS, CPOP, ECTS and HCPT algorithms respectively are

109, 125, 101 and 99. Therefore, the HCPT algorithm has

shorter execution length than the other algorithms. This leads

to good utilization of processors in the system.

Table 1.Computation Matrix

ti P0 P1

t0 12 7

t1 63 2

t2 48 22

t3 12 36

t4 59 31

t5 6 25

t6 10 49

t7 42 18

Fig 3: The Application DAG

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 4, December 2014

8

Table 2. Stepwise Trace of HCPT algorithm

Lk ti

Rank(ti)=MCP(ti) +

𝒎𝒂𝒙𝒕𝒋∈𝒔𝒖𝒄𝒄(𝒕𝒊)
 𝒄𝒊,𝒋 + 𝑹𝒂𝒏𝒌 𝒕𝒋

Priority

1
t0 0+14+60.167=74.167 1

t1 0+16+10=26 2

2
t2 3+8+29.167=40.167 2

t3 14/1+17+29.167=60.167 1

3
t4 (17+8)/2+10+6.667=29.167 1

t5 (1+4)/2+(2+6.667)=11.167 2

4
t6 (4+16)/2+0=10 1

t7 (10+2+8)/3+0=6.667 2

(a) PHTS) (b) CPOP (c) ECTS (d) HCPT

Fig 4: The schedules generated by Algorithms.

5. RESULTS AND DISCUSSIONS

5.1 Simulation Environment
A simulator had been built using visual C# .NET 4.0 on

machine with configuration: Intel(R) Core(TM) i3 CPU M 350

@2.27GHz, RAM of 4.00 GB, and the operating system is

window 7, 64-bit.

To test the performance of HCPT algorithm with the other

algorithms a set of randomly generated graphs created by

varying a set of parameters that determines the characteristics

of the generated DAGs. These parameters described as follows:

 DAG size: n (i.e. the number of tasks in the DAG).

 Density:

We use "sameprob" and "layrprob" methods to generate the

DAG [14, 15]. Let A denote a task connection matrix with

elements a(i,j), where 0≤ i ≤ n, and 0≤ j ≤ n, represent the task

number (t0 is the entry dummy node and tn is the exit dummy

node). When a(i,j)=1, ti precedes task tj, when a(i,j)=0, ti and tj

are independent of each other. In the "sameprob" edge

connection method, a(i,j) is determined by independent random

values defined as follows:

P[a(i,j)=1]=p for 1≤i<j≤n and P[a(i,j)=0]=1-p for

1≤i<j≤n, P[a(i,j)=0]=1 if i≥j, where p indicates the

probability that there exists an edge (precedence constraint)

between ti and tj . In another method, "layrprob'', firstly the

number of levels L in the task graph is generated. Next, the

number of independent tasks in each level is randomly

decided. Finally, edges between levels are connected with

the same probability p , as is "sameprob''.

 With six different numbers of processors varying from 2, 4,

8, 16, 32 and 64 processors. For each number of processors,

six different DAG sizes have been generated varying from

10, 20, 40, 60, 80 and 100 tasks. In each experiment, the

probability p and number of levels are assigned from the

corresponding sets given below:

 SETp={0.3, 0.5, 0.6, 0.7, 0.8, 0.9}

 L={No. Tasks/3, No. Tasks/4, No. Tasks/5, No. Tasks/6,

No. Tasks/8} according to number of tasks.

Performance improvement ratio has been calculated for each

parameter; schedule length, speedup and efficiency.

5.2 Results
5.2.1 Schedule length
Schedule length is the maximum finish time of the exit task in

the scheduled DAG. From Fig.5, 6, 7, 8, 9, it is noted that the

schedule length decreases after applying HCPT algorithm,

because the HCPT algorithm uses the average communication

parents and the maximum child path with highest

communication to compute priority of each task, which are the

most important values for each task. The improvement ratio in

schedule length is 16.5%. Table 3 shows, the schedule length

of CPOP, PHTS, ECTS, and our algorithm HCPT of 20, 60,100

tasks at 8 and 32 processors, sample of experimental results.

5.2.2 Speedup:
Speedup of a schedule is defined as the ratio of the schedule

length obtained by assigning all tasks to the fastest processor,

to the schedule length of an application [4]. Equation (11)

describes the speedup ratio.

Speedup=
[𝒘(𝒊,𝒋)𝒏𝒊𝝐𝑽]𝒑𝒋𝝐𝑷

𝑴𝒊𝒏

𝑺𝑳
…………..………………… (11)

Where 𝑤 𝑖, 𝑗 means the weight of task ti on processor pj and

SL means the schedule length. Speedup is a good measure for

the execution of an application program on a parallel system.

