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ABSTRACT 
This paper presents a multi-objective fuzzy chance 

constrained capacitated transportation problem based on fuzzy 

goal programming problem with capacity restrictions on 

commodities which are shipped from different sources to 

different destinations. The capacity of each origin and the 

demand of each destination are considered random in nature 

with fuzzy normal stochastic parameters following normal 

distribution with fuzzy mean and fuzzy variance respectively. 

These inequality constraints are also considered as fuzzy 

probabilistic in nature assuming to be triangular fuzzy 

numbers. Further, the supply and demand constraints are 

converted into equivalent deterministic forms. Then, we 

define the fuzzy goal tolerance limit of each of the objective 

functions which are then characterized by the associated 

membership functions. In the solution process, the fuzzy 

parameters are defuzzied by applying graded mean integration 

method which provided a satisfactory result. Further, an 

illustrative example is solved to demonstrate the effectiveness 

of the proposed model. 
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1. INTRODUCTION 
Transportation problems involving single objective are a 

special type of linear programming (LP) problems with 

sources and destinations. Several quantitative techniques in 

Operations Research (OR) have been used for solving 

transportation problems. The objective functions coefficient 

represents transportation cost, delivery time, number of goods 

transported, unfulfilled demand, and many others. In 

operations research, transportation problems involve multiple 

and conflicting goals such as the cost minimization, balancing 

work among the plants, transportation fleets, and many others 

which are achieved using goal programming (GP) technique. 

Goal programming extends linear programming to problems 

which involve multiple objectives. Here, instead of 

maximizing or minimizing the objective function, the 

deviation between the desired goals is minimized according to 

the assigned priorities [1]. GP is regarded as the most widely 

used multi-criteria decision making technique [2].  The 

simplest TP model was developed by Hitchcock [3]. The 

stepping stone method was presented by Charnes and Cooper 

[4] for explaining linear programming calculation in 

transportation problem. The solid TP model was further 

proposed by Haley [5] with single objective. Interactive 

solutions was presented by Ringuest and Rinks [6] for solving 

linear multiobjective TP. Current and Min [7] designed TP 

networks for multi objectives, namely, taxonomy and 

annotation. The capacity restriction in single objective of solid 

TP was considered by Misra and Das [8, 9].  

The main difference between fuzzy goal programming (FGP) 

and GP is that in GP there are definite aspiration values for 

each objective set by DM that he/she wishes to achieve, 

whereas in FGP aspiration levels are imprecise in nature. The 

use of fuzzy set theory in GP was first considered by 

Narasimhan [10, 11, 12], Hannan [13, 14, 15], Ignizio [16]. 

Rubin and Narsimhan [17] and Tiwari et al. [18, 19, 20] have 

investigated various aspects of decision problem using FGP. 

An extensive review of these papers is given by Tiwari et al. 

[18]. Chanas and Kuchta [21] presented a survey of fuzzy 

goal programming including three new approaches according 

to the role that fuzzy numbers play in them. Dantzig [22, 23] 

developed linear programming under uncertainty and also 

provided solution of two-stage linear programs with 

uncertainty called as the stochastic programming. Hassin and 

Zemel [24] gave the probabilistic analysis of the capacitated 

TP where an asymptotic condition was shown on the supplies 

and demands in order to assure a feasible solution to the 

problem. Bit et al. [25] studied the fuzzy programming 

approach to multi criteria decision making transportation 

problem where the right hand side parameters of the 

constraints and the coefficients in the objective functions are 

fuzzy numbers. The fuzzy programming approach to chance 

constrained multi objective TP was further studied by Bit et 

al. [26] where the parameters are considered as standard 

normal, log-normal, uniform random variables. Cen and Hsieh 

[27] proposed the graded mean integral value of a generalized 

fuzzy number.  

Pramanik and Roy [28] studied fuzzy goal programming 

(FGP) approach for multi objective capacitated TP. Recently, 

Pramanik and Banerjee [29] presented chance constrained 

multi-objective capacitated transportation problem based on 

fuzzy goal programming. Fuzzy goal programming is applied 

to chance constrained multilevel programming problems [30]. 

