# Short Term Hydro-Thermal Scheduling using Artificial Immunue System

C. Jena Asst. Prof School of Electrical Engg KIIT University, BBSR C.K.Panigrahi, Ph.D. School of Electrical Engg KIIT University, BBSR

## ABSTRACT

Artificial Immune System is applied to determine the optimal hourly schedule of power generation in a hydrothermal system. A multi-reservoir cascaded hydroelectric system with a nonlinear relationship between water discharge rate, net head and power generation is considered. The water transport delay between connected reservoirs is taken into account. The transmission losses are also taken into consideration using loss coefficients. The developed algorithm is illustrated for a test system and the test results are compared with those obtained by using differential evolution and evolutionary programming technique. From numerical results, it is seen that artificial immune system based approach provides better solution.

## **Keywords:**

Hydrothermal scheduling, cascaded reservoirs, artificial immune system

## Nomenclature

 $a_{si}, b_{si}, c_{si}, d_{si}, e_{si}$ : cost curve coefficients of *i* th thermal unit

 $P_{sim}$ : output power of *i* th thermal unit at time *m* 

 $\mathbf{P}_{si}^{\min}$ ,  $\mathbf{P}_{si}^{\max}$ : lower and upper generation limits for i th thermal unit

 $P_{hjm}$ : output power of j th hydro unit at time m

 $P_{hj}^{\min}$ ,  $P_{hj}^{\max}$ : lower and upper generation limits for j th hydro unit

 $P_{Dm}$ : load demand at time *m* 

 $P_{Lm}$ : transmission loss at time *m* 

 $Q_{hjm}$ : water discharge rate of j th reservoir at time m

 $Q_{hj}^{\min}$ ,  $Q_{hj}^{\max}$ : minimum and maximum water discharge rate of j th reservoir

 $V_{hjm}$ : storage volume of j th reservoir at time m

M.Das Research Scholar, School of Electrical Engineering, KIIT University M. Basu, Ph.D. Dept of Power Engg Jadavpur University

 $V_{hj}^{\min}$ ,  $V_{hj}^{\max}$ : minimum and maximum storage volume of j th reservoir

 $C_{1j}$ ,  $C_{2j}$ ,  $C_{3j}$ ,  $C_{4j}$ ,  $C_{5j}$ ,  $C_{6j}$ : power generation coefficients of j th hydro unit

 $I_{hjm}$ : inflow rate of j th reservoir at time m

 $R_{uj}$ : number of upstream units directly above j th hydro plant

 $S_{hjm}$ : spillage of j th reservoir at time m

 $t_{lj}$  : water transport delay from reservoir l to j

 $N_h$ : number of hydro generating units

N<sub>s</sub>: number of thermal generating units

m, M : time index and scheduling period

## 1. INTRODUCTION

Optimum scheduling of generation in a hydrothermal system is of great importance to electric utility systems. With the insignificant marginal cost of hydroelectric power, the problem of minimizing the operational cost of a hydrothermal system essentially reduces to that of minimizing the fuel cost for thermal plants under the various constraints on the hydraulic and power system network.

The main constraints include: the time coupling effect of the hydro sub problem, where the water flow in an earlier time interval affects the discharge capability at a later period of time, the cascaded nature of the hydraulic network, the varying hourly reservoir inflows, the physical limitations on the reservoir storage and turbine flow rate, the varying system load demand and the loading limits of both thermal and hydro plants.

The hydrothermal scheduling problem has been the subject of investigation for several decades. Most of the methods that have been used to solve the hydrothermal co-ordination problem make a number of simplifying assumptions in order to make the optimization problem more tractable. Some of these solution methods are mathematical decomposition [1], network flow [2], dynamic programming [3], deterministic optimization algorithm [4], lagrangian relaxation [5] and benders decomposition [6]. With the emergence of artificial and computational intelligence technology, attention has been gradually shifted to applications of such technology-based approaches to handle the complexity involved in real world problems. Stochastic search algorithms such as simulated annealing technique [7], evolutionary programming technique [8], genetic algorithm [9]-[10] and differential evolution [11] have been applied separately for optimal hydrothermal scheduling problem and circumvented the above mentioned weakness.

Artificial immune system (AIS) [12]-[18] has emerged in the 1990s as a new branch in computational intelligence. AIS is inspired by immunology, immune function and principles observed in nature. It is now interest of many researchers and has been successfully used in power system optimization problems [19]-[21].

This paper proposes AIS algorithm for short-term optimal scheduling of generation in a hydrothermal system which involves the allocation of generation among the multi-reservoir cascaded hydro plants and thermal plants with nonsmooth fuel cost function so as to minimize the fuel cost of thermal plants while satisfying the various constraints on the hydraulic and power system network. To validate the AIS-based hydrothermal scheduling algorithm, the developed algorithm has been illustrated for a test system [9]. The test results are also compared with those obtained by using of differential evolution (DE) and evolutionary programming (EP) technique. From numerical results, it is found that the proposed AIS based approach provides better solution.

### 2. PROBLEM FORMULATION

The hydrothermal scheduling problem is aimed to minimize the fuel cost of thermal plants, while making use of the availability of hydro power as much as possible. The objective function and associated constraints of the hydrothermal scheduling problem are formulated as follows.

