
International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 20, December 2014

28

A Learning Approach to Introducing GPU Computing in

Undergraduate Engineering Program

Chaker El Amrani
Faculty of Science and Technology, Abdelmalek Essaadi University

Route Ziaten, B.P. 416, Tangier, Morocco

ABSTRACT

The graphics processing unit (GPU) learning initiative is

developed within a project awarded by the Moroccan

Fulbright Alumni Association (MFAA), entitled “GPU

Acceleration of Human Genome Sequencing”. This project

involves undergraduate students at Abdelmalek Essaadi

University, and is conducted in collaboration with the High

Performance Computing Lab (HPCL) at the George

Washington University in U.S.

The study brings together two of the most important topics

and challenges for the medical field, Genomics, and

information technology, parallel computing specially with

Graphical Processing Units. The potential outcomes from the

project will make very valuable contributions to medical and

information technology research and will enrich the academic

experience of the students.

General Terms

GPU programming, Learning-by-doing.

Keywords

High Performance Computing; GPU; CUDA programming;

learning-by-doing; sequences alignment algorithms;

bioinformatics.

1. INTRODUCTION
Thanks to a grant from the U.S. Embassy in Rabat, MFAA

launched a Call for Proposals for dynamic faculty members in

Morocco who are interested in exploring the pedagogical

learning-by-doing approach to improve their students'

motivation, deep learning and intellectual development.

In such approaches to learning, students solve the problem by

seeking the needed knowledge with guidance from their

teacher, who plays the role of a coach.

This study stresses the practical use of GPU programming,

and the porting of applications to the CUDA programming

model particularly sequences alignment algorithms such as

Smith-Waterman and Needleman-Wunsch [1, 2].

This project will enable undergraduate students to improve

investigation skills, familiarize with the basics of

bioinformatics and gain experience in dealing with the rapid

changes in computing hardware platforms and languages. In

addition, this initiative will help include multicore and GPU

programming in the curriculum.

2. THE PROJECT-BASED LEARNING

OBJECTIVES
In Genomics, Deoxyribonucleic acid (DNA) sequencing is

critical to understanding genetic abnormalities and predicting

the risk of developing some diseases, such as Cancers and

Alzheimer‟s [3]. It consists in determining the exact order of

the chemical building blocks in a sample. The computation

requirement is the highest technical challenge in the Human

Genome Project. The Needleman-Wunsch and Smith-

Waterman algorithms are used for alignment of DNA

Sequences under Global Alignment category. A fast

computation solution will be investigated through new-

generation graphics hardware.

The advent of low power, massively parallel, programmable

NVIDIA CUDA enabled Graphics Processing Units (GPUs)

is bringing High Performance Computing (HPC) capabilities

to bear on intensive computing genomic applications [4]. As

such, the performance improvements provided by GPU

computation is expected to dramatically accelerate

Needleman-Wunsch and Smith-Waterman algorithms for

DNA analyzing, leading to step gains in productivity.

Acceleration is made through the use of multi-hundred GPU

cores.

Today, HPC technology is ubiquitous. It affects our everyday

lives. However, due to limitations in curriculum design, there

is still no specific formal teaching HPC at Universities in

Morocco.

The project is based on learning-by-doing approach. Students

from the Computer Engineering Department will have to

attend HPC and GPU seminars, interact with teachers, work in

teams and develop CUDA-based software solutions.

The purpose of the project is also to integrate parallel and

distributed computing into undergraduate courses.

3. GPU PROGRAMMING
GPUs are offering an outstanding increase in programming

performance. GPUs are designed for compute-intensive and

time-critical applications, they allow for the execution of

threads on a larger number of processing elements. Having a

large number of threads may make it possible to surpass the

performance of current multicore CPUs [5].

Currently, the environment of computing with GPU is easier

for development than few years ago. The two languages

CUDA and OpenCL allow programmers to write scripts for

GPU without deep knowledge of hardware programming [6,

7, 8].

GPU programming can be used in all areas of graphics and

intensive applications that include science, engineering,

bioinformatics, art and gaming [9, 10].

CUDA (Compute Unified Device Architecture) is a parallel

computing engine in NVIDIA GPUs that is accessible to

software developers through variants of industry standard

programming languages “Fig. 1”. Programmers use „C for

CUDA', compiled through a PathScale Open64 C compiler, to

code algorithms for execution on the GPU. Unlike CPUs

however, GPUs have a parallel throughput architecture that

emphasizes executing many concurrent threads slowly, rather

than executing a single thread very quickly.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 20, December 2014

29

Fig 1: CUDA memory overview

4. DNA SEQUENCING
The DNA, which is composed of four chemical bases, makes

all the proteins in an organism.

