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ABSTRACT 

In this paper, we have examined the comparative study of 

Floyd Warshall algorithm and the Rectangular algorithm. We 

have tested these two algorithms on random graphs generated 

by the Erdös – Renyi (ER) model. The evaluation of the 

algorithms for different probabilities show that the Floyd 

Warshall algorithm gives slightly better performance for 

dense graphs while the Rectangular algorithm works better for 

sparse graphs. 
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1. INTRODUCTION 
The shortest path problem is a fundamental algorithmic 

problem, in which a minimum weight path is computed 

between two nodes of a weighted, directed graph. This 

problem has been studied for a long time and has attracted 

researchers from various areas of interests such as operations 

research, computer science, communication networks and 

VLSI design. Even after being a thoroughly explored 

problem, new developments keep emerging for this problem. 

The simple reason is that with new technological 

development. Its applications have also increased and require 

better performance than before. An efficient solution for this 

problem is needed by a variety of real-life applications like 

path finding in maps, robot navigation, urban traffic planning, 

optimal pipelining of VLSI chip, routing of 

telecommunication messages, network routing protocols and 

exploiting arbitrage opportunities in currency exchange.  Also 

it is used as a subroutine in many advanced algorithms. 

In a shortest path problem, a graph G (V, E) is given, where, 

V is a set of n vertices and E is the set of m edges. Each edge 

connects two vertices and is associated with a weight. The 

weights can be positive or negative. The graph can be directed 

or undirected, may contain cycles or not. Most of the solutions 

to the shortest path problem assume that the graph doesn't 

contain any negative cycles. Various real life models can be 

represented as graphs, for example, in transport networks, 

roads represent edges and intersections represent vertices. The 

weights may be cost travelled along a road or time taken to 

travel that road, according to the situation. 

There are mainly two versions of the shortest path problem: 

 Single source shortest path problem (SSSP): Here, 

shortest paths from a source node to all other nodes of the 

graph are found. 

 All pairs shortest path problem (APSP): Here, shortest 

paths for each pair of vertices in the graph are computed. 

This paper concentrates on the APSP problem, since most real 

life models need to evaluate the shortest paths for every pair 

of vertices. In the next section, we discuss literature review 

where numerous researches done his works on the shortest 

path problem. In section 3, we explain performance analysis 

and comparative study of APSP algorithms. The experimental 

setup and results are described in sections 4 and 5 

respectively. In section 6 we conclude the result. 

2. LITERATURE REVIEW 

Being a classical problem, the shortest path problem has been 

investigated through various approaches. Many researchers 

formulate efficient algorithms for this problem. Some basic 

algorithms for evaluating shortest paths are explained below: 

2.1 Bellman Ford Algorithm  

This algorithm provides solution for the SSSP problem [1]. It 

is used for weighted, directed graphs which may have edges 

with negative weights, and has a time complexity of O (nm). 

It can also detect negative weight cycles in the graph. 

2.2 Dijkstra's Algorithm  
This algorithm also solves the SSSP problem, but it only 

works for graphs with nonnegative edge weights [2]. It has a 

running time of O (n2). If the min-priority queue used in 

Dijkstra's algorithm is implemented with a binary heap, the 

running time achieved is O (mlog (n)) [3]. By using Fibonacci 

heaps even better performance is obtained, that is, O (nlog(n) 

+ m) [3]. 

2.3 Floyd Warshall algorithm  
This algorithm solves the APSP problem [4]. The input graph 

may contain negative weighted edges but should not have any 

negative weight cycles. It has a running time of Θ (n3). 

Many efforts have been done by researchers to improve these 

algorithms and various other algorithms have been developed 

by combining these algorithms. Gallo and Pallottino [5] 

present a good analysis of classical algorithms and their 

implementations. Cherkassky et al. [6] have presented an 

extensive comparative study on various shortest path 

algorithms. In Pettie's paper [7], a new APSP algorithm is 

presented, for real-weighted directed graphs that run in          

O (mn + n2 log log n) time. Hougardy [8] in his paper makes 

us aware about using Floyd Warshall algorithm with graphs 

having negative weight cycles. In [9], Dijkstra’s algorithm is 

generalized for finding shortest paths in digraphs with non-

negative integral edge lengths, in consideration with VLSI 

routing problem. In [10], a generalized Dijkstra’s algorithm is 

proposed to handle shortest path problem with fuzzy 

parameters. In Orlin's paper [11], an efficient method for 

implementing SSSP algorithm has been put forward which 

runs in linear time when the number of distinct edge lengths is 

smaller than the density of the graph. Han [12] has proposed 

an algorithm for the APSP problem with a time complexity of 

O (n3 (loglogn/logn) 5/4). In [13], an algorithm has been 

proposed by modifying the Dijkstra's algorithm for APSP 
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problem, along with optimization strategies for scale free 

complex networks. 