### 2.1 Objective Function

The fuel cost function of each thermal generating unit considering valve-point effects is expressed as the sum of a quadratic and a sinusoidal function. The total fuel cost in terms of real power output can be expressed as

$$f = \sum_{m=1}^{M} \sum_{i=1}^{N_{s}} \left[ a_{si} + b_{si} \mathbf{P}_{sim} + c_{si} \mathbf{P}_{sim}^{2} + \left| d_{si} \times \sin\left\{ e_{si} \times \left( \mathbf{P}_{si}^{\min} - \mathbf{P}_{sim} \right) \right\} \right] \right]$$
(1)

$$\text{Affinity} = \frac{1}{f} \tag{2}$$

## **2.2 Constraints**

#### (i) Power Balance Constraints:

The total active power generation must balance the predicted power demand and transmission loss, at each time interval over the scheduling horizon

$$\sum_{i=1}^{N_s} \mathbf{P}_{sim} + \sum_{j=1}^{N_h} \mathbf{P}_{hjm} - \mathbf{P}_{Dm} - \mathbf{P}_{Lm} = 0$$
$$m \in \mathbf{M}$$
(3)

The hydroelectric generation is a function of water discharge rate and reservoir water head, which in turn, is a function of storage.

$$P_{hjm} = C_{1j}V_{hjm}^{2} + C_{2j}Q_{hjm}^{2} + C_{3j}V_{hjm}Q_{hjm} + C_{4j}V_{hjm} + C_{5j}Q_{hjm} + C_{6j}$$
  
$$j \in \mathbb{N}_{h} \quad m \in \mathbb{M}$$
(4)

(ii) Generation Limits:

$$\mathbf{P}_{hj}^{\min} \le \mathbf{P}_{hjm} \le \mathbf{P}_{hj}^{\max} \quad j \in \mathbf{N}_h \quad m \in \mathbf{M}$$
(5)

and

$$\mathbf{P}_{si}^{\min} \leq \mathbf{P}_{sim} \leq \mathbf{P}_{si}^{\max} \quad i \in \mathbf{N}_{s, m} \in \mathbf{M}$$
(6)

#### (iii) Hydraulic Network Constraints

The hydraulic operational constraints comprise the water balance equations for each hydro unit as well as the bounds on reservoir storage and release targets. These bounds are determined by the physical reservoir and plant limitations as well as the multipurpose requirements of the hydro system. These constraints include:

(a) Physical limitations on reservoir storage volumes and discharge rates,

$$V_{hj}^{\min} \leq V_{hjm} \leq V_{hj}^{\max} \qquad j \in \mathbf{N}_{h, m} \in \mathbf{M}_{(7)}$$
$$Q_{hj}^{\min} \leq Q_{hjm} \leq Q_{hj}^{\max} \qquad j \in \mathbf{N}_{h, m} \in \mathbf{M}_{(8)}$$

b) The continuity equation for the hydro reservoir network

$$V_{hj(m+1)} = V_{hjm} + I_{hjm} - Q_{hjm} - S_{hjm} + \sum_{l=1}^{R_{uj}} \left( Q_{hl(m-t_{ij})} + S_{hl(m-t_{ij})} \right)^{j}$$
  
$$j \in \mathbb{N}_{h, m} \in \mathbb{M}$$
(9)

## 3. ARTIFICIAL IMMUNUE SYSTEM

The immune system of vertebrates including human is composed of cells, molecules and organs in the body which protect the body against infectious diseases caused by foreign pathogens such as viruses, bacteria, etc. To perform these functions, the immune system has to be able to distinguish between the body's own cells as the self cells and foreign pathogens as the non-self cells or antigens. After distinguishing between self and non-self cells, the immune system has to perform an immune response in order to eliminate non-self cell or antigen. Antigens are further categorized in order to activate the suitable defense mechanism and at the same time, the immune system also developed a memory to enable more efficient responses in case of further infection by the similar antigen.

Clonal selection theory explains how the immune system fights against an antigen. It establishes the idea that only those cells which recognize the antigen, are selected to proliferate. The selected cells are subjected to an affinity maturation process which improves their affinity to the selected antigens.

Clonal selection operates both on B-lymphocytes or B cells produced by the bone marrow and T-lymphocytes or T cells produced by the thymus. When the body is exposed to an antigen, B cells would respond to secrete specific antibodies to the particular antigen. Thereafter, a second signal from the T-helper cells, a subclass of T cells, would then stimulate the B cell to proliferate and mature into terminal (non-dividing) antibody secreting cells called plasma cells. In proliferation, clones are generated in order to achieve the state plasma cells as they are the most active secretors of the antibodies at a larger rate than rate of antibody secretion by the B cells. The proliferation rate is directly proportional to the affinity level i.e. higher the affinity level of B cells more clones is generated. Clones are mutated at a rate inversely proportional to the antigen affinity i.e. clones of higher affinity are subjected to less mutation compared to those which exhibit lower affinity. This process of selection and mutation of B cells is known as affinity maturation.

T cells do not secrete antibodies but play a central role in the regulation of the B cell response and are the most excellent in cell mediated immune responses. Lymphocytes, in addition to proliferating into plasma cells, can differentiate into long-lived B memory cells. These memory cells circulate through the blood, lymph and tissues, so that when exposed to a second antigenic stimulus, they commence to differentiate into large lymphocytes which are capable of producing high affinity antibody, preselected for the specific antigen that had stimulated the primary response.

Artificial immune system (AIS) mimics these biological principles of clone generation, proliferation and maturation. The main steps of AIS based on clonal selection principle are activation of antibodies, proliferation and differentiation on the encounter of cells with antigens, maturation by carrying out affinity maturation process, eliminating old antibodies to maintain the diversity of antibodies and to avoid premature convergence, selection of those antibodies whose affinities with the antigen are greater.

In order to emulate AIS in optimization, the antibodies and affinity are taken as the feasible solutions and the objective function respectively. Real number is used to represent the attributes of the antibodies.

Initially, a population of random solutions is generated which represent a pool of antibodies. These antibodies undergo proliferation and maturation. The proliferation of antibodies is realized by cloning each member of the initial pool depending on their affinity. In minimization problem, a pool member with lower objective value is considered to have higher affinity. The proliferation rate is directly proportional to the affinity of the antibodies. The maturation process is carried through hypermutation which is inversely proportional to the antigenic affinity of the antibodies. The next step is the application of the aging operator. This aging operator eliminates old antibodies in order to maintain the diversity of the population and to avoid the premature convergence. In this operator an antibody is allowed to

remain in the population for at most  $\tau_{\rm B}$  generations. After this period, it is assumed that this antibody corresponds to local optima and must be eliminated from the current population, no matter what its affinity may be. During the cloning expansion, a clone inherits the age of its parent and is assigned an age equal to zero when it is successfully hyper-mutated i.e. when hyper-mutation improves its affinity.