Virtually every human cell has two strands of DNA, each 3

billion bases long.

When cells replicate, each of the new cells will contain a

complete copy of the original DNA. But in case of cancer

disease, the results of division are cells that are composed of

abnormal DNA or even abnormal numbers of chromosomes.

Alignment of sequences can be made with mathematical

algorithms such as Smith-Waterman and Needleman-Wunsch

[11, 12]. A speed execution of these algorithms can help

cancer prediction and treatment.

We need fast and accurate methods for analyzing DNA of

humans and other organisms in order to understand how

normal organs develop, and how can cell division lead to birth

diseases like cancer, diabetes and Alzheimer.

5. INTRODUCING GPU TECHNOLOGY

TO STUDENTS AND ASSIGNMENTS
Seminars were given by the project co-leaders on advances in

HPC and programming models. Other presentations detailed

CUDA threads and memories, dynamic programming and

sequence alignment “Fig. 2”.

According to a survey filled in by the participants, students

found the seminars relevant to their studies and research, and

simulating their learning. They think that they will be able to

use what they learned.

The Project co-leaders discussed the project planning and

different phases, they met with students several times, and

explained them the project roadmap, objectives and actions to

be conducted.

The planning involves permanent meetings, face-to-face and

online communications through Forum and mailing-list,

frequent student‟s feedback, and advisors activities‟ follow-

up.

Fig 2: Traceback in dynamic programming

A website was designed to create a social web network for

discussion and information sharing [13]. Students can post

questions and discuss the assigned tasks. The website‟s mean

goal is to bring students to a virtual communication

framework, and enable them to use mailing-list and Forum,

interact with groups, and learn GPU and sequencing

techniques. The website provides presentations and courses,

project follow up, and information needed to access to the

GPU Server.

A GPU Server, HP Z600, equipped with a Quad-Core

processor and NVIDIA Quadro FX580 was purchased and

configured. Fedora Linux system, NVIDIA driver and CUDA

Toolkit package were successfully installed. Students could

connect to the Server through Secured Shell protocol. The

NVIDIA GPU Computing SDK was implemented. It provides

hundreds of code samples, helping students to get started on

the path of writing software with CUDA. The NVIDIA card

has 32 CUDA cores.

A number of 56 students participated in this project. They had

to work in small groups of three to four people, on assigned

tasks, and report on progress made. This improves student‟s

motivation and enhances problem solving and tool use skills

in mutli-core and CUDA programming and sequencing

technologies [14, 15]. In addition, they develop abilities in

both analytical and creative thinking. Students can take these

skills with them when they enter the professional world.

6. PORTING ALGORITHMS TO THE

CUDA PROGRAMMING MODEL
Each group developed a CUDA program, and compared

performance with sequential version, to show up the benefit of

using GPU technology. They also prepared and delivered a

report describing the investigation methodology, program

design and substantial outcomes.

Several groups started with the porting of the following

algorithms to GPU, to get practice with CUDA:

 Monte Carlo: a randomized algorithm whose

running time is deterministic, but whose output may

be incorrect with a certain probability. Monte Carlo

methods are often used in simulating physical and

mathematical systems.

 Floyd–Warshall: a graph analysis algorithm for

finding shortest paths in a weighted graph.

 Histogram calculation: a graphical representation,

showing a visual impression of the distribution of

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 20, December 2014

30

data. Histograms are a commonly used analysis tool

in image processing and data mining applications.

 Jacobi: an iterative method of solving a matrix

system of the form Ax = b.

For instance, students used Monte Carlo algorithm to

calculate the value of PI. They got the result in 20.870 with

CPU, and 1.090 seconds with GPU.

Three bioinformatics algorithms were analyzed, designed for

GPU, implemented and tested:

 The Needleman–Wunsch algorithm, which is

commonly used to align protein or nucleotide

sequences. It was the first application of dynamic

programming to biological sequence comparison.

 Smith-Waterman algorithm used to compute the edit

distance between two sequences typically of either

DNA or protein using a dynamic programming

approach.

 Levenshtein algorithm that measures the similarity

between two strings. There are lots of applications

of Levenshtein distance. It is used ,among others, in

biology to find similar sequences of nucleic acids in

DNA or amino acids in proteins.

