
International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 16, December 2014

23

Performance Analysis of Floyd Warshall Algorithm vs

Rectangular Algorithm

Akanksha Singh
Department of Information Technology

Birla Institute of Technology, Mesra (Ranchi) India

Pramod Kumar Mishra
Department of Computer Science,

Banaras Hindu University, Varanasi India

ABSTRACT

In this paper, we have examined the comparative study of

Floyd Warshall algorithm and the Rectangular algorithm. We

have tested these two algorithms on random graphs generated

by the Erdös – Renyi (ER) model. The evaluation of the

algorithms for different probabilities show that the Floyd

Warshall algorithm gives slightly better performance for

dense graphs while the Rectangular algorithm works better for

sparse graphs.

Keywords

Bellman ford algorithm, Dijkstra’s algorithm, Floyd warshall

algorithm, all pair shortest path algorithm, the rectangular

algorithm, comparison of algorithms.

1. INTRODUCTION
The shortest path problem is a fundamental algorithmic

problem, in which a minimum weight path is computed

between two nodes of a weighted, directed graph. This

problem has been studied for a long time and has attracted

researchers from various areas of interests such as operations

research, computer science, communication networks and

VLSI design. Even after being a thoroughly explored

problem, new developments keep emerging for this problem.

The simple reason is that with new technological

development. Its applications have also increased and require

better performance than before. An efficient solution for this

problem is needed by a variety of real-life applications like

path finding in maps, robot navigation, urban traffic planning,

optimal pipelining of VLSI chip, routing of

telecommunication messages, network routing protocols and

exploiting arbitrage opportunities in currency exchange. Also

it is used as a subroutine in many advanced algorithms.

In a shortest path problem, a graph G (V, E) is given, where,

V is a set of n vertices and E is the set of m edges. Each edge

connects two vertices and is associated with a weight. The

weights can be positive or negative. The graph can be directed

or undirected, may contain cycles or not. Most of the solutions

to the shortest path problem assume that the graph doesn't

contain any negative cycles. Various real life models can be

represented as graphs, for example, in transport networks,

roads represent edges and intersections represent vertices. The

weights may be cost travelled along a road or time taken to

travel that road, according to the situation.

There are mainly two versions of the shortest path problem:

 Single source shortest path problem (SSSP): Here,

shortest paths from a source node to all other nodes of the

graph are found.

 All pairs shortest path problem (APSP): Here, shortest

paths for each pair of vertices in the graph are computed.

This paper concentrates on the APSP problem, since most real

life models need to evaluate the shortest paths for every pair

of vertices. In the next section, we discuss literature review

where numerous researches done his works on the shortest

path problem. In section 3, we explain performance analysis

and comparative study of APSP algorithms. The experimental

setup and results are described in sections 4 and 5

respectively. In section 6 we conclude the result.

2. LITERATURE REVIEW

Being a classical problem, the shortest path problem has been

investigated through various approaches. Many researchers

formulate efficient algorithms for this problem. Some basic

algorithms for evaluating shortest paths are explained below:

2.1 Bellman Ford Algorithm

This algorithm provides solution for the SSSP problem [1]. It

is used for weighted, directed graphs which may have edges

with negative weights, and has a time complexity of O (nm).

It can also detect negative weight cycles in the graph.

2.2 Dijkstra's Algorithm
This algorithm also solves the SSSP problem, but it only

works for graphs with nonnegative edge weights [2]. It has a

running time of O (n2). If the min-priority queue used in

Dijkstra's algorithm is implemented with a binary heap, the

running time achieved is O (mlog (n)) [3]. By using Fibonacci

heaps even better performance is obtained, that is, O (nlog(n)

+ m) [3].

2.3 Floyd Warshall algorithm
This algorithm solves the APSP problem [4]. The input graph

may contain negative weighted edges but should not have any

negative weight cycles. It has a running time of Θ (n3).