## 4. DEVELOPMENT OF PROPOSED ALGORITHM

In this section, an algorithm based on artificial immune system for solving hydrothermal scheduling problem is described below.

$$p_{k} = \left[P_{s1}, P_{s2}, ..., P_{si}, ..., P_{sN_{s}}, Q_{h1}, Q_{h2}, ..., Q_{hj}, ..., Q_{hN_{h}}\right]^{T}$$
  
be a trial matrix designating the  $k$  -th individual of a  
population to be evolved and  
$$P_{si} = \left[P_{si1}, P_{si2}, ..., P_{sim}, ..., P_{siM}\right],$$
$$Q_{hj} = \left[Q_{hj1}, Q_{hj2}, ..., Q_{hjm}, ..., Q_{hjM}\right].$$
 The elements  
$$P_{sim} \text{ and } Q_{hjm} \text{ are the power output of the } i \text{ th thermal}$$
  
unit and the discharge rate of the  $j$  th hydro plant at  
time  $m$ . The range of the elements  $P_{sim}$  and  $Q_{hjm}$   
should satisfy the thermal generating capacity and the  
water discharge rate constraints in equations (6) and (8)

$$V_{hj0} - V_{hjM} = \sum_{m=1}^{M} Q_{hjm} - \sum_{m=1}^{M} \sum_{l=1}^{R_{uj}} Q_{hl(m-t_{ij})} - \sum_{m=1}^{M} I_{hjm}$$
  
$$j \in N_{h}$$
  
(10)

To meet exactly the restrictions on the initial and final reservoir storage in equation (7), the water discharge rate of the j th hydro plant  $Q_{hjd}$  in the dependent interval d is then calculated by

$$Q_{hjd} = V_{hj0} - V_{hjM} + \sum_{m=1}^{M} I_{hjm} + \sum_{m=1}^{M} \sum_{l=1}^{R_{uj}} Q_{hl(m-t_{ij})} - \sum_{\substack{m=1\\m \neq d}}^{M} Q_{hjm}$$
  $j \in N_{h}$  (11)

The dependent water discharge rate must satisfy the constraints in equation (8).

Also to meet exactly the power balance constraints in equation (3), the thermal generation  $P_{sd_gm}$  of the dependent thermal generating unit  $d_g$  can then be calculated using the following equation:

$$\mathbf{P}_{sd_sm} = \mathbf{P}_{Dm} + \mathbf{P}_{Lm} - \sum_{\substack{i=1\\i\neq d}}^{N_s} \mathbf{P}_{sim} - \sum_{\substack{j=1\\j\neq d}}^{N_h} \mathbf{P}_{hjn}$$
$$m \in \mathbf{M}$$
(12)

The dependent thermal generation must satisfy the constraints in equation (6).

The cost function f is to be minimized. The algorithmic steps of AIS based on clonal selection principle are as follows:

Step1) Antibody of size  $N_P$  is randomly generated. These must be feasible candidate solutions that satisfy the practical operating constraints.

Step 2. The affinity value of each antibody in the population is evaluated using equation (2).

Step 3. The antibodies are cloned directly proportional to their affinities, giving rise to a temporary population of clones.

Step 4. The clones undergo maturation process through hyper-mutation mechanism whose rate is inversely proportional to their affinities. Each mutated clone must satisfy all the operating constraints. Step 5. The affinities of the mutated clones are evaluated.

Step 6. Aging operator eliminates the antibodies and

mutated clones which have more than  $\tau_{\rm B}$  generations from the current population.

Step 7. Tournament selection is done to select a new population of the same size as the initial population from the antibodies and mutated clones which are remained after application of aging operator.

Step 8. If the maximum number of generations is reached, output the optimal solution i.e. the highest affinity value obtained so far and terminates the proposed algorithm. Otherwise, go back to Step 3.

## 5. SIMULATION RESULTS

In this paper the performance of the proposed AISbased hydrothermal scheduling problem is implemented using MATLAB 7 on a P-IV, 80 GB, 3.0 GHz personal computer. The proposed method has been applied to a test system which consists of a multi-chain cascade of four hydro units and three thermal units. The scheduling period is 24 hours with one hour time interval. The hydro sub-system configuration and network matrix including the water time delays are shown in figure 4, in the appendix. The load demand, hydro unit power generation coefficients, reservoir inflows, reservoir limits are given in tables 8, 9, 10 and 11 respectively in the appendix. The generation limits, cost coefficients of thermal units are given in table 12 in the appendix.

The problem is solved by using AIS algorithm. Here,

the population size  $N_p$  and the maximum iteration

number  $N_{max}$  are taken as 50 and 400 respectively for the test system under consideration.

To validate the proposed AIS based approach, the same test system is solved using differential evolution (DE) and evolutionary programming (EP) technique.

In case of DE, the population size  $(N_p)$ , scaling factor

(F) and crossover constant  $(C_R)$  have been selected as 500, 0.35 and 1.0. The population size is taken 50 in case of EP. Maximum number of generations has been selected 400 for both DE and EP.

Table 1 shows the total cost obtained from AIS, DE and EP. The determined hydrothermal generation schedules and water discharge rates by using proposed AIS algorithm are shown in tables 2 and 3. The determined hydrothermal generation schedules and water discharge rates by using DE are given in tables 4 and 5. The determined hydrothermal generation schedules and water discharge rates by using EP are summarized in tables 6 and 7. Table 1 reveals that AIS has achieved lowest minimum cost. Figure 1 shows the cost convergence obtained from AIS, DE and EP.

| Table 1: | Comparison | of | cost |
|----------|------------|----|------|
|----------|------------|----|------|

| Method | Cost  |
|--------|-------|
|        | (\$)  |
| AIS    | 45433 |
| DE     | 45969 |
| EP     | 48062 |