7. CONCLUSIONS AND FUTURE

PLANS
The Learning-by-doing project succeeded to raise awareness

among students and Faculty on parallel computing, and to

promote the use of GPU programming and bioinformatics

algorithms at the computer engineering Department.

Students gain hands-on experience in multicore programming.

They were able to design and implement CUDA programs on

GPU Server, and evaluate sequencing algorithms.

GPU programming was consequently included in the

undergraduate curriculum this year, through the learning

project.

In addition, parallel and distributed computing courses are

considered to be included in undergraduate and graduate

curriculum with emphasis to multicore and GPU

programming.

On the other hand, the implementation of a GPU-based

Cluster for teaching and research at Abdelmalek Essaadi

University is under study. It will serve for parallel

programming hands-on, and for running intensive processing

applications.

8. ACKNOWLEDGMENTS
The author would like to thank the Moroccan Fulbright

Alumni Association and the U.S. Embassy in Rabat for

funding this project. He also wants to extend his thanks to

Prof. Tarek El-Ghazawi, Director of the High Performance

Computing Lab (HPCL) at the GWU, US, for his great help in

supporting this study.

9. REFERENCES
[1] Wen-mei W. Hwu, “GPU Computing Gems Emerald

Edition (Applications of GPU Computing Series)”,

Morgan Kaufmann Publishers, 2011.

[2] F. Zheng, X. Xu, Y. Yang, S. He, Y. Zhang,

“Accelerating biological sequence alignment algorithm

on GPU with CUDA”, Proc. International Conference on

Computational and Information Sciences (ICCIS 2011),

2011, pp. 18-21.

[3] National Institutes of Health website :

http://www.ncbi.nlm.nih.gov/

[4] NVIDIA website:

http://www.nvidia.com/object/cuda_home_new.html

[5] D. Kirk and Wen-Mei W. Hwu, “Programming

Massively Parallel Processors: A Hands-on Approach”,

Morgan Kaufmann Publishers, 2010.

[6] J. Sanders, E. Kandrot, “CUDA by Example: An

Introduction to General-Purpose GPU Programming”,

Addison-Wesley Professional, 2010.

[7] R. Farber, “CUDA Application Design and

Development”, Morgan Kaufmann Publishers, 2011.

[8] C.P. Gribble, “Introducing multithreaded programming:

POSIX threads and NVIDIA's Cuda”, Computers in

Education Journal 19 (4), pp. 104-112, 2009.

[9] A. Kayi, T. El-Ghazawi, and G. Newby: “Performance

Issues in Emerging Homogeneous Multicore

Architectures”, Advances in System Performance

Modeling, Analysis, and Enhancement. Elsevier Journal:

Simulation, Modeling Practice and Theory, Vol 17, Issue

9, pp. 1485-1499, October 2009.

[10] F. Feldhaus, S. Freitag and C. El Amrani, " State-of-the-

Art Technologies for Large-Scale Computing", Ch. 1, pp.

1-17, in Werner Dubitzky, Krzysztof Kurowski and

Bernhard Schott, Large-Scale Computing Techniques for

Complex System Simulations, Wiley-IEEE Computer

Society Pr, 2011.

[11] K. Sharma, A. Saxena, P. Kumar, “Alignment of DNA

sequence using the features of global and local

algorithms along with matrices”, Advanced Materials

Research, Volume 403-408, 2012, Pages 2012-2015.

[12] E. Rucci, A.D Giusti, F. Chichizola, M. Naiouf, L.D.

Giusti, “DNA sequence alignment: Hybrid parallel

programming on a multicore cluster”, Recent Advances

in Computers, Communications, Applied Social Science

and Mathematics, Proc. of ICANCM'11, ICDCC'11, IC-

ASSSE-DC'11 , pp. 183-190.

[13] Project website: http://www.fstt.ac.ma/ginfo/gpu-

programming/

[14] D. Díaz, F.J. Esteban, P. Hernández, J.A. Caballero, G.

Dorado, S. Gálvez, “Parallelizing and optimizing a

bioinformatics pairwise sequence alignment algorithm

for many-core architecture”, Parallel Computing, Vol 37,

Issue 4-5, pp. 244-259, April 2011.

[15] M. Bailey, S. Cunningham, “A hands-on environment for

teaching GPU programming”, SIGCSE 2007: 38th

SIGCSE Technical Symposium on Computer Science

Education , pp. 254-258.IBM Cloud Computing,

Academic Initiative program website:

https://www.ibm.com/developerworks/university/cloud/

IJCATM : www.ijcaonline.org

