
International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 21, December 2014

31

Malware Prevention and Detection System using Smart

Phone

Sachin M. Kolekar
Department of Computer Engineering,STES’s Smt.
Kashibai Navale College of Engineering, Pune-41

Parikshit N. Mahalle, Ph.D

Department of Computer Engineering,STES’s Smt
Kashibai Navale College of Engineering, Pune-41

ABSTRACT
Mobile malware is a malicious software.This software used to

disrupt computer operation. This paper surveys current state

of mobile malware in the wild. Types of malware

includingviruses,Trojans,Rootkits,Zombies,worms,Spyware,a

dware,spam,email and Denial Of Services(DOS) attaks.

Survey the different types of operating system in different

differ mobile.In this paper, we present the different types of

malware detection techniques & discuss the smart phone

security challenges.

Keywords
Kirin security,Cloud-base detection,malware, Access Contro,

spyware l, prevention,Decision table.

1. INTRODUCTION
Malware is malignant software that is specially built to assail

mobile phone or keenly intellective phone systems. botnets,

worms,and Trojan horses.[1]Initially, malware merely

highlighted a software system’s security susceptibilities, but

the motivations behind it gradually transmuted, and its authors

now use malware to gain financial benefits on a more sizably

voluminous scale.

Malware aimed at Android smart phones alone has grown

76% over the last few months, threatening Android security,

and other platforms are additionally coming under attack. In

additament to malware, the other two major categories of

threats to mobile contrivances are personal spyware and

grayware. Spyware amasses information such as utilizer

location,SMS messages, and call history without the victim’s

cognizance.Spyware can’t be labeled as illicit because it

doesn’t send information to the application’s author, but

installing personal spyware on a mobile phone without the

contrivance owner’s sanction could be considered unethical.

2. MOBILE THREAT MODEL
In this paper present three types of threats posed by third-

party smart phone applications and discuss the security

measures that are intended to detect and prevent them.

2.1 Types of Threat
In mobile threat model includes main two types of threats:

grayware, and Anti-spyware. We distinguish between the

three predicated on their distribution method, licit-ity, and

notice to the utilizer. This paper focuses Specially on

malware; personal spyware and grayware use different attack

vectors, have different motivations, and require different

bulwark mechanisms.

2.1.1 Grayware
Greyware refers to a malignant software or code that is

considered to fall in the "grey area" between mundane

software and a virus. Greyware is a term for which all other

maleficent or exasperating software such as adware, spyware,

trackware, and other maleficent code and malevolent

shareware fall under.

2.1.2 Anti-spyware[1]
Anti-spyware is a type of software that is designed to detect

and abstract unwanted spyware programs. Spyware is a type

of malware that is installed on a computer without the

utilizer's cognizance in order to amass information about

them. This can pose a security risk to the utilizer, but more

frequently spyware degrades system performance by taking

up processing puissance, installing supplemental software, or

redirecting users' browser activity.

2.2 Security measures in smart phone[2]
Smartphone operating system vendors use curated mar-kets

and/or application sanctions to bulwark users. Wefixate on

iOS, Android, and Symbian 9.x.

Markets Application: Smartphone users are emboldened to

download and purchase applications from centralized

application mar-kets. Apple, Google, and Nokia promote the

utilization of central-ized markets with decrementing

rigor.Apple iOS contrivances sanction the utilizer to install

applications only from the Apple App Store, and applications

in the Apple Store are reviewed by Apple for security

purpose. If iOS users want to install applications from any

other sources, then they must jailbreak their contrivances,

which involves exploiting a vul-nerability in iOS to gain

super-user access. This process carries the jeopardy of

rendering the phone inoperable, and it voids the phone's

warranty. Apple's review process is intended to avert malware

from being distributed through the Application Store. Their

review standards withal disallow personal spy-ware, but an

assailant with physical access to the victim's contrivance

could jailbreak the phone without the victim's knowledge to

install personal spyware. The App Store is kenned to have

included grayware in some cases, the grayware has been

abstracted from the App Store.

Android additionally provides users with an official

application store, the Android Market.Most Android phones

sanction users to additionally install applications from

unofficial though the utilizer is admonished that installing

non-Market applications may expose the utilizer to malware.