Also, fuzzy goal programming approach on computation of 

the fuzzy arithmetic mean is proposed [31]. Further, Nayebi et 

al. [32] presented a fuzzy-chance constrained multi-objective 

programming applications for inventory control model 

involving a fuzzy chance parameter following normal 

distribution.  

In this paper, supply and demand are considered as fuzzy 

normal stochastic parameters following normal distribution 

with fuzzy mean ,
ia bjm m  and fuzzy variance 2 2,

ia bj 

respectively, each representing triangular fuzzy numbers. The 

inequality constraints are also considered as fuzzy 

probabilistic in nature. Thus, the allowed minimum 
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probability is also assumed to be a triangular fuzzy number as 

,i j  . Further, the supply and demand constraints are 

converted into equivalent deterministic forms. The fuzzy 

parameters are also defuzzied by applying graded mean 

integration method.  

2. MATHEMATICAL MODEL 

INVOLVING FUZZY CHANCE 

CONSTRAINED MULTI-OBJECTIVE 

CAPACITATED TRANSPORTATION 

PROBLEM (FCCMOCTP) 
Consider a transportation problem involving m sources 

(origins) Oi (i = 1, 2,…, m) and n destinations Dj (j = 1, 2,..., 

n). At each source Oi (i = 1, 2,..., m), let ai be the amount of 

product to be transported from ith origin to the jth destination 

Dj in order to satisfy the demand bj (j = 1, 2 , … ,  n). Here, ai, 

bj are considered as random variables which are assumed to be 

triangular fuzzy numbers with known distribution. Also, 

under k-th criterion, there exists a penalty cij
k associated with 

transporting one unit of product from source Oi to destination 

Dj. In general, cij
k denotes the transportation costs, delivery 

time, damage charges, underused capacity, etc. Let xij 

represents the unknown quantity transported from i-th origin 

to j-th destination. There also exist certain limitations on the 

amount of resources allocated in different cells as per 

capacitated transportation problem. Let tij be the maximum 

amount of quantity transported from i-th source to j-th 

destination i.e. xij < tij. This restriction is called the capacitated 

restriction on the route i to j. Here, an unbalanced 

transportation problem is considered. 

This section presents a model in fuzzy environment. Consider 

developing the model where both ai and bj are random 

variables. Here, ai and bj follow normal distribution with 

fuzzy mean ,
ia bjm m  and fuzzy variance 2 2,

ia bj  respectively. 

The allowed minimum probability is also assumed to be a 

fuzzy numbers as  ,i j   . Then the above unbalanced TP can 

be defined as: 

1 1

, 1,2,...,
m n

k k

ij ij

i j

MinZ c x k K
 

               (1) 

Subject to 

1

Pr ( ) 1 , 1,2,...,
n

ij i i

j

ob x a i m


                (2) 

1

Pr ( ) 1 , 1,2,...,
m

ij j j

i

ob x b j n


                (3) 

0 , 1,2,..., , 1,2,...,ij ijx t i m j n                (4) 

0 1i                                 (5) 

0 1j                                      (6) 

Here, ,i j   denotes the confidence levels for each constraint 

respectively. 

The above fuzzy numbers are assumed to triangular fuzzy 

numbers parameterized by a triplet expressed in the form    

(a1, a2, a3) where a1 and a3 are the lower and upper limits of a 

fuzzy number and a2 is the pick value of that fuzzy number. 

 

2.1 Triangular Fuzzy Number (TFN) 

Let A  be the triangular fuzzy number represented by the 

triplet (a1, a2, a3) which is defined by its continuous 

membership function (y) : Y [0,1]
A

   given by 

1
1 2

2 1

2

3
2 3

3 2

1
(y)

0

A

y a
if a y a

a a

if y a

a y
if a y a

a a

otherwise




  


 

 
  

 



 

The chance constraints are converted into equivalent 

deterministic constraints with the help of fuzzy mean, fuzzy 

variance and fuzzy confidence levels as described in the 

section below. 

