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ABSTRACT 
Mobile malware is a malicious software.This software used to 

disrupt computer operation. This paper surveys current state 

of mobile malware in the wild. Types of malware 

includingviruses,Trojans,Rootkits,Zombies,worms,Spyware,a

dware,spam,email and Denial Of Services(DOS) attaks. 

Survey the different types of operating system in different 

differ mobile.In this paper, we present the different types of 

malware detection techniques & discuss the smart phone 

security challenges. 
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1. INTRODUCTION 
Malware is malignant software that is specially built to assail 

mobile phone or keenly intellective phone systems. botnets, 

worms,and Trojan horses.[1]Initially, malware merely 

highlighted a software system’s security susceptibilities, but 

the motivations behind it gradually transmuted, and its authors 

now use malware to gain financial benefits on a more sizably 

voluminous scale.  

Malware aimed at Android smart phones alone has grown 

76% over the last few months, threatening Android security, 

and other platforms are additionally coming under attack. In 

additament to malware, the other two major categories of 

threats to mobile contrivances are personal spyware and 

grayware. Spyware amasses information such as utilizer 

location,SMS messages, and call history without the victim’s 

cognizance.Spyware can’t be labeled as illicit because it 

doesn’t send information to the application’s author, but 

installing personal spyware on a mobile phone without the 

contrivance owner’s sanction could be considered unethical. 

2. MOBILE THREAT MODEL 
In this paper present three types of threats posed by third-

party smart phone applications and discuss the security 

measures that are intended to detect and prevent them. 

2.1 Types of Threat 
In mobile threat model includes main two types of threats: 

grayware, and Anti-spyware. We distinguish between the 

three predicated on their distribution method, licit-ity, and 

notice to the utilizer. This paper focuses Specially on 

malware; personal spyware and grayware use different attack 

vectors, have different motivations, and require different 

bulwark mechanisms. 

2.1.1 Grayware 
Greyware refers to a malignant software or code that is 

considered to fall in the "grey area" between mundane 

software and a virus. Greyware is a term for which all other 

maleficent or exasperating software such as adware, spyware, 

trackware, and other maleficent code and malevolent 

shareware fall under. 

2.1.2 Anti-spyware[1] 
Anti-spyware is a type of software that is designed to detect 

and abstract unwanted spyware programs. Spyware is a type 

of malware that is installed on a computer without the 

utilizer's cognizance in order to amass information about 

them. This can pose a security risk to the utilizer, but more 

frequently spyware degrades system performance by taking 

up processing puissance, installing supplemental software, or 

redirecting users' browser activity. 

2.2 Security measures in smart phone[2] 
Smartphone operating system vendors use curated mar-kets 

and/or application sanctions to bulwark users. Wefixate on 

iOS, Android, and Symbian 9.x. 

Markets Application: Smartphone users are emboldened to 

download and purchase applications from centralized 

application mar-kets. Apple, Google, and Nokia promote the 

utilization of central-ized markets with decrementing 

rigor.Apple iOS contrivances sanction the utilizer to install 

applications only from the Apple App Store, and applications 

in the Apple Store are reviewed by Apple for security 

purpose. If iOS users want to install applications from any 

other sources, then they must jailbreak their contrivances, 

which involves exploiting a vul-nerability in iOS to gain 

super-user access. This process carries the jeopardy of 

rendering the phone inoperable, and it voids the phone's 

warranty. Apple's review process is intended to avert malware 

from being distributed through the Application Store. Their 

review standards withal disallow personal spy-ware, but an 

assailant with physical access to the victim's contrivance 

could jailbreak the phone without the victim's knowledge to 

install personal spyware. The App Store is kenned to have 

included grayware in some cases, the grayware has been 

abstracted from the App Store. 

Android additionally provides users with an official 

application store, the Android Market.Most Android phones 

sanction users to additionally install applications from 

unofficial though the utilizer is admonished that installing 

non-Market applications may expose the utilizer to malware. 