Google does not any type of review applications prior to

listing them in the Android Market, albeit they may review

some applications later. Personal spyware (e.g., GPS Spy

Plus) and grayware are listed in the Android Market. The

Android security team has abstracted malware from the

Android Market following utilize complaints, and they are

able to remotely uninstall kenned malware from users'

contrivances.

Nokia runs Ovi, which is currently the official Symbian

application market. Like the Apple App Store, all applica-

tions are reviewed prior to being listed in Ovi. Symbian does

not avert or dismay users from installing applications from

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 21, December 2014

32

other sources. Several popular alternative markets are

available, and they lack review processes. However, Sym-bian

offers an application signing accommodation that incorporates

security reviewing. Only Symbian Signed applications are

sanctioned to access hazardous privileges. All Symbian

Signed applications must undergo an automated security

review.Applications that utilize the most hazardous privileges

are additionally reviewed by humans, and some number of

other Symbian Signed applications are withal human-

reviewed. As a consequence of the signing process, many

applications in third-party Symbian markets have undergone

review.

3. PREVENTION APPROACH
For our malware prevention approach to be usefull in practice,

it must gratify the following properties:

3.1 Lightweight-ness

The approach should be lightweight in terms of the sundry

required resources available on the phone, such as

recollection, computation and battery power.

3.2 Efficiency
The approach should incur small delay.Otherwise, it can

affect the overall usability of the system. We believe that no

more than a few seconds should be spent executing the

approach.

4. MALWARE DETECTION

TECHNIQUES [2]
Malware detection techniques available for detecting mobile

malware and other security susceptibilities have varying

strengths and weaknesses.

4.1 Signature-based malware Detection
A pattern-marching approach commercial antivirus is an

example of signature predicated malware detection where the

scanner scans for a sequence of byte within a program code to

identify and report a malignant code. This approach to

malware detection adopts a syntactic level of code injuctive

authorizations in order to detect malware by analysing the

code during program compilation. This technique

conventionally covers consummate program code and within

a short period of time. However, this method has constraint by

ignoring the semantics of injuctive authorizations,which

sanctions malware obfuscation during the program’s run-time.

In smart phone operating systems, the comportment of

malware may occur in multiple locations, the occurrence of

these acts amalgamated according to certain timing in order to

constitute maleficent software comportment, one or a few of

these separate demeanor can’t determine whether they are

malevolent behaviour’s or not. This amassment is then

processed by temporal cognations, after all the demeanors are

abstracted and signed to software demeanor patterns. Code

packing, simple scrambling does not transmute the demeanor

of software, malware and its variants are generally in the same

run-time deportment patterns, the signature of these malware

can be detected through the same deportment Compared with

feather-predicated malware detection method, the signature

database of comportment signature predicated is becoming

more minute, so the be behaviour’s predicated detection of

malevolent software signature.is ideal for resource-

constrained mobile contrivances. Incipient malevolent

software customarily include incipient comportment signature

that is inconsistently erratic with the antecedent kenned

mundane demeanor, so comportment-predicated malware

detection signatures can detect incipient and unknown

malware.

4.2 Specification-based malware detection
Designation predicated detection makes utilization of certain

rule set of what is considered as mundane in order to decide

the maleficence of the program contravening the predefined

rule set. Thus programs transgressing the rule set are

considered as maleficent program. In designation-predicated

malware detection, where a detection algorithm that addresses

the deficiency of pattern-matching was developed. This

algorithm incorporates ordinant dictation semantics to detect

malware instances. The approach is higer resilience to

prevalent obfuscation techniques. It used template T to

describe the malevolent demeanors of a malware, which are

sequence of ordinant dictations represented by variables and

special symbolic constants. The circumscription of this

approach is that the attribute of a program cannot be

accurately designated. Designation-predicated detection is the

derivate of anomaly predicated detection. Instead of

approximating the implementation of a system or application,

specification based detection approximates the requisites of

application or system. In designation-predicated system there

subsists a training phase which endeavors to learn the all valid

comportment of a program or system which needs toinspect.

The main constraint of designation predicated system is that it

if very arduous to accurately designate the deportment the

system or program. One such implement is Panorama which

captures the system wide information flow of the program

under inspection over a system, and checks the deportment

against a valid set of rule to detect malevolent activity.