 Table 2: Hydrothermal generation (MW) schedule using AIS

| Hour            | $\mathbf{P}_{h1}$ <b>F</b> | $\mathbf{P}_{h2}$ $\mathbf{P}_{h3}$ | $P_{h4}$ | $P_{s1}$ |
|-----------------|----------------------------|-------------------------------------|----------|----------|
| $P_{s2}$        | $P_{s3}$                   |                                     |          |          |
| 1<br>20.0000    | 71.8234<br>211.6155        | 65.7039<br>139.4310                 | 29.1734  | 217.5656 |
| 2<br>157.876    | 92.5817<br>0 40.047        | 50.5402<br>1 231.5641               | 54.1189  | 165.6318 |
| 3<br>129.516    | 70.0014<br>6 256.7529      | 53.9939<br>9 51.6207                | 23.7185  | 122.1828 |
| 4<br>48.1592    | 78.0121<br>208.7785        | 76.2547<br>51.0208                  | 46.2320  | 145.0842 |
| 5<br>102.662    | 62.6004<br>4 127.6489      | 66.4062<br>9 140.7897               | 44.1705  | 132.1009 |
| 6<br>102.051    | 67.8364<br>2 208.9843      | 72.3945<br>3 141.4689               | 46.7852  | 167.9228 |
| 7<br>98.8136    | 94.5086<br>124.7311        | 55.0891<br>405.1276                 | 23.2943  | 173.2234 |
| 8<br>172.448    | 80.0139<br>2 209.805       | 53.9194<br>7 229.1436               | 43.7310  | 236.6677 |
| 9<br>74.9751    | 58.4335<br>209.1390        | 70.3633<br>407.6690                 | 42.9410  | 251.7603 |
| 10<br>20.0000   | 56.3053<br>209.7554        | 53.8907<br>497.5327                 | 50.6022  | 226.4792 |
| 11<br>101.829   | 58.7106<br>3 210.5848      | 56.2311<br>8 408.6869               | 41.9201  | 248.4095 |
| 12<br>69.7590   | 74.1591<br>292.6938        | 50.3339<br>409.6406                 | 38.4772  | 241.6708 |
| 13<br>104.677   | 79.9996<br>4 214.127       | 85.4553<br>3 407.6147               | 48.3107  | 196.2856 |
| 14 1<br>103.105 | 04.4557<br>2 202.8754      | 73.2047<br>4 317.8310               | 48.2428  | 198.1783 |
| 15 1<br>37.1926 | 00.6341<br>208.5896        | 52.8668<br>322.3367                 | 49.8672  | 254.9917 |
| 16<br>173.205   | 80.7556<br>8 125.278       | 60.5444<br>8 318.0742               | 50.9492  | 271.7901 |
| 17<br>20.0000   | 72.5990<br>209.1360        | 69.3840<br>408.9391                 | 42.0679  | 252.1790 |
| 18              | 79.7597                    | 55.7259                             | 56.0643  | 244.2095 |

| 174.5975 214.8082 316.8189                       |         |          |
|--------------------------------------------------|---------|----------|
| 1964.439762.678074.4668209.8371407.0209          | 52.4424 | 224.2113 |
| 2064.463969.490494.2513207.3418317.9596          | 56.4943 | 257.5805 |
| 2190.207147.845520.208740.5135408.9404           | 57.5221 | 268.1632 |
| 22 87.9591 65.5452<br>104.2330 210.5357 58.7539  | 43.1193 | 296.4617 |
| 23 58.4318 46.6280<br>145.1913 126.1552 137.4614 | 54.0516 | 290.9288 |
| 2457.469551.7444100.701740.0000229.6560          | 55.4865 | 275.0541 |

Table 3: Hourly plant discharge ( $\times 10^4 m^3$ ) using AIS

| Ho | our $Q_{h1}$ | $Q_{h2}$ | $Q_{h3}$ | $Q_{h4}$ |
|----|--------------|----------|----------|----------|
| 1  | 7.4923       | 8.6492   | 23.1053  | 13.6956  |
| 2  | 11.3952      | 6.2747   | 15.1734  | 9.6111   |
| 3  | 7.2206       | 6.6299   | 29.2546  | 8.5292   |
| 4  | 8.4289       | 10.3139  | 15.3465  | 9.1301   |
| 5  | 6.2359       | 8.5376   | 29.8321  | 13.6244  |
| 6  | 6.9477       | 9.7434   | 13.0899  | 11.3238  |
| 7  | 12.4796      | 6.9984   | 21.4446  | 11.4096  |
| 8  | 9.1656       | 6.9133   | 16.0919  | 16.5749  |
| 9  | 5.8679       | 9.8137   | 16.6103  | 19.3368  |
| 10 | 5.4754       | 7.0770   | 13.1506  | 13.9435  |
| 11 | 5.6215       | 7.2544   | 18.2051  | 16.8570  |
| 12 | 7.4604       | 6.2069   | 18.7023  | 15.2781  |
| 13 | 8.2511       | 13.1254  | 14.8473  | 10.4395  |
| 14 | 14.1109      | 10.6643  | 15.2593  | 10.1064  |
| 15 | 12.6908      | 7.0503   | 14.7310  | 15.6278  |
| 16 | 8.4030       | 8.1036   | 14.5500  | 17.4989  |
| 17 | 7.1689       | 9.7900   | 19.6052  | 14.8417  |
| 18 | 8.1472       | 7.6097   | 14.9234  | 13.9514  |
| 19 | 6.1021       | 9.0471   | 17.2119  | 11.8128  |
| 20 | 6.0932       | 10.8484  | 14.8819  | 14.9923  |
| 21 | 9.8963       | 7.0540   | 14.7944  | 16.3219  |
| 22 | 9.5944       | 10.0802  | 20.2685  | 20.0000  |
| 23 | 5.4512       | 6.7675   | 16.6281  | 20.0000  |
| 24 | 5.3000       | 7.4469   | 16.5464  | 17.9098  |

International Journal of Computer Applications (0975 – 8887) Volume 107 – No 18, December 2014