Google does not any type of review applications prior to 

listing them in the Android Market, albeit they may review 

some applications later. Personal spyware (e.g., GPS Spy 

Plus) and grayware are listed in the Android Market. The 

Android security team has abstracted malware from the 

Android Market following utilize complaints, and they are 

able to remotely uninstall kenned malware from users' 

contrivances. 

Nokia runs Ovi, which is currently the official Symbian 

application market. Like the Apple App Store, all applica-

tions are reviewed prior to being listed in Ovi. Symbian does 

not avert or dismay users from installing applications from 
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other sources. Several popular alternative markets are 

available, and they lack review processes. However, Sym-bian 

offers an application signing accommodation that incorporates 

security reviewing. Only Symbian Signed applications are 

sanctioned to access hazardous privileges. All Symbian 

Signed applications must undergo an automated security 

review.Applications that utilize the most hazardous privileges 

are additionally reviewed by humans, and some number of 

other Symbian Signed applications are withal human-

reviewed. As a consequence of the signing process, many 

applications in third-party Symbian markets have undergone 

review. 

3. PREVENTION APPROACH 
For our malware prevention approach to be usefull in practice, 

it must gratify the following properties: 

3.1 Lightweight-ness 

The approach should be lightweight in terms of the sundry 

required resources available on the phone, such as 

recollection, computation and battery power. 

3.2 Efficiency  
The approach should incur small delay.Otherwise, it can 

affect the overall usability of the system. We believe that no 

more than a few seconds should be spent executing the 

approach. 

4. MALWARE DETECTION 

TECHNIQUES [2] 
Malware detection techniques available for detecting mobile 

malware and other security susceptibilities have varying 

strengths and weaknesses. 

4.1 Signature-based malware Detection   
A pattern-marching approach commercial antivirus is an 

example of signature predicated malware detection where the 

scanner scans for a sequence of byte within a program code to 

identify and report a malignant code. This approach to 

malware detection adopts a syntactic level of code injuctive 

authorizations in order to detect malware by analysing the 

code during program compilation. This technique 

conventionally covers consummate program code and within 

a short period of time. However, this method has constraint by 

ignoring the semantics of injuctive authorizations,which 

sanctions malware obfuscation during the program’s run-time. 

In smart phone operating systems, the comportment of 

malware may occur in multiple locations, the occurrence of 

these acts amalgamated according to certain timing in order to 

constitute maleficent software comportment, one or a few of 

these separate demeanor can’t determine whether they are 

malevolent behaviour’s or not. This amassment is then 

processed by temporal cognations, after all the demeanors are 

abstracted and signed to software demeanor patterns. Code 

packing, simple scrambling does not transmute the demeanor 

of software, malware and its variants are generally in the same 

run-time deportment patterns, the signature of these malware 

can be detected through the same deportment Compared with 

feather-predicated malware detection method, the signature 

database of comportment signature predicated is becoming 

more minute, so the be behaviour’s predicated detection of 

malevolent software signature.is ideal for resource-

constrained mobile contrivances. Incipient malevolent 

software customarily include incipient comportment signature 

that is inconsistently erratic with the antecedent kenned 

mundane demeanor, so comportment-predicated malware 

detection signatures can detect incipient and unknown 

malware. 

4.2 Specification-based malware detection 
Designation predicated detection makes utilization of certain 

rule set of what is considered as mundane in order to decide 

the maleficence of the program contravening the predefined 

rule set. Thus programs transgressing the rule set are 

considered as maleficent program. In designation-predicated 

malware detection, where a detection algorithm that addresses 

the deficiency of pattern-matching was developed. This 

algorithm incorporates ordinant dictation semantics to detect 

malware instances. The approach is higer resilience to 

prevalent obfuscation techniques. It used template T to 

describe the malevolent demeanors of a malware, which are 

sequence of ordinant dictations represented by variables and 

special symbolic constants. The circumscription of this 

approach is that the attribute of a program cannot be 

accurately designated. Designation-predicated detection is the 

derivate of anomaly predicated detection. Instead of 

approximating the implementation of a system or application, 

specification based detection approximates the requisites of 

application or system. In designation-predicated system there 

subsists a training phase which endeavors to learn the all valid 

comportment of a program or system which needs toinspect. 