2.4 All-Pairs Shortest Path Algorithms  
Given is a weighted, directed graph G (V, E), where V is a set 

of n vertices and E is a set of m edges. It is represented by an 

adjacency matrix, whose elements are w[i, j], weight of the 

edge [i, j] for i, j = 1,2,...,n. These weights may be negative 

but the graph must not contain any negative cycle. For storing 

the weights of shortest paths, we have used a distance matrix 

having elements d[i, j] as the weight of shortest path from i to 

j, where i, j = 1,2,…,n. A predecessor matrix is used for 

constructing the shortest routes. Its elements are r[i, j], the 

predecessor of j on the shortest path from i, where                  

i, j = 1,2,...,n. We have to find the shortest paths between each 

pair of vertices of the graph. The two algorithms we have used 

for comparison are explained below. 

2.4.1 Floyd Warshall Algorithm  
The Floyd Warshall algorithm is an elementary algorithm for 

finding out shortest paths for every pair of vertices in a 

directed graph. It is a dynamic programming algorithm. It was 

developed by Floyd [4] on the basis of a paper given by 

Warshall [14]. This algorithm is based on a concept of 

intermediate vertices. Let dij
0 be the weight matrix, and dij

k be 

the shortest path from i to j with its intermediate vertices in 

the set {1, 2... k}. Then for k > 1, 

                dij
k = min( dij

k-1 , dik
k-1 + dkj

k-1 )               (1) 

Thus, dij
n will provide the shortest paths matrix for the input 

graph. The algorithm is stated below. 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 

We have implemented the algorithm using single distance and 

predecessor matrices instead of using different matrices for 

each value of k. This is because if we were to compute and 

store dik or dkj before using these values to compute dij, we 

might be computing one of the following: 

              dij
k = min( dij

k-1 , dik
k-1 +  dkj

k-1 )               (2) 

             dij
k = min( dij

k-1 , dik
k + dkj

k-1 )                (3) 

            dij
k = min( dij

k-1 , dik
k-1 + dkj

k)                             (4) 

In any of these cases, we’re computing the weight of a 

shortest path from i to j with all intermediate vertices in {1, 

2...k}. If we use dik
k, rather than dik

k-1, in the computation, then 

we’re using a subpath from i to k with all intermediate 

vertices in {1, 2 . . . k}. But k cannot be an intermediate vertex 

on a shortest path from i to k, since otherwise there would be a 

cycle on this shortest path. Thus, dik
k = dik

k-1. A similar 

argument applies to show that dkj
k = dkj

k-1. Hence, we don't 

have to use different distance matrices for different values of 

k. 

The time complexity of the algorithm is determined by the 

triple nested for loops that clearly show that the running time 

of this algorithm is Θ(n3). The distance matrix containing   

d[i, j] values provides the distance of shortest path from i to j 

and the route of the shortest paths can be easily constructed 

from the predecessor matrix containing r[i, j] values. 

2.4.2 The Rectangular Algorithm 
As given in [15], this algorithm is based on Floyd Warshall 

algorithm, and attempts to simplify it by a rectangular 

graphical approach. This approach reduces the computational 

effort of the algorithm and is easier to understand. Although it 

has the same time complexity as the Floyd Warshall 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 

Here, also we have used single distance and predecessor 

matrices, reason being the same as explained for the Floyd 

Warshall algorithm. The resulting distance matrix will contain 

the distances of shortest paths for each pair of vertices of the 

graph, and these routes can also be easily obtained from 

predecessor matrix. 

For implementing this algorithm, we have used an extra array 

for remembering the indices of the rows and columns whose 

elements will not change according to step (a) of the 

algorithm. Then, for completing the distance matrix according 

to step (b), we will have triply nested for loops as in the Floyd 

Warshall algorithm, but we will skip the rows and columns 

whose indices we have stored initially. Thus, this algorithm 

uses an extra array which takes O(n) space. 

3. EXPERIMENTAL SETUP  
The experiments have been conducted on a laptop with Intel 

Core i5 CPU M 480 @ 2.67 GHz x 4 processor, 3.7 GiB 

memory, and having Ubuntu 11.10 as its operating system. 

The programs was written in C and compiled by gnu gcc 

compiler. 

The graphs for the experiments are weighted and directed and 

have been generated randomly by the Erdös – Renyi (ER) 

 

1. for i = 1 to n do 

2. for j = 1 to n do 

3.   if there exists an edge from i to j then 

4.    d[i, j] = w[i, j] 

5.    r[i, j] = i 

6.   else 

7.    d[i, j] = infinity 

8.    r[i, j] = -1 

9.    for k = 1 to n do 

10.  for i = 1 to n do 

11.   for j = 1 to n do 

12.                 if d[i, k] + d[k, j] < d[i, j] then 

13.     d[i, j] = d[i, k] + d[k, j] 

14.     r[i, j] = k 

1. for i = 1 to n do 

2.             for j=1 to n do  

3.                     If there exists an edge from i to j then 

4.                                d[i, j]=w[i, j] 

5.                                r[i, j]= i 

6.                   Else 

7.                               d[i, j]=infinity 

8.                               r[i, j]= -1 

9. for k=1 to n do 

10. a) If an Infinity exists in kth row or column of the 

distance matrix, the remaining entities of the row or 

column in which Infinity exists will not change. Thus, 

the d[i, j] values for the respective row or column will 

not change. 