Many efforts have been done by researchers to improve these

algorithms and various other algorithms have been developed

by combining these algorithms. Gallo and Pallottino [5]

present a good analysis of classical algorithms and their

implementations. Cherkassky et al. [6] have presented an

extensive comparative study on various shortest path

algorithms. In Pettie's paper [7], a new APSP algorithm is

presented, for real-weighted directed graphs that run in

O (mn + n2 log log n) time. Hougardy [8] in his paper makes

us aware about using Floyd Warshall algorithm with graphs

having negative weight cycles. In [9], Dijkstra’s algorithm is

generalized for finding shortest paths in digraphs with non-

negative integral edge lengths, in consideration with VLSI

routing problem. In [10], a generalized Dijkstra’s algorithm is

proposed to handle shortest path problem with fuzzy

parameters. In Orlin's paper [11], an efficient method for

implementing SSSP algorithm has been put forward which

runs in linear time when the number of distinct edge lengths is

smaller than the density of the graph. Han [12] has proposed

an algorithm for the APSP problem with a time complexity of

O (n3 (loglogn/logn) 5/4). In [13], an algorithm has been

proposed by modifying the Dijkstra's algorithm for APSP

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 16, December 2014

24

problem, along with optimization strategies for scale free

complex networks.

2.4 All-Pairs Shortest Path Algorithms
Given is a weighted, directed graph G (V, E), where V is a set

of n vertices and E is a set of m edges. It is represented by an

adjacency matrix, whose elements are w[i, j], weight of the

edge [i, j] for i, j = 1,2,...,n. These weights may be negative

but the graph must not contain any negative cycle. For storing

the weights of shortest paths, we have used a distance matrix

having elements d[i, j] as the weight of shortest path from i to

j, where i, j = 1,2,…,n. A predecessor matrix is used for

constructing the shortest routes. Its elements are r[i, j], the

predecessor of j on the shortest path from i, where

i, j = 1,2,...,n. We have to find the shortest paths between each

pair of vertices of the graph. The two algorithms we have used

for comparison are explained below.

2.4.1 Floyd Warshall Algorithm
The Floyd Warshall algorithm is an elementary algorithm for

finding out shortest paths for every pair of vertices in a

directed graph. It is a dynamic programming algorithm. It was

developed by Floyd [4] on the basis of a paper given by

Warshall [14]. This algorithm is based on a concept of

intermediate vertices. Let dij
0 be the weight matrix, and dij

k be

the shortest path from i to j with its intermediate vertices in

the set {1, 2... k}. Then for k > 1,

 dij
k = min(dij

k-1 , dik
k-1 + dkj

k-1) (1)

Thus, dij
n will provide the shortest paths matrix for the input

graph. The algorithm is stated below.

Algorithm 1

We have implemented the algorithm using single distance and

predecessor matrices instead of using different matrices for

each value of k. This is because if we were to compute and

store dik or dkj before using these values to compute dij, we

might be computing one of the following:

 dij
k = min(dij

k-1 , dik
k-1 + dkj

k-1) (2)

 dij
k = min(dij

k-1 , dik
k + dkj

k-1) (3)

 dij
k = min(dij

k-1 , dik
k-1 + dkj

k) (4)

In any of these cases, we’re computing the weight of a

shortest path from i to j with all intermediate vertices in {1,

2...k}. If we use dik
k, rather than dik

k-1, in the computation, then

we’re using a subpath from i to k with all intermediate

vertices in {1, 2 . . . k}. But k cannot be an intermediate vertex

on a shortest path from i to k, since otherwise there would be a

cycle on this shortest path. Thus, dik
k = dik

k-1. A similar

argument applies to show that dkj
k = dkj

k-1. Hence, we don't

have to use different distance matrices for different values of

k.

The time complexity of the algorithm is determined by the

triple nested for loops that clearly show that the running time

of this algorithm is Θ(n3). The distance matrix containing

d[i, j] values provides the distance of shortest path from i to j

and the route of the shortest paths can be easily constructed

from the predecessor matrix containing r[i, j] values.

2.4.2 The Rectangular Algorithm
As given in [15], this algorithm is based on Floyd Warshall

algorithm, and attempts to simplify it by a rectangular

graphical approach. This approach reduces the computational

effort of the algorithm and is easier to understand. Although it

has the same time complexity as the Floyd Warshall

algorithm.

Algorithm 2

Here, also we have used single distance and predecessor

matrices, reason being the same as explained for the Floyd

Warshall algorithm. The resulting distance matrix will contain

the distances of shortest paths for each pair of vertices of the

graph, and these routes can also be easily obtained from

predecessor matrix.

For implementing this algorithm, we have used an extra array

for remembering the indices of the rows and columns whose

elements will not change according to step (a) of the

algorithm. Then, for completing the distance matrix according

to step (b), we will have triply nested for loops as in the Floyd

Warshall algorithm, but we will skip the rows and columns

whose indices we have stored initially. Thus, this algorithm

uses an extra array which takes O(n) space.