The main constraint of designation predicated system is that it 

if very arduous to accurately designate the deportment the 

system or program. One such implement is Panorama which 

captures the system wide information flow of the program 

under inspection over a system, and checks the deportment 

against a valid set of rule to detect malevolent activity. 

4.3 Data Mining Technique of Detecting 

Malware 
In data mining methods for detecting maleficent executables, 

a maleficent executable as a program that performs function, 

such as compromising a system security, damaging a system 

or obtaining sensitive data without any user’s sanction. Their 

data mining methods detect patterns in immensely czolossal 

amounts of data, such as byte code, and utilize these patterns 

to detect future instances in kindred data. Their framework 

used classifiers to detect incipient maleficent executables. A 

classifier is a rule set, or detection model, engendered by the 

data mining algorithm that was trained over a given set of 

training data. They designed a framework that used data 

mining algorithms to train multiple classifiers on a set of 

maleficent and benign executables to detect incipient 

examples. The binaries were first statically analysed to extract 

properties of the binary, and then the classifiers trained over a 

subset of the data. Their sizably voluminous sets of programs 

from public sources were dissevered into differnt two classes 

that is malevolent and benign executables. Example of this 

data set is a Windows and MS-DOS formats executable, 

which is additionally applicable to other formats. Since the 

virus scanner was updated and the viruses were obtained from 

public sources, it was surmised that the virus scanner has a 

signature for each malevolent virus. They then split the 

dataset into two subsets: the training set and the test set.The 

data mining algorithms utilized the training set while 

engendering the rule sets. The test set was then used to check 

the precision of the classifiers over unseen examples. This 

data mining method was able to detect aforetime undetectable 

maleficent executables by comparing the results with 

traditional signature-predicated methods and with other 

learning algorithms. The Multi-Naive Bayes method had the 

highest precision and detection rate of any algorithm over 

unknown programs, 98.76%, over double the detection rates 
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of signature based methods. Its rule set was withal more 

arduous to subjugate than other methods because all lines of 

machineinjuctive authorizations would have to be transmuted 

to evade detection. 

4.4 Cloud-Based Detection [5] 
In this scheme a lightweight client application monitors the 

system calls in the contrivance and sends it to the server in 

cloud to detect malignant department.Paranoid Android is a 

cloud-predicated malware bulwark technique that moves 

security analysis and computations to a remote server that 

hosts multiple replicas of mobile phones running on emulators 

A tracer, located in the smart phone, records all the 

indispensable information required to reply to the mobile 

application’s execution. The tracer transmits the recorded 

information to the cloud-predicated replier,which replays the 

execution in the emulator. The replier can deploy several 

security checks, such as dynamic malware analysis, 

recollection scanners, system call anomaly detection, and 

commercial antivirus scanning from the cloud’s ample 

resources.Crowdroid is a demeanor-predicated mobile 

malware detection technique for Android. Crowdroid is a 

lightweight client application that monitors system calls 

invoked by the target mobile application, preprocesses the 

calls, and sends them to cloud where a clustering technique 

avails determine whether the application is maleficent. 

Increased utilization of Crowdroid results in ameliorated 

malware detection but utilizing the approach initially might 

cause erroneous positives, as the sample size is still 

diminutively minuscule. 