## Table 4: Hydrothermal generation (MW) schedule using DE

| Hour          | $\mathbf{P}_{h}$ | $\mathbf{P}_{h2}$      | $P_{h3}$            | $\mathbf{P}_{h4}$ | $P_{s1}$ |
|---------------|------------------|------------------------|---------------------|-------------------|----------|
| $P_{s2}$      |                  | <b>P</b> <sub>s3</sub> |                     |                   |          |
| 1<br>34.4455  | 83.<br>5 2       | 0379<br>12.1036        | 55.4723<br>135.8153 | 39.0311           | 195.4127 |
| 2<br>103.400  | 71.<br>07        | 7950<br>125.5305       | 60.5950<br>176.5915 | 53.4523           | 196.4438 |
| 3<br>98.8799  | 73.<br>9 1       | 4385<br>24.5580        | 54.3909<br>139.8967 | 45.3717           | 169.5428 |
| 4<br>70.0888  | 66.<br>3 1       | 2004<br>25.9708        | 57.6141<br>139.7943 | 51.9554           | 143.4003 |
| 5<br>102.039  | 78.<br>90        | 0740<br>129.9381       | 67.9949<br>114.2687 | 40.8967           | 142.2433 |
| 6<br>112.137  | 76.<br>77        | 3542<br>209.8088       | 63.3878<br>140.4493 | 31.6673           | 174.1398 |
| 7<br>105.682  | 85.<br>27        | 2513<br>122.1912       | 62.4363<br>408.6963 | 19.8855           | 171.2562 |
| 8<br>125.021  | 74.<br>11        | 5192<br>209.4874       | 62.1590<br>321.1959 | 50.7593           | 185.9772 |
| 9<br>98.2406  | 80.<br>5 2       | 2843<br>04.8375        | 71.7400<br>409.9186 | 40.3900           | 210.8814 |
| 10<br>84.7707 | 74.<br>72        | 1990<br>07.2319        | 66.8961<br>409.0574 | 49.1727           | 214.3311 |
| 11<br>101.886 | 77.<br>53        | 3368<br>209.8324       | 63.0308<br>409.0248 | 49.4626           | 215.7939 |
| 12<br>103.001 | 67.<br>11        | 7222<br>277.4630       | 72.4041<br>392.8722 | 39.3091           | 223.2499 |
| 13<br>112.674 | 83.<br>18        | 2597<br>215.3335       | 65.4846<br>372.9801 | 49.1068           | 234.5224 |
| 14<br>103.797 | 68.<br>71        | 6633<br>209.8306       | 60.5684<br>319.3603 | 41.8581           | 244.0225 |
| 15<br>68.9228 | 82.<br>3 2       | 7858<br>09.8116        | 65.3513<br>319.2816 | 54.3667           | 226.2738 |
| 16<br>107.094 | 83.<br>17        | 0294<br>125.3402       | 71.7039<br>431.0707 | 44.6563           | 225.0234 |
| 17<br>99.5912 | 70.<br>2 2       | 3601<br>214.7761       | 58.5546<br>319.2092 | 53.5472           | 251.9481 |
| 18<br>95.501  | 86.<br>I 1       | 2238<br>95.6637        | 59.5444<br>398.9988 | 56.5876           | 252.4167 |
| 19<br>103.289 | 79.<br>93        | 0858<br>230.0075       | 60.9799<br>316.3327 | 57.5961           | 240.8584 |
| 20<br>100.884 | 71.<br>47        | 0778<br>208.9540       | 74.9853<br>318.2537 | 51.8889           | 241.8371 |
| 21<br>94.8288 | 63.<br>3 1       | 1448<br>68.1070        | 72.5782<br>229.5742 | 54.8836           | 237.7377 |
| 22            | 96.              | 1838                   | 58.9460             | 26.6757           | 265.1536 |

| 70.5463          | 209.6319              | 139.7170            |         |          |
|------------------|-----------------------|---------------------|---------|----------|
| 23<br>102.4098   | 79.5338<br>3 121.9618 | 56.2234<br>159.5101 | 52.7110 | 285.2911 |
| 24 8<br>127.4616 | 89.4889<br>5 40.6164  | 67.9722<br>139.7675 | 55.6455 | 286.4694 |

Table 5: Hourly plant discharge ( $\times 10^4 m^3$ ) using DE

| Hour | $Q_{h1}$ | $Q_{h2}$ | $Q_{h3}$ | $Q_{h4}$ |
|------|----------|----------|----------|----------|
| 1    | 9.3900   | 6.9497   | 21.2930  | 11.3572  |
| 2    | 7.4625   | 7.6591   | 15.8795  | 12.3978  |
| 3    | 7.6448   | 6.6613   | 18.1371  | 10.7714  |
| 4    | 6.6101   | 6.9412   | 14.5708  | 9.2545   |
| 5    | 8.3409   | 8.4337   | 19.1058  | 10.1961  |
| 6    | 8.1719   | 7.7006   | 21.0849  | 12.1472  |
| 7    | 9.8868   | 7.6118   | 22.8905  | 11.3632  |
| 8    | 8.0287   | 7.7196   | 11.1866  | 12.0963  |
| 9    | 8.9669   | 9.5187   | 19.0729  | 14.6682  |
| 10   | 7.8782   | 8.7747   | 16.1337  | 14.4444  |
| 11   | 8.2332   | 8.0673   | 16.0728  | 13.7218  |
| 12   | 6.6974   | 9.6979   | 19.4848  | 13.4565  |
| 13   | 8.9093   | 8.5795   | 16.4476  | 15.0548  |
| 14   | 6.6904   | 7.7925   | 19.2375  | 15.7018  |
| 15   | 8.5748   | 8.4857   | 12.3245  | 13.5412  |
| 16   | 8.5509   | 9.6270   | 19.1695  | 13.1287  |
| 17   | 6.7612   | 7.4541   | 15.7710  | 15.4584  |
| 18   | 8.9753   | 7.6602   | 12.1421  | 15.3920  |
| 19   | 7.9102   | 8.0769   | 14.4662  | 13.6510  |
| 20   | 6.8480   | 11.0746  | 17.9008  | 13.8923  |
| 21   | 5.8969   | 11.0149  | 16.6590  | 12.9495  |
| 22   | 10.8978  | 8.4443   | 23.4759  | 15.6595  |
| 23   | 8.0405   | 7.8971   | 16.9803  | 18.9149  |
| 24   | 9.6332   | 10.1578  | 15.6406  | 19.9528  |

| Table 6: Hydrothermal generation (MW) schedule us | ing |
|---------------------------------------------------|-----|
| EP                                                |     |