4.3 Data Mining Technique of Detecting

Malware
In data mining methods for detecting maleficent executables,

a maleficent executable as a program that performs function,

such as compromising a system security, damaging a system

or obtaining sensitive data without any user’s sanction. Their

data mining methods detect patterns in immensely czolossal

amounts of data, such as byte code, and utilize these patterns

to detect future instances in kindred data. Their framework

used classifiers to detect incipient maleficent executables. A

classifier is a rule set, or detection model, engendered by the

data mining algorithm that was trained over a given set of

training data. They designed a framework that used data

mining algorithms to train multiple classifiers on a set of

maleficent and benign executables to detect incipient

examples. The binaries were first statically analysed to extract

properties of the binary, and then the classifiers trained over a

subset of the data. Their sizably voluminous sets of programs

from public sources were dissevered into differnt two classes

that is malevolent and benign executables. Example of this

data set is a Windows and MS-DOS formats executable,

which is additionally applicable to other formats. Since the

virus scanner was updated and the viruses were obtained from

public sources, it was surmised that the virus scanner has a

signature for each malevolent virus. They then split the

dataset into two subsets: the training set and the test set.The

data mining algorithms utilized the training set while

engendering the rule sets. The test set was then used to check

the precision of the classifiers over unseen examples. This

data mining method was able to detect aforetime undetectable

maleficent executables by comparing the results with

traditional signature-predicated methods and with other

learning algorithms. The Multi-Naive Bayes method had the

highest precision and detection rate of any algorithm over

unknown programs, 98.76%, over double the detection rates

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 21, December 2014

33

of signature based methods. Its rule set was withal more

arduous to subjugate than other methods because all lines of

machineinjuctive authorizations would have to be transmuted

to evade detection.

4.4 Cloud-Based Detection [5]
In this scheme a lightweight client application monitors the

system calls in the contrivance and sends it to the server in

cloud to detect malignant department.Paranoid Android is a

cloud-predicated malware bulwark technique that moves

security analysis and computations to a remote server that

hosts multiple replicas of mobile phones running on emulators

A tracer, located in the smart phone, records all the

indispensable information required to reply to the mobile

application’s execution. The tracer transmits the recorded

information to the cloud-predicated replier,which replays the

execution in the emulator. The replier can deploy several

security checks, such as dynamic malware analysis,

recollection scanners, system call anomaly detection, and

commercial antivirus scanning from the cloud’s ample

resources.Crowdroid is a demeanor-predicated mobile

malware detection technique for Android. Crowdroid is a

lightweight client application that monitors system calls

invoked by the target mobile application, preprocesses the

calls, and sends them to cloud where a clustering technique

avails determine whether the application is maleficent.

Increased utilization of Crowdroid results in ameliorated

malware detection but utilizing the approach initially might

cause erroneous positives, as the sample size is still

diminutively minuscule.

“Fig1.cloud based Detection”

5. MALWARE ANALYSIS TOOL

5.1 Multiple-Path Pxploration
Automatic dynamic malware-analysis implements engender

their reports predicated on a single execution trace of the

sample under analysis. The utilization of logic bombs

sanctions malware to only reveal its maleficent deportment

predicated on arbitrary constraints. For example, a malware

sample could defer its malevolent activities until a certain date

is reached or stop executing if obligatory files cannot be found

on the infected system. To overcome this shortcoming, Moser

et al. [2007a] present an implement capable of exploring

multiple execution paths for Windows binaries. This

implement apperceives a branching point whenever a control-

flow decision is predicated on data that originates outside the

monitored process.This data can only be introduced to the

process via system calls. Thus, a branching point is detected if

a control-flow decision is predicated on a return value of a

system call.Every time such a situation occurs, the implement

takes a snapshotof the running process that sanctions the the

system to reset to this state. Execution process is perpetuated

and after a timeout the system is reset to the recorded

snapshot. Then, the value that is responsible for the control-

flow decision is manipulated such that the control flow

decision making is inverted, resulting in the execution of the

alternate path.

This approach elongates Anubis and applies dynamic taint

tracking to analyze how data returned from system calls is

manipulated and compared by the process under analysis. The

system calls are responsible for introducing the taint-labels

handle-file system and registry access, as well as network

activities and date/time information. When manipulating a

value upon resetting the system state, special care is taken by

the system to update the value utilized in the corresponding

compare ordinant dictation in a consistent manner. This

designates that not only the value directly involved in the

comparison must be transmuted, but all other recollection

locations that depend on this value must be manipulated in a

consistent manner to make the execution of alternative paths

feasible. To achieve this, the system stores a set of

recollection locations for each branching point that depends

on the compared value amalgamated with a set of linear

constraints describing these dependencies. During a reset, the

set of constraints is evaluated by a constraint solver to

engender the values that need to be superseded to coerce

execution down the other path. If a dependency cannot be

modeled as a linear constraint the system is unable to update

the recollection locations in a consistent manner.