 

 

 

 

 

 

 

Fig 1: Triangular Fuzzy Number 

2.2 Deterministic Constraints Construction 
Consider the fuzzy chance constraints of the form: 

1

Pr ( ) 1 , 1,2,...,
n

ij i i

j

ob x a i m


     

The above constraint can be rewritten in the form: 

1

2 2
Pr ( ) 1 , 1,2,...,

i

i

i i

n

ij a

i aj

i

a a

x m
a m

ob i m
 






   


 

1

2 2
1 Pr ( ), 1,2,...,

i

i

i i

n

ij a

i aj

i

a a

x m
a m

ob i m
 






   


 

1

2 2
Pr ( ), 1,2,...,

i

i

i i

n

ij a

i aj

i

a a

x m
a m

ob i m
 






  


 

11

2
( ) , 1,2,...,

i

i

n

ij a

j

i

a

x m

i m 






 


 

1 2

1

( ) , 1,2,...,
i i

n

ij a i a

j

x m i m  



              (7) 

where ρ(.) and ρ-1(.) represent the distribution function and 

inverse of distribution function of standard normal variable 

respectively. 

Similarly, consider the second fuzzy chance constraint of the 

form: 

a1 y = a2 

a3 

0 1 
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1

Pr ( ) 1 , 1,2,...,
m

ij j j

i

ob x b j n


     

The above constraint can be rewritten in the form: 

1

2 2
Pr ( ) 1 , 1,2,...,

n

ij bj

j j bj

j

bj bj

x m
b m

ob j n
 






   


 

1

2 2
1 Pr ( ), 1,2,...,

n

ij bj

j j bj

j

bj bj

x m
b m

ob j n
 






   


 

1

2
( ) 1 , 1,2,...,

n

ij bj

j

j

bj

x m

j n 






  


 

1

2
1 ( ) 1 , 1,2,...,

n

ij bj

j

j

bj

x m

j n 






    


 

1

2
( ) , 1,2,...,

n

ij bj

j

j

bj

x m

j n 






  


 

1 1

2
( ), 1,2,...,

n

ij bj

j

j

bj

x m

j n 


 



  



 

 

1 2

1

( ) , 1,2,...,
n

ij bj j bj

j

x m j n  



            (8) 

Equations (7) and (8) are determined at each of the triangular 

fuzzy numbers, ,
ia bjm m , 2 2,

ia bj  and ,i j  .  

Then this model is reduced to deterministic multi-objective 

capacitated transportation problem defined as follows: 

1 1

, 1,2,...,
m n

k k

ij ij

i j

MinZ c x k K
 

    

Subject to the constraints: 

1 2

1

( ) , 1,2,...,
i i

n

ij a i a

j

x m i m  



  
 

          (9) 

1 2

1

( ) , 1,2,...,
n

ij bj j bj

j

x m j n  



           (10) 

0 , 1,2,..., , 1,2,...,ij ijx t i m j n              (11) 

0 1i                              (12) 

0 1j                                   (13) 

3. FGP MODEL FORMULATION OF 

CCMOCTP 
Let Zk represents the objective function to minimize the 

transportation cost, time, damages during transportation 

subject to the system constraints (9), (10) and (11). Let 

andL U

k kZ Z  represents the individual best and worst (or upper 

and lower) solution of the objective function subject to system 

constraints respectively. The fuzzy goals are represented as: 

L

k kZ Zˆ  . 

The linear membership function for the fuzzy goal can be 

written 

 

1

0

k

k

k k

k

L

k

U
L Uk

k k kU L

k k

U

k

if Z Z

Z Z
if Z Z Z

Z Z

if Z Z

Z




  













            (14) 

proposed by Zimmermann [33]. 

Here U L

k kZ Z is the tolerance range for the k-th goal. 

Thus, the membership goal of each membership function 

using the model studied by Pramanik and Dey [34] can be 

written as: 

  1
k k kZ d


                (15) 

Here, 
kd   represents the underachievement of the objective 

function. 

Thus, the fuzzy goal programming for FCCMOCTP can be 

formulated as: 

1

K

k k k

k

MinZ w d 



                (16) 

Subject to the constraints (9), (10), (11) and 

0 1kd                    (17) 

Here, 

1
k U L

k k

w
Z Z




 is the weight associated with the k-th objective 

function.                (18) 

As some of the parameters are assumed to be TFNs 

(Triangular Fuzzy Numbers), therefore, the problem involving 

fuzzy parameters is further defuzzied by applying graded 

mean integration method.  