| Hour          | $\mathbf{P}_{h1}$ $\mathbf{P}_{h1}$ | $P_{h3}$ $P_{h3}$   | $\mathbf{P}_{h4}$ | $\mathbf{P}_{s1}$ |
|---------------|-------------------------------------|---------------------|-------------------|-------------------|
| $P_{s2}$      | $P_{s3}$                            |                     |                   |                   |
| 1<br>64.0483  | 70.6200<br>300.0000                 | 49.0000<br>136.3117 | 25.2661           | 112.4993          |
| 2<br>20.0000  | 99.2400<br>279.5163                 | 78.4843<br>138.0382 | 17.3385           | 162.6479          |
| 3<br>35.5019  | 51.9343<br>255.0682                 | 58.7328<br>137.5869 | 44.5558           | 122.2628          |
| 4<br>20.0000  | 92.7332<br>151.3721                 | 61.0731<br>141.5977 | 41.0616           | 146.6958          |
| 5<br>20.0000  | 57.4873<br>172.7254                 | 70.3141<br>168.0382 | 48.8258           | 138.1723          |
| 6<br>85.7609  | 73.6780<br>213.5351                 | 56.3643<br>126.2108 | 52.0205           | 198.8746          |
| 7<br>175.000  | 51.3634<br>0 300.0000               | 49.2054<br>242.8808 | 27.2021           | 123.3311          |
| 8<br>116.314  | 94.9082<br>4 148.5485               | 49.1101<br>280.3858 | 50.2445           | 285.5728          |
| 9<br>89.0188  | 87.0314<br>196.6445                 | 54.1682<br>406.9780 | 32.0301           | 250.0230          |
| 10<br>75.6162 | 69.6887<br>196.8340                 | 50.4732<br>412.7615 | 46.2513           | 254.0269          |
| 11<br>94.7675 | 92.4502<br>135.6962                 | 84.4329<br>439.3710 | 38.2342           | 243.7077          |
| 12<br>113.518 | 81.9139<br>7 300.0000               | 60.9693<br>330.5752 | 40.2823           | 244.0238          |
| 13<br>175.000 | 97.1529<br>0 229.4387               | 72.5216<br>253.7694 | 43.4347           | 256.6609          |
| 14<br>28.3491 | 50.9347<br>300.0000                 | 49.8039<br>322.0618 | 42.5304           | 254.2212          |
| 15<br>79.6587 | 69.7215<br>152.0408                 | 61.1332<br>337.5396 | 49.2722           | 278.7546          |
| 16<br>160.427 | 68.7395<br>0 193.1340               | 63.0820<br>266.1165 | 40.7655           | 284.8551          |
| 17<br>155.284 | 53.8163<br>8 300.0000               | 84.6136<br>218.3485 | 39.0245           | 214.8058          |
| 18<br>85.8601 | 85.7858<br>214.8620                 | 87.5753<br>325.4958 | 50.1568           | 288.5998          |
| 19<br>20.0000 | 54.1882<br>275.9258                 | 72.0905<br>306.8483 | 51.9357           | 305.0704          |
| 20<br>83.8795 | 93.4133<br>300.0000                 | 51.7545<br>232.9285 | 50.4758           | 250.5204          |
| 21<br>85.7754 | 59.1011<br>126.6209                 | 42.9711<br>255.0713 | 52.3989           | 300.0169          |

| 22 54.0044<br>20.0000 94.5109 | 44.7356<br>310.3078 | 53.5506 | 297.3547 |
|-------------------------------|---------------------|---------|----------|
| 23 56.3437<br>20.0000 40.0000 | 79.3386<br>317.6570 | 55.6198 | 296.1181 |
| 24 58.8113<br>74.6100 40.0000 | 65.6309<br>239.8174 | 58.9075 | 272.2352 |

## Table7: Hourly plant discharge ( $\times 10^4 m^3$ ) using EP

| Ho | ur $Q_{h1}$ | $Q_{h2}$ | $Q_{h3}$ | $Q_{h4}$ |
|----|-------------|----------|----------|----------|
| 1  | 7.3148      | 6.0000   | 28.9895  | 6.4197   |
| 2  | 14.2478     | 11.0414  | 25.9467  | 9.3072   |
| 3  | 5.0000      | 7.5649   | 16.3017  | 6.0000   |
| 4  | 11.6837     | 7.8038   | 16.9207  | 8.3103   |
| 5  | 5.7111      | 9.3281   | 10.6053  | 8.3344   |
| 6  | 7.9694      | 7.0626   | 12.7754  | 11.9744  |
| 7  | 5.0000      | 6.0124   | 30.0000  | 6.6604   |
| 8  | 12.8892     | 6.0000   | 14.1618  | 20.0000  |
| 9  | 10.7988     | 6.6461   | 30.0000  | 20.0000  |
| 10 | 7.4820      | 6.0000   | 14.2549  | 17.1550  |
| 11 | 12.0973     | 11.9966  | 18.3254  | 16.3921  |
| 12 | 9.3921      | 7.5743   | 17.6771  | 14.5921  |
| 13 | 15.0000     | 9.5945   | 16.3931  | 16.1929  |
| 14 | 5.0000      | 6.0000   | 28.2554  | 20.0000  |
| 15 | 7.1686      | 7.4292   | 11.7586  | 18.0830  |
| 16 | 6.8970      | 7.5969   | 18.9886  | 18.9905  |
| 17 | 5.0000      | 11.9054  | 19.2118  | 11.0084  |
| 18 | 9.2829      | 13.9822  | 14.4977  | 18.8956  |
| 19 | 5.0000      | 10.9031  | 11.9679  | 20.0000  |
| 20 | 10.7954     | 7.4358   | 15.0330  | 13.9259  |
| 21 | 5.6043      | 6.0272   | 10.1091  | 19.7012  |
| 22 | 5.0000      | 6.0000   | 16.2196  | 19.3475  |
| 23 | 5.2170      | 12.3770  | 10.0000  | 20.0000  |
| 24 | 5.4484      | 9.7185   | 12.1456  | 17.5741  |