5.2 Norman Sandbox
Norman Sandbox[3] is a dynamic malware-analysis solution

which executes he sample in a tightly controlled virtual

environment that simulates a Windows operating system. This

environment is utilized to simulate a host computer as well as

an affixed local area network and, to some extent, Internet

connectivity. The core conception a baft the Norman Sandbox

is to supersede all functionality required by an analyzed

sample with a simulated version thereof. The simulated

system, thus, has to provide support for operating system-

relevant mechanisms, such as memory protection and

multithreading support. Moreover, all required APIs must be

present to give the sample the fake impression that it is

running on a real system. Because the malware is executed in

a simulated system, packed or obfuscated executables do not

hinder the analysis itself. As described in a packed binary

would simply perform the unpacking step and then continue

executing the original program. However, to minimize the

time spent in analysis, binaries that are obfuscated by a known

packer program are unpacked prior to analysis.

Norman Sandbox fixates on the detection of worms that

spread via email or P2P networks, as well as viruses that

endeavor to replicate over network shares. In additament,

ageneric malware-detection technique endeavors to capture

other malevolent software.The Norman Sandbox provides a

simulated environment to the sample under analysis

consisting of custom-madeversionof user-land APIs necessary

for executing the sample. The functions providing these APIs

are heavily instrumented with the corresponding analysis

capabilities. Furthermore, to keep the simulation self-

contained, these replacement APIs do not perform any

interactions with the real system. Instead, the results of such

API calls are created to allow the malware to continue

execution (e.g., filling in the correct API function-return

values). Bookkeeping takes place if required to thwart some

detection techniques applied by malicious software. For

example,a malware sample might try to detect the analysis

tool by writing to a file and trying to read from that file later

on to check if the stored information is still there. If the

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 21, December 2014

34

analysis tool does not provide the correct results to the read
request, the malware can detect that it is being analyzed and

will terminate without revealing its true malicious intents.

Special care is taken with respect to networking APIs. All

networking requests issued by the sample under analysis are

redirected to simulated components. If, for example,a sample

intends to spread itself via email, it has to contact an SMTP

server to send email. The connection attempt to TCP port 25

is detected, and instead of opening a connection to the real

server, the connection is redirected to a simulated mail

server.This is not deleted by the sample under analysis, and it

will start sending the mail commands, including the malicious

payload. An analogous approach is followed when a sample

tries to write to a simulated network share or tries to resolve

host names to IP addresses via DNS queries.

6. LITERATURE [6]
As part of our survey, we examined the sanctions of Android

malware. Android application malware commonly requests

the capability to direct send sms messages,which is not

common among non malicious applications. However, we

were unable to identify any other permission-based patterns

for malware classification. Permission-based classification

will require future consideration as the set of known Android

malware grows. We also observed that none of the malware in

our data set was approved by the Apple Application Store,

which indicates that human review may be an effective

preventative measure for malware. Symbian's automated

review-and-sign process fared worse; nearly a third of the

Symbian malware in our data set was approved by or evaded

this process.Currently, both malware authors and smartphone

users are incentivized to find root exploits. The homebrew

community publishes root exploits to help smartphone owners

customize their phones. However, malware can use these

same root exploits to circumvent smartphone security

mechanisms; indeed, 4 pieces of malware in our data set do

this.We consider the impact of the homebrew community and

find that root exploits are available between 74% and 100% of

phones' lifetimes. We recommend that phone manufacturers

support smartphone customization so that the homebrew

community does not need to seek root exploits.

Survey the state-of-the-art analysis techniques as well as the

implements that avail an analyst to expeditiously and in detail

gain the required erudition of a malware instance’s demeanor.

study the dynamic analysis tools with the help of dynamic

analysis tool process of executing a malicious sample and

monitoring its behavior. Most dynamic analysis tools

implement functionality that monitors which APIs are called

by the sample under analysis, or which system calls are

invoked. Several analysis tools provide the functionality to

observe how sensitive data is processed and propagated in the

system.Automated dynamic analysis results in a report that

describes the observed actions the malware has performed

while under analysis. These reports can be compiled into

behavioral profiles that can be clustered to amalgamate

samples with homogeneous behavioral patterns into coherent

groups (i.e., families). Furthermore, this information can be

used to decide which incipient malware samples should be

given priority for exhaustive analysis(i.e., manual inspection).