 
“Fig1.cloud based Detection” 

5. MALWARE ANALYSIS TOOL 

5.1 Multiple-Path Pxploration 
Automatic dynamic malware-analysis implements engender 

their reports predicated on a single execution trace of the 

sample under analysis. The utilization of logic bombs 

sanctions malware to only reveal its maleficent deportment 

predicated on arbitrary constraints. For example, a malware 

sample could defer its malevolent activities until a certain date 

is reached or stop executing if obligatory files cannot be found 

on the infected system. To overcome this shortcoming, Moser 

et al. [2007a] present an implement capable of exploring 

multiple execution paths for Windows binaries. This 

implement apperceives a branching point whenever a control-

flow decision is predicated on data that originates outside the 

monitored process.This data can only be introduced to the 

process via system calls. Thus, a branching point is detected if 

a control-flow decision is predicated on a return value of a 

system call.Every time such a situation occurs, the implement 

takes a snapshotof the running process that sanctions the the 

system to reset to this state. Execution process is perpetuated 

and after a timeout the system is reset to the recorded 

snapshot. Then, the value that is responsible for the control-

flow decision is manipulated such that the control flow 

decision making is inverted, resulting in the execution of the 

alternate path. 

This approach elongates Anubis and applies dynamic taint 

tracking to analyze how data returned from system calls is 

manipulated and compared by the process under analysis. The 

system calls are responsible for introducing the taint-labels 

handle-file system and registry access, as well as network 

activities and date/time information. When manipulating a 

value upon resetting the system state, special care is taken by 

the system to update the value utilized in the corresponding 

compare ordinant dictation in a consistent manner. This 

designates that not only the value directly involved in the 

comparison must be transmuted, but all other recollection 

locations that depend on this value must be manipulated in a 

consistent manner to make the execution of alternative paths 

feasible. To achieve this, the system stores a set of 

recollection locations for each branching point that depends 

on the compared value amalgamated with a set of linear 

constraints describing these dependencies. During a reset, the 

set of constraints is evaluated by a constraint solver to 

engender the values that need to be superseded to coerce 

execution down the other path. If a dependency cannot be 

modeled as a linear constraint the system is unable to update 

the recollection locations in a consistent manner. 

5.2 Norman Sandbox 
Norman Sandbox[3] is a dynamic malware-analysis solution 

which executes he sample in a tightly controlled virtual 

environment that simulates a Windows operating system. This 

environment is utilized to simulate a host computer as well as 

an affixed local area network and, to some extent, Internet 

connectivity. The core conception a baft the Norman Sandbox 

is to supersede all functionality required by an analyzed 

sample with a simulated version thereof. The simulated 

system, thus, has to provide support for operating system-

relevant mechanisms, such as memory protection and 

multithreading support. Moreover, all required APIs must be 

present to give the sample the fake impression that it is 

running on a real system. Because the malware is executed in 

a simulated system, packed or obfuscated executables do not 

hinder the analysis itself. As described in a packed binary 

would simply perform the unpacking step and then continue 

executing the original program. However, to minimize the 

time spent in analysis, binaries that are obfuscated by a known 

packer program are unpacked prior to analysis. 

Norman Sandbox fixates on the detection of worms that 

spread via email or P2P networks, as well as viruses that 

endeavor to replicate over network shares. In additament, 

ageneric malware-detection technique endeavors to capture 

other malevolent software.The Norman Sandbox provides a 

simulated environment to the sample under analysis 

consisting of custom-madeversionof user-land APIs necessary 

for executing the sample. The functions providing these APIs 

are heavily instrumented with the corresponding analysis 

capabilities. Furthermore, to keep the simulation self-

contained, these replacement APIs do not perform any 

interactions with the real system. Instead, the results of such 

API calls are created to allow the malware to continue 

execution (e.g., filling in the correct API function-return 

values). Bookkeeping takes place if required to thwart some 

detection techniques applied by malicious software. For 

example,a malware sample might try to detect the analysis 

tool by writing to a file and trying to read from that file later 

on to check if the stored information is still there. If the 
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analysis tool does not provide the correct results to the read 
request, the malware can detect that it is being analyzed and 

will terminate without revealing its true malicious intents. 

Special care is taken with respect to networking APIs. All 

networking requests issued by the sample under analysis are 

redirected to simulated components. If, for example,a sample 

intends to spread itself via email, it has to contact an SMTP 

server to send email. The connection attempt to TCP port 25 

is detected, and instead of opening a connection to the real 

server, the connection is redirected to a simulated mail 

server.This is not deleted by the sample under analysis, and it 

will start sending the mail commands, including the malicious 

payload. An analogous approach is followed when a sample 

tries to write to a simulated network share or tries to resolve 

host names to IP addresses via DNS queries. 