3.1 Generalized Fuzzy Number 
The generalized fuzzy number A with the membership 

function (y)
A

  (figure below) exhibit a fuzzy subset of the 

real line, where 

1 2

2

2 3

( )

1
( )

( )

0

A

L y if a y a

if x a
y

R y if a y a

otherwise



 



 

 


            (19) 

where L(y) and R(y) are continuous function of y. Moreover, 

L(y) and R(y) are strictly monotonically increasing and 

strictly monotonically decreasing functions respectively, of y 

in 
1 2a y a  and 

2 3a y a  . 

 

3.2 Graded Mean Integration value of 

Fuzzy Number 
According to Chen and Hsieh [27], the graded mean integral 

value of a generalized fuzzy number A  with the membership 

function (y)
A

 defined by PdGw  A of A is given by 
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 
1

1 1

0

1

0

(1 ) ( ) ( )

( )dGw

y w L y wR y dy

P A

ydy

  






  

This implies 

 
1

1 1

0

( ) 2 (1 ) ( ) ( )dGwP A y w L y wR y dy     (20) 

where  0,1w is a pre-assigned parameter which represents 

the degree of optimism. 

w = 1 indicates optimistic approach of decision maker’s; w = 

0 indicates pessimistic approach of decision maker’s and w = 

0.5 indicates moderate optimistic approach of decision 

maker’s. The graded mean integration value of triangular 

fuzzy number.  

 1 2 3, ,A a a a with moderate optimistic approach of decision 

maker is given by 

1 2 3
0.5( )

6
dG

a a a
P A

 
             (21) 

Therefore, the above model where both ai and bj are random 

variables following normal distribution with fuzzy mean 

,
ia bjm m  and fuzzy variance 2 2,

ia bj  respectively, along with 

the  minimum probability assuming fuzzy number as ,i j 

which are TFNs are represented using graded mean 

integration value method with moderate optimistic. 

4. ILLUSTRATIVE EXAMPLE 
Consider the following example taken from Pramanik and 

Banerjee [29] to demonstrate the potentiality of the proposed 

FGP models. Consider three origins and three destinations. 

The TP cost, time and the damage charges during the 

transportation are represented by three square matrices of 

order three. The matrices are given bellow: 

Cost matrix:  

3 4 13

12 14 7

15 10 8

  

Time matrix:  

9 1 3

2 4 6

8 12 10

 

Damage charge: 

8 9 11

3 4 7

2 1 6

  

Then the objective functions can be represented by 

Min Z1
 = (3x11+4x12+13x13) + (12x21+14x22+7x23) + 

(15x31+10x32+8x33)                  (22) 

Min Z2
 = (9x11+1x12+3x13) + (2x21+4x22+6x23) + 

(8x31+12x32+10x33)                  (23) 

Min Z3
 = (8x11+9x12+11x13) + (3x21+4x22+7x23) + 

(2x31+1x32+6x33)                   (24) 

Subject to 

1

Pr 1 ; 1,2,3
n

ij i i

j

ob x a i


 
    

 
           (25) 

1

Pr 1 ; 1,2,3
m

ij j j

i

ob x b j


 
    

 
           (26) 

The capacitated constraints are given below: 

0 < x11 < 6, 0 < x12 < 7, 0 < x13 < 13 

0 < x21 < 6, 0 < x22 < 2, 0 < x23 < 13 

0 < x31 < 4, 0 < x32 < 7, 0 < x33 < 14          (27) 

 1

13 23 33 21.17 16.33 0.031x x x      

 21.17 16.33 1.866 13.63    

The triangular fuzzy mean, variance, and the confidence 

levels are described as: 