3. EXPERIMENTAL SETUP
The experiments have been conducted on a laptop with Intel

Core i5 CPU M 480 @ 2.67 GHz x 4 processor, 3.7 GiB

memory, and having Ubuntu 11.10 as its operating system.

The programs was written in C and compiled by gnu gcc

compiler.

The graphs for the experiments are weighted and directed and

have been generated randomly by the Erdös – Renyi (ER)

1. for i = 1 to n do

2. for j = 1 to n do

3. if there exists an edge from i to j then

4. d[i, j] = w[i, j]

5. r[i, j] = i

6. else

7. d[i, j] = infinity

8. r[i, j] = -1

9. for k = 1 to n do

10. for i = 1 to n do

11. for j = 1 to n do

12. if d[i, k] + d[k, j] < d[i, j] then

13. d[i, j] = d[i, k] + d[k, j]

14. r[i, j] = k

1. for i = 1 to n do

2. for j=1 to n do

3. If there exists an edge from i to j then

4. d[i, j]=w[i, j]

5. r[i, j]= i

6. Else

7. d[i, j]=infinity

8. r[i, j]= -1

9. for k=1 to n do

10. a) If an Infinity exists in kth row or column of the

distance matrix, the remaining entities of the row or

column in which Infinity exists will not change. Thus,

the d[i, j] values for the respective row or column will

not change.

11. b) If applying rule (a) doesn't result in a complete

distance matrix, then these remaining entities will be

derived by drawing a set of rectangles, with dij, dik, dkj

and diagonal zero as the corners of the rectangle.

12. c) For the predecessor matrix, if d[i, j] value has not

changed, then r[i, j] will also not change. If any

entity's d[i, j] value has changed, then its r[i, j] will

be substituted with j

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 16, December 2014

25

model [16]. The ER model generates random graphs of n

vertices where each possible edge can exist with probability p.

The number of edges in the generated graph is a random

variable with expected value pn(n-1)/2. Lower values of p

imply sparse graphs and higher values imply dense graphs.

Thus the parameters for the algorithms are n and p for which

the running times of programs will be plotted. The running

time has been averaged on 50 instances for each parameter

setting. The average running times obtained have been plotted

using Gnuplot (version 4.6.5).

We have first evaluated the performance of the algorithms on

different values of p, keeping n = 100. Then we have

compared the Floyd Warshall algorithm with the Rectangular

algorithm, for p = 0.1, 0.3, 0.5 and 0.8, varying n from 10 to

100. In the next section, the results of the experiments are

specified.

4. PERFORMANCE ANALYSIS

4.1 Effects of Probability p
The performance of both the algorithms has been tested on

different values of probability p. The plots for the Floyd

Warshall algorithm and the Rectangular algorithm are given

in figure 1 and 2 respectively.

Figure 1: Floyd Warshall Algorithm- Average Running

Time VS Probability

As can be seen, the performance of Floyd Warshall algorithm

improves with increasing value of p, but the change is very

small in comparison to the running time. It means that the

Floyd Warshall algorithm performs slightly better for dense

graphs than sparse graphs.

In case of Rectangular algorithm, the average running time

increases rapidly from p = 0.1 to p = 0.4, but for p > 0.4, there

is not much change in the running time of the algorithm.

Figure 2: Floyd Rectangular Algorithm- Average Running

Time VS Probability

So, the Rectangular algorithm provides better performance for

sparse graphs.

4.2 Comparison of Algorithms
We have tested the two algorithms with number of nodes n

varying from 10 to 100. The figures 3, 4, 5 and 6 plot the

average running times of Floyd Warshall algorithm and

Rectangular algorithm for p=0.1, 0.3, 0.5 and 0.8 respectively.

As is visible from the graphs, the Rectangular algorithm's

running time is higher than that for the Floyd Warshall

algorithm. In case of p=0.1, the running times of both the

algorithms is comparable for n < 60. For p = 0.3, 0.5, 0.8,

both the algorithms have similar running times up to n = 30,

but as n rises above 30, the difference starts escalating and

the Floyd Warshall algorithm clearly performs better than the

Rectangular algorithm.