6. LITERATURE [6]  
As part of our survey, we examined the sanctions of Android 

malware. Android application malware commonly requests 

the capability to direct send sms messages,which is not 

common among non malicious applications. However, we 

were unable to identify any other permission-based patterns 

for malware classification. Permission-based classification 

will require future consideration as the set of known Android 

malware grows. We also observed that none of the malware in 

our data set was approved by the Apple Application Store, 

which indicates that human review may be an effective 

preventative measure for malware. Symbian's automated 

review-and-sign process fared worse; nearly a third of the 

Symbian malware in our data set was approved by or evaded 

this process.Currently, both malware authors and smartphone 

users are incentivized to find root exploits. The homebrew 

community publishes root exploits to help smartphone owners 

customize their phones. However, malware can use these 

same root exploits to circumvent smartphone security 

mechanisms; indeed, 4 pieces of malware in our data set do 

this.We consider the impact of the homebrew community and 

find that root exploits are available between 74% and 100% of 

phones' lifetimes. We recommend that phone manufacturers 

support smartphone customization so that the homebrew 

community does not need to seek root exploits. 

Survey the state-of-the-art analysis techniques as well as the 

implements that avail an analyst to expeditiously and in detail 

gain the required erudition of a malware instance’s demeanor. 

study the dynamic analysis tools with the help of dynamic 

analysis tool process of executing a malicious sample and 

monitoring its behavior. Most dynamic analysis tools 

implement functionality that monitors which APIs are called 

by the sample under analysis, or which system calls are 

invoked. Several analysis tools provide the functionality to 

observe how sensitive data is processed and propagated in the 

system.Automated dynamic analysis results in a report that 

describes the observed actions the malware has performed 

while under analysis. These reports can be compiled into 

behavioral profiles that can be clustered to amalgamate 

samples with homogeneous behavioral patterns into coherent 

groups (i.e., families). Furthermore, this information can be 

used to decide which incipient malware samples should be 

given priority for exhaustive analysis(i.e., manual inspection). 

In order to achieve this, behavioral profiles of incipient threats 

can be automatically engendered by an analysis implement 

and compared with the clusters.While samples with 

behavioral profiles near a subsisting cluster probably are a 

variation of the corresponding family, profiles that deviate 

considerably from all clusters likely pose an incipient threat 

worth analyzing in detail. This prioritization has become 

compulsory as techniques such as polymorphic encodings or 

packed binaries sanction assailers to release hundreds of 

incipient malware instances every day. Although such 

samples might evade static signature matching, their 

homogeneous deportment observed through dynamic analysis 

might reveal their affiliation with a given malware family. 

7. PROPOSED WORK 

 
Fig2.Poposed work with Kirin security 

An application certification for Android. Kirin[1] performs a 

sanction check on the application during installation. When a 

utilizer installs an application, Kirin extracts its security 

configurations and checks them against the security policy 

rule that it already has. If an application fails to pass all the 

security policy rules, Kirin can either expunge it or vigilant 

the utilizer. 

In proposed work when uploading application (.apk file), 

application owner has to specify information   about   the list 

of permissions application is going to use. All the information 

about application will be stored on centralize server. This 

information will be used to verify Kirin Security Service, if 

verification is true then application is allowed to download 

otherwise application is marked as malware. 

8. CONCLUSION 
This paper  presented a comprehensive overview of the state-

of-the-art analysis techniques as well as the tools that aid an 

analyst to quickly and in detail gain the required knowledge of 

a malware instance’s behavior. Additional work in the 

proposed system is, the malware dynamic detection which can 

be achieved with the combination of kirin security service. 

Information will be used to verify the application at the time 

installation and if verification is true then application 
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installation is processed else the installation is rejected which 

adds more security to a Smartphone by detecting the malware.  
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