In order to achieve this, behavioral profiles of incipient threats

can be automatically engendered by an analysis implement

and compared with the clusters.While samples with

behavioral profiles near a subsisting cluster probably are a

variation of the corresponding family, profiles that deviate

considerably from all clusters likely pose an incipient threat

worth analyzing in detail. This prioritization has become

compulsory as techniques such as polymorphic encodings or

packed binaries sanction assailers to release hundreds of

incipient malware instances every day. Although such

samples might evade static signature matching, their

homogeneous deportment observed through dynamic analysis

might reveal their affiliation with a given malware family.

7. PROPOSED WORK

Fig2.Poposed work with Kirin security

An application certification for Android. Kirin[1] performs a

sanction check on the application during installation. When a

utilizer installs an application, Kirin extracts its security

configurations and checks them against the security policy

rule that it already has. If an application fails to pass all the

security policy rules, Kirin can either expunge it or vigilant

the utilizer.

In proposed work when uploading application (.apk file),

application owner has to specify information about the list

of permissions application is going to use. All the information

about application will be stored on centralize server. This

information will be used to verify Kirin Security Service, if

verification is true then application is allowed to download

otherwise application is marked as malware.

8. CONCLUSION
This paper presented a comprehensive overview of the state-

of-the-art analysis techniques as well as the tools that aid an

analyst to quickly and in detail gain the required knowledge of

a malware instance’s behavior. Additional work in the

proposed system is, the malware dynamic detection which can

be achieved with the combination of kirin security service.

Information will be used to verify the application at the time

installation and if verification is true then application

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 21, December 2014

35

installation is processed else the installation is rejected which

adds more security to a Smartphone by detecting the malware.

9. REFERENCES
[1] A.P. Felt et al., “A Survey of Mobile Malware in the

Wild,”Proc. ACM Workshop Security and Privacy in

Mobile Devices(SPMD 11), ACM, 2011, pp. 3-14.

[2] Adebayo, Olawale Surajudeen, Mabayoje, Amit Mishra,

Osho Oluwafemi, “Malware Detection, Supportive

Software Agents and ItsClassification Schemes”,

International Journal of Network Security & Its

Applications (IJNSA), Vol.4, No.6, November 2012.

[3] T. Blasing et al., “An Android Application Sandbox

System for Suspicious Software Detection,” Proc. 5th

Int’l Conf. Malicious and Unwanted Software (Malware

10), ACM, 2010,pp. 55-62.

[4] M. Egele et al., “A Survey on Automated Dynamic

Malware Analysis Techniques and Tools,” ACM

ComputingSurveys,2012;https://www.seclab.tuwien.ac.at

/papers/malware_survey.pdf.

[5] W. Enck et al., “A Study of Android Application

Security,”Proc. 20th Usenix Security Symp., Usenix,

2011;http://static.usenix.org/events/sec11/tech/full_paper

s/Enck.pdf.

[6] IDC, “Mobile Phone Market Grows 17.9% in Fourth

Quarter, According to IDC,” press release, 28 Jan.2011;

www.idc.com/about/viewpressrelease.jsp?containerId=pr

US22679411.

[7] D. Barrera et al., “A Methodology for Empirical Analysis

of Permission-Based Security Models and Its Application

to Android,” Proc. 17th ACM Conf. Computer and

Communications Security (CCS 10), ACM, 2010, pp. 73-

84.

[8] A.D. Schmidt et al., “Detecting Symbian OS Malware

through Static Function Call Analysis,” Proc. 4th Int’l

Conf.Malicious and Unwanted Software (Malware 09),

IEEE, 2009, pp. 15-22.

[9] M. Egele et al., “PiOS: Detecting Privacy Leaks in iOS

Applications,”Proc. ISOC Network and Distributed

System Security Symp. (NDSS 11), ISOC, 2011;

www.iseclab.org/papers/egele-ndss11.pdf.

IJCATM : www.ijcaonline.org