### 6. CONCLUSION

A novel approach based on artificial immune system has been presented to solve the short-term hydrothermal scheduling problem. Numerical results show that highly near-optimal solutions can be obtained by artificial immune system algorithm when compared with the differential evolution and evolutionary programming technique. The same problem can be solved using other optimization technique and can be compare with this technique

#### 7. REFERENCES

- M. V. F. Pereira and L. M. V. G. Pinto, "A decomposition approach to the economic dispatch of the hydrothermal systems", IEEE Transactions on PAS, Vol. 101, No. 10, 1982, pp. 3851-3860.
- [2] Q. Xia, N. Xiang, S Wang, B. Zhang and M. Huang, "Optimal daily scheduling of Cascaded plants using a new algorithm of non-linear minimum cost network flow", IEEE Transactions on PWRS, Vol. 3, No. 3, 1988, pp. 929-935.
- [3] S. Chang, C. Chen, I. Fong and P. B. Luh, "Hydroelectric generation scheduling with an effective differential programming", IEEE Transaction on PWRS, Vol. 5, No. 3, 1990, pp. 737-743.
- [4] A. A. F. M. Carneiro, S. Soares and P. S. Bond, "A large scale of an optimal deterministic hydrothermal scheduling algorithm", IEEE Transactions on PWRS, Vol. 5, No. 1, Feb. 1990, pp. 204-211.
- [5] M. S. Salam, K. M. Nor, and A.R. Hamdam, "Hydrothermal scheduling based Lagrangian relaxation approach to hydrothermal coordination", IEEE Transactions on PWRS, Vol. 13, No. 1, Feb. 1998, pp. 226-235.

- [6] W. S. Sifuentes and A. Vargas, "Hydrothermal Scheduling Using Benders Decomposition: Accelerating Techniques", IEEE Trans. on PWRS, Vol. 22, No. 3, Aug. 2007, pp. 1351-1359.
- [7] K. P. Wong and Y. W. Wong, "Short-term hydrothermal scheduling part 1: simulated annealing approach", IEE Proceedings Generation, Transmission and Distribution, 1994, Vol. 141, No.5, pp. 497-501.
- [8] P. C. Yang, H. T. Yang and C. L. Huang, "Scheduling short-term hydrothermal generation using evolutionary Programming techniques", IEE Proceedings Generation Transmission and Distribution, vol. 143, No. 4, July 1996, pp. 371-376.
- [9] S. O. Orero and M. R. Irving, "A genetic algorithm modeling framework and solution technique for short term optimal hydrothermal scheduling", IEEE Trans. on PWRS, Vol. 13, No. 2, May 1998.
- [10] E. Gil, J. Bustos and H. Rudnick, "Short-term hydrothermal generation scheduling model using a genetic algorithm", IEEE Trans. on PWRS, Vol. 18, No. 4, Nov. 2003, pp. 1256-1264.
- [11] L. Lakshminarasimman and S. Subramanian, "Short-term scheduling of hydrothermal power system with cascaded reservoirs by using modified differential evolution", IEE Proceedings – Generation, Transmission and Distribution, Volume 153, No. 6, November 2006, pp.693-700.
- [12] S. Endoh, N. Toma, and K. Yamada, "Immune algorithm for n-TSP", System, Man and Cybernetics, IEEE International Conference, vol. 4, 11-14 October, 1998, pp. 3844-3849.

- [13] L. N. de Castro, and F. J. Von Zuben: Artificial Immune Systems: Part I – Basic theory and Applications. Technical report, TR-DCA 01/99, Dec1999.
- [14] L. N. de Castro and F. J. Zuben, "Learning and optimization using through the clonal selection principle", IEEE Transactions on Evolutionary Computation, vol.6, no.3 pp. 239-251, 2002.
- [15] G. Nicosia, V. Cutello, P. J. Bentley and J. Timmis: Artificial Immune Systems. Third International Conference (ICARIS 2004), Catania, Italy, LNCS, Springer-Verlag, vol.3239, 2004.
- [16] V. Cutello, G. Morelli, G. Nicosia, and M. Pavone: Immune Algorithms with Aging Operators for the String Folding Problem and the Protein Folding problem. EvoCOP 2005, LNCS, vol. 3448, pp. 80-90, Springer, Heidelberg (2005).
- [17] V. Cutello, G. Narzisi, G. Nicosia, and M. Pavone: Real coded Clonal Selection Algorithm for Global Numerical Optimization using a new Inversely Proportional Hypermutation Operator. The 21st Annual ACM

### 8. APPENDIX



 $I_{hj}$ : natural inflow to j th reservoir

 $Q_{hj}$ : discharge of j th plant

| 5                          |                                   |   |   |   |   |  |  |  |  |  |
|----------------------------|-----------------------------------|---|---|---|---|--|--|--|--|--|
|                            | Plant                             | 1 | 2 | 3 | 4 |  |  |  |  |  |
|                            | $R_{u}$                           | 0 | 0 | 2 | 1 |  |  |  |  |  |
| <i>t<sub>d</sub></i> 2 3 4 |                                   |   |   |   |   |  |  |  |  |  |
|                            | $R_{\mu}$ : no of upstream plants |   |   |   |   |  |  |  |  |  |

Figure 1: Hydraulic system network

 $t_d$ : time delay to immediate downstream plant

Symposium on Applied Computing, SAC 2006, Dijon, France, April 23-27, 2006, vol. 2, pp. 950-954. ACM Press, New York (2006).