The results of the comparative study according to the speedup

parameter have been presented in Fig. 10, 11, 12, 13, 14, and

15. According to the results, it is clear that speedup of HCPT

algorithm is better than speedup of the other algorithms,

because all processors have finished tasks execution earlier

than other algorithm, so our proposed algorithm outperforms

the other algorithms in speedup parameter. The improvement

ratio in speedup is 15.85%. Table 4 shows, the speedup of

CPOP, PHTS, ECTS, and our algorithm HCPT of 20, 60,100

tasks at 8 and 32 processors, sample of experimental results.

5.2.3 Efficiency:
Efficiency as the speedup divided by the number of processors

used [4] that is described in Equation (12).

Efficiency=
𝑺𝒑𝒆𝒆𝒅𝒖𝒑

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓𝒔 𝒖𝒔𝒆𝒅
 …………… (12)

The efficiency of the parallel computers is an indication to

what percentage of a processors time is being spent in useful

computation. From Fig. 16, 17, 18, 19, 20, 21. It is noted that,

HCPT algorithm has better performance than the other

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 4, December 2014

9

algorithms. The improvement ratio in efficiency which has

been achieved by HCPT algorithm is 16.4%. Table 5 shows,

efficiency of CPOP, PHTS, ECTS, and our algorithm HCPT of

20, 60,100 tasks at 8 and 32 processors, sample of

experimental results.

Fig 5: Schedule Length with 4 Processors.

 Fig. 6: Schedule Length with 8 Processors.

Fig. 7: Schedule Length with 16 Processors.

Fig. 8: Schedule Length with 32Processors.

Fig. 9: Schedule Length with 64 Processors.

Fig. 10: Speedup with 10 Tasks.

Fig. 11: Speedup with 20 Tasks.

Fig. 12: Speedup with 40 Tasks.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 4, December 2014

10

Fig. 13: Speedup with 60 Tasks.

Fig. 14: Speedup with 80 Tasks.

Fig. 15: Speedup with 100 Tasks.

Fig. 16: Efficiency with 10 Tasks.

Fig. 17: Efficiency with 20 Tasks.

Fig. 18: Efficiency with 40 Tasks.

Fig. 19: Efficiency with 60 Tasks.

Fig. 20: Efficiency with 80 Tasks.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 4, December 2014

11

Fig. 21: Efficiency with 100 Tasks.

Table 3. Schedule Length of Algorithms (Result Samples)

NO.

Processors

NO.

Tasks
HCPT ECTS PHTS CPOP

8

20 139 149 155 166

60 404 405 402 533

100 647 690 684 1087

NO.

Processors

NO.

Tasks

HCPT

ECTS PHTS CPOP

32

20 70 75 71 144

60 224 256 251 484

100 543 550 572 1036

Table 4. Speedup of Algorithms (Result Samples)

NO.

Processors

NO.

Tasks
CPOP PHTS ECTS HCPT

8

20 2.120 1.739 2.323 2.352

60 2.505 3.35 3.551 3.716

100 2.762 3.729 3.535 3.860

NO.

Processors

NO.

Tasks

HCPT

ECTS PHTS CPOP

32

20 2 2.573 2.699 2.699

60 2.233 3.355 3.333 3.347

100 2.770 5.466 5.575 5.575

Table 5. Efficiency of Algorithms (Result Samples)

NO.

Processors

NO.

Tasks
CPOP PHTS ECTS HCPT

8

20 0.223 0.3 0.306 0.309

60 0.3 0.424 0.467 0.468

100 0.268 0.414 0.443 0.461

NO.

Processors

NO.

Tasks
HCPT ECTS PHTS CPOP

32

20 0.061 0.095 0.095 0.096

60 0.075 0.146 0.146 0.147

100 0.08 0.146 0.144 0.146

6. CONCLUSION
In this paper, a new Highest Communicated Path of Task

(HCPT) algorithm is presented for heterogeneous distributed

computing systems (HDCS). This algorithm based on Rank

value to give a priority to each task. According to the

simulation results, it is found that the HCPT algorithm is better

than ECTS, PHTS andCPOP algorithms in terms of schedule

length, speedup and efficiency. Performance improvement ratio

in schedule length, speedup and efficiency respectively are

16.5%, 15.85% and 16.4%. The HCPT algorithm can be tested

on real applications and the development can be made on

efficiency. Task duplication can be added also as a future work

to increase the efficiency of the algorithm. The HCPT can

apply on directed cyclic graph as a future work.