This behaviour of the Rectangular algorithm can be explained

by the fact that the section of the program that implements

step (a) of the program slows down the program instead of

speeding it up, especially for larger values of p. The step (a)

of the Rectangular algorithm is supposed to increase its speed

since it reduces the number of calculations required. But, the

time spent in performing this step, that is, in remembering the

indices of the rows and columns, whose elements will not

change, is O (n). Thus, the time saved by doing less number

of calculations is not enough to compensate for the time lost

in the execution of step (a). Hence, both the algorithms have

the same time complexity of Θ (n3), but with different factors,

where the factor for the Rectangular algorithm is larger than

that for the Floyd Warshall algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 16, December 2014

26

Figure 3: Floyd Warshall Algorithm VS Rectangular

Algorithm (Probability p=0.1)

Figure 4: Floyd Warshall Algorithm VS Rectangular

Algorithm (Probability p=0.3)

5. CONCLUSION
In this paper, we have done a comparative study on all-pairs

shortest path (APSP) algorithms. The algorithms we have

employed are Floyd Warshall algorithm and the Rectangular

algorithm.

Figure 5: Floyd Warshall Algorithm VS Rectangular

Algorithm (Probability p=0.5)

We have tested the two algorithms on random graphs

generated by the ER model. The evaluation of the algorithms

for different probabilities show that the Floyd Warshall

algorithm gives slightly better performance for dense graphs

while the Rectangular algorithm works better for sparse

graphs.

Figure 6: Floyd Warshall Algorithm VS Rectangular

Algorithm (Probability p=0.8)

Our experiments comparing the performance of the two

algorithms clearly indicate that although both the algorithms

have the same time complexity, the performance of the Floyd

Warshall algorithm is better than the Rectangular algorithm,

especially for dense graphs. Therefore, in theory the

Rectangular algorithm may seem to provide better

performance, its practical implementation is not better than

the Floyd Warshall algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 16, December 2014

27

6. ACKNOWLEDGEMENTS
The authors would like to thank the referees for giving

valuable comments and suggestions to revise the manuscript

in the present form.

7. REFERENCES
[1] R. Bellman.: On a routing problem, Quarterly Journal of

Applied Mathematics 16 (1958) 87-90.

[2] E. W. Dijkstra.: A note on two problems in connexion

with graphs”. Numerische Mathematik 1 (1959) 269-

271.

[3] T. H. Cormen, C.E. Leiserson, R.L. Rivest, and C.Stein:

Introduction to Algorithms, 3rd Ed. New York, MIT

Press and McGraw Hill.

[4] R.W. Floyd.: Algorithm 97 Shortest path,

Communications of the ACM 5 (1962) 345.

[5] G. Gallo and S. Pallottino: Shortest paths algorithms,

Annals of Operation Research 12(1988) 3-79.

[6] B. V. Cherkassky, Andrew V. Goldberg, Tomas Radzik.:

Shortest paths algorithms: Theory and experimental

evaluation, Mathematical Programming 73 (1996) 129-

74.

[7] S. Pettie.: A new approach to all-pairs shortest paths on

real-weighted graph, Theoretical Computer Science 312

(2004) 47-74.

[8] S. Hougardy: The Floyd-Warshall algorithm on graphs

with negative cycles, Information Processing Letters 110

(2010) 279-281.

[9] S. Peyer, D. Rautenbach and J. Vygen.: A generalization

of Dijkstra’s shortest path algorithm with applications to

VLSI routing, Journal of Discrete Algorithms 7 (2009)

377-390.

[10] Deng, Y. Chen, Y. Zhang and S. Mahadevan.: Fuzzy

Dijkstra algorithm for shortest path problem under

uncertain environment, Applied Soft Computing 12

(2012) 1231-1237.

[11] J. B. Orlin, K. Madduri, K. Subramani, and M.

Williamson.: A faster algorithm for the single source

shortest path problem with few distinct positive lengths,

Journal of Discrete Algorithms 8 (2010) 189-198.

[12] Y. Han and T. Takaoka.: An O(n3loglog n/log2n) Time

Algorithm for All Pairs Shortest Paths.

[13] W. Peng, X. Hu, F. Zhao, J. Su.: A Fast algorithm to find

all-pairs shortest paths in complex networks, Procedia

Computer Science 9 (2012) 557-566.

[14] S. Warshall.: A theorem on boolean matrices, Journal of

the ACM 9 (1962) 11-12.

[15] A. Aini and A. Salehipour: Speeding up the Floyd-

Warshall algorithm for the cycled shortest path problem,

Applied Mathematical letters 25 (2012) 1-5.

[16] P. Erdös and A. Renyi: On the evolution of Random

graphs, Publications of the Mathematical Institute of the

Hungarian Academy of Sciences 5 (1960) 17-61.

IJCATM : www.ijcaonline.org