- [18] V. Cutello, G. Nicosia, M. Romeo and P. S. Oliveto: On the Convergence of Immune Algorithms. The First IEEE Symposium on Foundations of Computational Intelligence, FOCI 2007. IEEE Computer Society Press, Los Alamitos (2007).
- [19] T. K. A. Rahman, S. I. Suliman and I. Musirin, "Artificial Immune –Based Optimization Technique for Solving Economic Dispatch in Power Systems", Springer-Verlag, Berlin Heidelberg 2006, pp.338-345.
- [20] B. K. Panigrahi, S. R. Yadav, S. Agrawal and M. K. Tiwari, "A clonal algorithm to solve economic load dispatch", Electric Power System Research, 2006.
- [21] Gwo-Ching Liao, "Short-term thermal generation scheduling using improved immune algorithm", Electric Power System Research 76 (2006), pp. 360-373.

| Hour | $P_D$ | Hour | $P_D$ | Hour | $P_D$ |
|------|-------|------|-------|------|-------|
|      | (MW)  |      | (MW)  |      | (MW)  |
| 1    | 750   | 9    | 1090  | 17   | 1050  |
| 2    | 780   | 10   | 1080  | 18   | 1120  |
| 3    | 700   | 11   | 1100  | 19   | 1070  |
| 4    | 650   | 12   | 1150  | 20   | 1050  |
| 5    | 670   | 13   | 1110  | 21   | 910   |
| 6    | 800   | 14   | 1030  | 22   | 860   |
| 7    | 950   | 15   | 1010  | 23   | 850   |
| 8    | 1010  | 16   | 1060  | 24   | 800   |

Table 8: Load demand

Table 9: Hydro power generation coefficients

| Plant | $C_1$   | $C_2$ | <i>C</i> <sub>3</sub> | $C_4$ | $C_5$ | $C_6$ |
|-------|---------|-------|-----------------------|-------|-------|-------|
| 1     | -0.0042 | -0.42 | 0.030                 | 0.90  | 10.0  | -50   |
| 2     | -0.0040 | -0.30 | 0.015                 | 1.14  | 9.5   | -70   |
| 3     | -0.0016 | -0.30 | 0.014                 | 0.55  | 5.5   | -40   |
| 4     | -0.0030 | -0.31 | 0.027                 | 1.44  | 14.0  | -90   |

## Table 10: Reservoir inflows ( $\times 10^4 m^3$ )

| Hour | Reservoir                               | Hour | Reservoir                               | Hour | Reservoir                               |
|------|-----------------------------------------|------|-----------------------------------------|------|-----------------------------------------|
|      | $\begin{array}{ccc}1&2&3\\4\end{array}$ |      | $\begin{array}{ccc}1&2&3\\4\end{array}$ |      | $\begin{array}{ccc}1&2&3\\4\end{array}$ |
| 1    | 10 8 8.1<br>2.8                         | 9    | 10 8 1<br>0                             | 17   | 9 7 2<br>0                              |
| 2    | 9 8 8.2<br>2.4                          | 10   | 11 9 1<br>0                             | 18   | 8 6 2<br>0                              |
| 3    | 8 9 4<br>1.6                            | 11   | 12 9 1<br>0                             | 19   | 7 7 1<br>0                              |

| 4 | 7 9<br>0 | 2 12 | 10 8 2<br>0 | 20 | 6 8 1<br>0  |
|---|----------|------|-------------|----|-------------|
| 5 | 6 8<br>0 | 3 13 | 11 8 4<br>0 | 21 | 7 9 2<br>0  |
| 6 | 7 7<br>0 | 4 14 | 12 9 3<br>0 | 22 | 8 9 2<br>0  |
| 7 | 8 6<br>0 | 3 15 | 11 9 3<br>0 | 23 | 9 8 1<br>0  |
| 8 | 9 7<br>0 | 2 16 | 10 8 2<br>0 | 24 | 10 8 0<br>0 |

Table 11: Reservoir storage capacity limits, plant discharge limits, reservoir end conditions ( $\times 10^4 m^3$ ) and plant generation limits (MW)

| Pla | $V^{\min}$ | $V^{\max}$ | $V_{ini}$ | $V_{end}$ | $Q^{\min}$ | $Q^{\max}$ | $P_h^{min}$ | $P_h^{max}$ |
|-----|------------|------------|-----------|-----------|------------|------------|-------------|-------------|
| nt  |            |            |           |           |            |            |             |             |
|     |            |            |           |           |            |            |             |             |
| 1   | 80         | 150        | 10<br>0   | 120       | 5          | 15         | 0           | 500         |
| 2   | 60         | 120        | 80        | 70        | 6          | 15         | 0           | 500         |
| 3   | 100        | 240        | 17<br>0   | 170       | 10         | 30         | 0           | 500         |
| 4   | 70         | 160        | 12<br>0   | 140       | 6          | 20         | 0           | 500         |

 
 Table 12: Cost curve coefficients and operating limits of thermal generators

| Unit | $a_s$ | $b_s$  | C <sub>s</sub>         | $d_s$ | e <sub>s</sub> P | min<br>s | $\mathbf{P}_s^{\max}$ |
|------|-------|--------|------------------------|-------|------------------|----------|-----------------------|
|      | \$/h  | \$/MWh | \$/(MW) <sup>2</sup> h | \$/h  | rad/MW           | / MW     | MW                    |
| 1    | 100   | 2.45   | 0.0012                 | 160   | 0.038            | 20       | 175                   |
| 2    | 120   | 2.32   | 0.0010                 | 180   | 0.037            | 40       | 300                   |
| 3    | 150   | 2.10   | 0.0015                 | 200   | 0.035            | 50       | 500                   |

Transmission loss coefficients are given below:

| $B = 10^{-4}$ | ×[0.  | 34 0.1 | 3 0.0 | 9 -0.0 | 01 -0.0 | 0.0- 80 | 01 -0.02 |     |
|---------------|-------|--------|-------|--------|---------|---------|----------|-----|
|               | 0.13  | 0.14   | 0.10  | 0.01   | -0.05   | -0.02   | -0.01    |     |
|               | 0.09  | 0.10   | 0.31  | 0.00   | -0.11   | -0.07   | -0.05    |     |
|               | -0.01 | 0.01   | 0.00  | 0.24   | -0.08   | -0.04   | -0.07    | per |
| MW            |       |        |       |        |         |         |          |     |
|               | -0.08 | -0.05  | -0.11 | -0.08  | 1.92    | 0.27    | -0.02    |     |
|               | -0.01 | -0.02  | -0.07 | -0.04  | 0.27    | 0.32    | 0.00     |     |
|               | -0.02 | -0.01  | -0.05 | -0.07  | -0.02   | 0.00    | 1.35]    |     |
|               | _     |        |       |        |         |         |          |     |

B00 = 0.55 MW