11. b) If applying rule (a) doesn't result in a complete 

distance matrix, then these remaining entities will be 

derived by drawing a set of rectangles, with dij, dik, dkj 

and diagonal zero as the corners of the rectangle. 

12. c) For the predecessor matrix, if d[i, j] value has not 

changed, then r[i, j] will also not change. If any 

entity's d[i, j] value has changed, then its r[i, j] will 

be substituted with j 
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model [16]. The ER model generates random graphs of n 

vertices where each possible edge can exist with probability p. 

The number of edges in the generated graph is a random 

variable with expected value pn(n-1)/2. Lower values of p 

imply sparse graphs and higher values imply dense graphs. 

Thus the parameters for the algorithms are n and p for which 

the running times of programs will be plotted. The running 

time has been averaged on 50 instances for each parameter 

setting. The average running times obtained have been plotted 

using Gnuplot (version 4.6.5). 

We have first evaluated the performance of the algorithms on 

different values of p, keeping n = 100. Then we have 

compared the Floyd Warshall algorithm with the Rectangular 

algorithm, for p = 0.1, 0.3, 0.5 and 0.8, varying n from 10 to 

100. In the next section, the results of the experiments are 

specified. 

4. PERFORMANCE ANALYSIS 

4.1 Effects of Probability p 
The performance of both the algorithms has been tested on 

different values of probability p. The plots for the Floyd 

Warshall algorithm and the Rectangular algorithm are given 

in figure 1 and 2 respectively. 

 

Figure 1: Floyd Warshall Algorithm- Average Running 

Time VS Probability 

As can be seen, the performance of Floyd Warshall algorithm 

improves with increasing value of p, but the change is very 

small in comparison to the running time. It means that the 

Floyd Warshall algorithm performs slightly better for dense 

graphs than sparse graphs. 

In case of Rectangular algorithm, the average running time 

increases rapidly from p = 0.1 to p = 0.4, but for p > 0.4, there 

is not much change in the running time of the algorithm.  

 

Figure 2: Floyd Rectangular Algorithm- Average Running 

Time VS Probability 

So, the Rectangular algorithm provides better performance for 

sparse graphs. 

4.2 Comparison of Algorithms 
We have tested the two algorithms with number of nodes n 

varying from 10 to 100. The figures 3, 4, 5 and 6 plot the 

average running times of Floyd Warshall algorithm and 

Rectangular algorithm for p=0.1, 0.3, 0.5 and 0.8 respectively. 

As is visible from the graphs, the Rectangular algorithm's 

running time is higher than that for the Floyd Warshall 

algorithm. In case of p=0.1, the running times of both the 

algorithms is comparable for n < 60. For p = 0.3, 0.5, 0.8, 

both the algorithms have similar running times up to n = 30, 

but as n rises above  30, the difference starts escalating and 

the Floyd Warshall algorithm clearly performs better than the 

Rectangular algorithm. 

This behaviour of the Rectangular algorithm can be explained 

by the fact that the section of the program that implements 

step (a) of the program slows down the program instead of 

speeding it up, especially for larger values of p. The step (a) 

of the Rectangular algorithm is supposed to increase its speed 

since it reduces the number of calculations required. But, the 

time spent in performing this step, that is, in remembering the 

indices of the rows and columns, whose elements will not 

change, is O (n). Thus, the time saved by doing less number 

of calculations is not enough to compensate for the time lost 

in the execution of step (a). Hence, both the algorithms have 

the same time complexity of Θ (n3), but with different factors, 

where the factor for the Rectangular algorithm is larger than 

that for the Floyd Warshall algorithm. 
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Figure 3: Floyd Warshall Algorithm VS Rectangular 

Algorithm (Probability p=0.1) 

 

Figure 4: Floyd Warshall Algorithm VS Rectangular 

Algorithm (Probability p=0.3) 

5. CONCLUSION 
In this paper, we have done a comparative study on all-pairs 

shortest path (APSP) algorithms. The algorithms we have 

employed are Floyd Warshall algorithm and the Rectangular 

algorithm. 

 

 

Figure 5: Floyd Warshall Algorithm VS Rectangular 

Algorithm (Probability p=0.5) 

We have tested the two algorithms on random graphs 

generated by the ER model. The evaluation of the algorithms 

for different probabilities show that the Floyd Warshall 

algorithm gives slightly better performance for dense graphs 

while the Rectangular algorithm works better for sparse 

graphs. 

 

Figure 6: Floyd Warshall Algorithm VS Rectangular 

Algorithm (Probability p=0.8) 

Our experiments comparing the performance of the two 

algorithms clearly indicate that although both the algorithms 

have the same time complexity, the performance of the Floyd 

Warshall algorithm is better than the Rectangular algorithm, 

especially for dense graphs. Therefore, in theory the 

Rectangular algorithm may seem to provide better 

performance, its practical implementation is not better than 

the Floyd Warshall algorithm. 
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