1 1

2

1(11,12,14), (8,9,11), (0.005,0.01,0.015)a am      

2 2

2

2(14,15,17), (3,4,6), (0.01,0.02,0.04)a am      

3 3

2

3(19,20,23), (6,7,9), (0.025,0.03,0.04)a am      

1 1

2

1(8,9,11), (1.5,2,4), (0.005,0.01,0.015)b bm      

2 2

2

2(12,13,15), (7,8,10), (0.01,0.02,0.04)b bm      

3 3

2

3(20,21,23), (15,16,19), (0.025,0.03,0.04)b bm           (28) 

The triangular fuzzy mean, variance, and the confidence 

levels are described as: 

1 1

211 4(12) 14 8 4(9) 11
12.17, 9.17,

6 6
a am 

   
     

1

0.005 4(0.01) 0.015
0.01

6


 
 

 

1

0.005 4(0.01) 0.015
0.01

6


 
 

 

Similarly, conducting the same for other, we get, 

2 2

2

215.17, 4.17, 0.022a am      

3 3

2

320.33, 7.17, 0.031a am      

1 1

2

19.17, 2.25, 0.01b bm      

2 2

2

213.17, 8.17, 0.022b bm      

3 3

2

321.17, 16.33, 0.031b bm                  (29) 

Thus, the chance constraints (25) – (26) using the above 

values corresponding to the lower limit of the triangular fuzzy 

numbers and equation (9) and (10) can be represented as: 

1

11 12 13  12.17 9.17 (0.01)

12.17 9.17(2.326) 19.2136

x x x     

  
 

1

21 22 23  15.17 4.17 (0.022)

15.17 4.17(2.014) 19.2827

x x x     

  
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1

31 32 33  20.33 7.17 (0.031)

20.33 7.17(1.866) 25.33

x x x     

  
 

21 31

1

11  9.17 2.25 (0.01)

9.17 2.25(2.326) 5.681

x x x     

  
  

12 3

1

222 13.17 8.17 (0.022)

13.17 8.17(2.014) 7.413

x x x     

           
(30)

 

To determine the tolerance range of each objective, solve each 

objective separately for minimization and maximization of 

objective function with respect to the constraints obtained by 

using above methodology, that is, equations (27) and (30). 

Thus, the tolerance ranges for the three objective functions are 

taken as:  

[145, 614.83], [65.15, 443.78], [103.475, 409.77].  

Thus the chance constraints fuzzy goal programming as 

described in (16), (17) and (18) can be formulated as:  

1 2 3

Minimize

1 1 1

614.83 145 443.78 65.15 409.77 103.475
d d d   

  

       

Subject to 

1
1

614.83
1

614.83 145

Z
d 

 


          

2
2

443.78
1

443.78 65.15

Z
d 

 


        

3
3

409.77
1

409.77 103.475

Z
d 

 


        

Equations (27) and (30) 

The capacitated constraints (27)
 

0 1, 1,2,3id i              

where Z1, Z2, Z3 are same as specified in (22) – (24). 

1
1

614.83

614.83 145

Z






         

2
2

443.78

443.78 65.15

Z






         

3
3

409.77

409.77 103.475

Z






         

Solving the above problem using LINGO, we obtain the 

following solution:  

x11 = 0, x12 = 7, x13 = 0, x21 = 5.68, x22 = 0.413, x23 = 13, x31 = 

0, x32 = 0, x33 = 0.63. 

The values of the membership functions are  

µ1 = 0.67, µ2 = 0.81, µ3 = 0.48 

and the values of the objective functions are obtained as: 

 Z1 = 197.99, Z2 = 104.314, Z3 = 176.475 

Thus we can conclude from the above results that graded 

mean integration method provide a satisfactory results.  

6. CONCLUSION 
This paper presents fuzzy chance constrained fuzzy goal 

programming and its application for solving CCMOCTP with 

fuzzy mean, fuzzy variance and fuzzy confidence level. 

Further, fuzzy parameters are defuzzied by applying graded 

mean integration method. The illustrative example shows that 

by defuzzification of triangular fuzzy numbers one can obtain 

a satisfactory solution.  

In future this FGP model can be used in many practical 

problems like plant management, travelling salesman 

problems, resource allocation problem, assignment problems, 

etc. with crisp demands and supplies. The concept presented 

in this paper can also be applied for non-hierarchical as well 

as hierarchical organization involving multi-objective 

fractional programming problem. 
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