7. REFERENCES
[1] E. Hesham and A. Mostafa, "Advanced Computer

Architecture and Parallel Processing", (Wiley Series on

Parallel and Distributed Computing), Wiley-Inter-science

©2005, ISBN 0-471-46740-5.

[2] R. Prodan and M. Wieczorek, "Bi-criteriaScheduling of

Scientific Grid Workflows," IEEE Trans. on Automation

Science and Engineering, vol. 7, no. 2, pp. 364 –376.April

2010

[3] HuiCheng, "A High Efficient Task Scheduling Algorithm

Based on Heterogeneous Multi-Core Processor",

IEEE,Second International Workshop on Database

Technology and Application (DBTA), Pages 1-4, 27-28

November 2010,doi: 10.1109/DBTA.2010.5659041.

[4] T. Hagras and J. Janecek, "A Near Lower-Bound

Complexity Algorithm for Compile-Time Task-

Scheduling in Heterogeneous Computing Systems", Third

International Symposium on/Algorithms, Models and

Tools for Parallel Computing on Heterogeneous

Networks, and Third International Workshop onParallel

and Distributed Computing, pp.106-113, 5-7 July 2004

doi: 10.1109/ISPDC.2004.3

[5] Junghwan Kim, Jungkyu Rho, Jeong-Ook Lee, and

Myeong-Cheol Ko, "CPOC: Effective Static Task

Scheduling for Grid Computing", in: Proceedings of the

International Conference on High Performance

Computing and Communications, Italy, 2005, pp. 477–

486. DOI:10.1007/11557654_56

[6] E. Ilavarasan and P. Thambidurai, "Low Complexity

Performance Effective Task Scheduling Algorithm for

Heterogeneous Computing Environments," Journal of

Computer Sciences, Vol. 3, No. 2, PP.94-103, 2007.

[7] H. Topcuoglu, S. Hariri, and M. Y. Wu, "Performance-

Effective and Low-Complexity Task Scheduling for

Heterogeneous Computing," IEEE Trans. Parallel and

Distributed Systems (TPDS), Vol. 13, No.3, pp. 260-274,

March 2002.

[8] I. Ahmad, and Y. Kwok, "A New Approach to Scheduling

Parallel Programs Using Task Duplication", Proc.

International Conference of Parallel Processing",1994,

Vol.2, pp. 47-51, 15-19 august 1994, doi:

10.1109/ICPP.1994.37

[9] Tarek Hagras and Jan Janeˇcek, "A High Performance,

Low Complexity Algorithm for Compile-Time Task

Scheduling in Heterogeneous Systems",IEEE, 18th

Internationalconference of Parallel and Distributed

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 4, December 2014

12

Processing Symposium, 2004,pp.107-115, 26-30 April

2004, doi: 10.1109/IPDPS.2004.1303056

[10] Nirmeen A. Bahnasawy, Fatma Omara, and Magdy Qotb,

"A New Algorithm for Static Task Scheduling for

Heterogeneous Distributed Computing Systems", African

Journal of Mathematics and Computer Science Research

Vol. 4(6),pp. 221-234,June 2011.

[11] Mohammad I. Daoud, Nawwaf Kharma, "A High

Performance Algorithm For Static Task Scheduling in

Heterogeneous Distributed Computing Systems," Journal

of Parallel and Distributed Computing, Volume 68, Issue

4, PP. 399-409, April 2008,

doi:10.1016/j.jpdc.2007.05.015.

[12] R. Eswari and S. Nickolas, "Path-based Heuristic Task

Scheduling Algorithm for Heterogeneous Distributed

Computing Systems", International Conference on

Advances in Recent Technologies in Communication and

Computing, PP. 30-34, 16-17 October 2010,

DOI:10.1109/ARTCom.2010.19

[13] R. Eswari and S. Nickolas, "Expected Completion Time

Based Scheduling Algorithm for Heterogeneous

Processors", in Proc. International Conf. Information

Communication and Management(IPCSIT), vol.16, pp.72-

77, January 2012,.

[14] V. A. F. Almeida, I. M. M Vasconcelos, J. N. C. Árabe

and D. A. Menascé. "Using Random Task Graphs to

Investigate the Potential Benefits of Heterogeneity in

Parallel Systems", Proc. Supercomputing '92, pp. 683-

691, 16-20 Nov. 1992.

DOI:10.1109/SUPERC.1992.236634

[15] T. Yang and A. Gerasoulis, "DSC: Scheduling Parallel

Tasks on an Unbounded Number of Processors", IEEE

Transactionon Parallel and Distributed Systems, Vol.5,

No.9, pp. 951-967, September 1994.

IJCATM : www.ijcaonline.org

