
International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 13, December 2014

14

Improving Performance of Cloud based Transactional

Applications using In-Memory Data Grid

Indu Arora
Department of Computer Science and Applications

MCM DAV College for Women
Chandigarh-India

Anu Gupta, Ph.D.
Department of Computer Science and Applications

Panjab University
Chandigarh-India

ABSTRACT

Browser based applications are used currently to handle data

related requirements of educational institutes. Such

applications are not scalable due to limited scalability of

database servers. The performance of such applications can be

improved with the use of Cloud Computing and In-memory

Data Grid (IMDG). IMDG uses the concept of caching to

keep frequently used data in memory which is required by an

application. This ensures high availability of data to the

application. Due to cached data, the performance of the

application also increases. This paper proposes the usage of

IMDG for deploying transactional applications of educational

institutes in the Cloud. This paper also points out performance

issues in using IMDG. Then the paper proposes an approach

to solve the identified performance issues of transactional

applications required by educational institutes in Cloud

environment. An analysis of proposed approach with

traditional approach highlights better access time, availability

and scalability.

General Terms

Performance Analysis

Keywords

In-Memory Data Grid, Transactional Applications, Cloud

Computing, Educational Institutes.

1. INTRODUCTION
The educational institutes require both analytical and

transactional applications to improve the quality of education.

Traditional Client/Server or Browser based applications are

used to meet the data related requirements of educational

institutes. In traditional application architecture, there exists a

tight coupling of business layer with database layer [1]. This

means business layer knows the location of database layer.

The distribution of database layer in Cloud environment

changes the data access procedure of the application.

Therefore, some traditional applications cannot be used in

Cloud as such. However, the factors like speed, scalability,

fast deployment, cost control, reliability and security are

responsible for moving applications to Cloud [2]. But

transactional applications cannot be deployed in the Cloud

due to eventual consistency. Data grid may play an important

role in deploying applications in Cloud [3]. Data Grid often

keeps data fully or partially as data sets. Cloud Computing

and In-memory Data Grid (IMDG) can be used together to

deploy transactional applications in Cloud. They can play

important role in improving performance of transactional

applications for educational institutes while ensuring

scalability.

The paper has been structured into six sections. Second

section details In-memory Data Grid and its usage. Third

section discusses performance issues in using In-memory

Data Grid. Fourth section proposes an approach to handle

these issues. Fifth Section gives an insight into the

performance issues with experimentation and case study of an

application of educational institutes. Sixth Section analyses

the performances of traditional method to read data and

reading through In-memory Data Grid followed by conclusion

and scope for future work.

2. IN-MEMORY DATA GRID
Cloud environment based applications use various strategies

for accessing data from cloud like Web Services, and In-

Memory Data Grid [4]. In-Memory Data Grid (IMDG) stores

large volume of data entirely in memory distributed across

servers. These servers are connected to each other in a cluster.

This is possible due to availability of advanced technologies

such as 64-bit processor, multi core processers, large memory

size, better networking and fast communication technology.

Some popular available IMDG tools are Oracle Coherence,

Gemfire, Gigaspace, Gridgrain, eXtreme Scale. The primary

purpose of using IMDG is to keep frequently used data

required by an application in memory. This ensures high

availability of data to applications. Such applications do not

need to interact with the database directly, so it reduces time

involved in expensive disk reads. IMDG technology is used in

data processing applications like high energy Physics data and

medical imaging, as it significantly reduces the time and cost

to obtain desired results [5][6].

IMDG requires large memory size to process data. If

sufficient memory is not available, system will automatically

swap pages [7]. With this, benefits of caching will fade away.

Since, main memory is a limited resource as compared to

disk, so IMDG uses horizontal scalability to add more nodes

on-demand in real-time. In addition to horizontal scaling, it

also supports vertical scaling. While in horizontal scaling,

servers are added or reduced in the cluster depending upon

requirements, vertical scaling increases the processing

capability of servers by increasing RAM etc. Large-scale Web

applications require better performance. So, there has been a

surge in the use of DRAM. Both Google and Yahoo! store

their search indices entirely in DRAM [8].

Data is usually stored in terms of relational structures for

transactional applications. But IMDG stores data as a pair of

key and value. The data as object is identified uniquely in a

cluster by a key. In IMDG, Data partitioning is done

automatically and then partitioned data is uniformly stored

across servers in clusters to ensure better availability of data

in case of a failure of any server. One server contains primary

data and copy of same data on another server is known as

backup data. Depending upon availability of servers, backup

partition can be stored on more than one server. IMDG does

not allow single point of failure in the application by

distributing its objects and related processing across multiple

physical servers [9]. The In-memory data is very close to

applications and thus reduces access time. Oracle coherence,

In-memory Data Grid moves data closer to applications to

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 13, December 2014

15

reduce latency and improve performance [10]. IMDG

supports thousands of updates per second on the data stored in

cache/memory. Hence it increases the performance of

applications. This technology can be used in developing

transactional applications for the Cloud. Cloud based memory

architecture for High-Performance Computing (HPC)

applications in Cloud enhances performance of HPC

applications and utilizes Cloud computing resources better

[11].

3. PERFORMANCE ISSUES IN USING

IMDG
For improved performance, a transactional application

developed using IMDG is required to access data from

cache/memory. Such features are available in languages like

Java. Java Persistence APIs (JPA 2.0) provide concept of

shared cache [12]. There are two types of caching: Object

caching and Data Caching. Object Caching includes data,

structure and relationships, while Data caching stores objects

having database rows only. Object Caching based framework

is being used for improving data access performance in an

enterprise application [13]. One of the advantages of using

data cache is that there is no need to track relationships. Some

JPA providers support separate caching for relationships that

store only Object ID for reference to avoid stale data. During

cache hit, if data is not available in the cache, the database is

searched. This degrades the required performance. There are

two types of caching: Table level and Query level [14]. Table

level caching stores entire table data in cache. Query level

caching stores result of a query. Different types of caching

strategies like Full, Weak and Soft are used in application

architecture in Cloud environment [15]. Full caching never

flushes data until deleted explicitly. Weak caching keeps data

till application references exist and data has not been garbage

collected. Soft caching is similar to weak caching but uses

garbage collection hints to release data whenever memory is

low.

It is not possible to store entire data at a time in the memory

of a single machine. Therefore, data is stored in memory

across the servers in distributed manner. Transactional

applications require write operations more frequently on data

stored in cache across servers. Such transactional applications

need to maintain ACID (Atomicity, Consistency, Integration,

Durability) guarantees which is a major challenge while

deploying them in the Cloud.

It is also very challenging to ensure performance of

applications in terms of high availability and reliability

besides providing ACID support especially when data is

stored in multiple servers in a cluster, IMDG tool and other

middleware. Whenever a transactional application server is

started, it requires a part or whole of master data to be in the

cache. Putting such large data in cache degrades performance

initially. After some time, data lying in the cache becomes

stale or inconsistent especially when one application is

accessing data from the cache/memory and the other

application or part of the same application updates data

directly on the database. Data meant for read only purpose

poses no issue. But when insert, delete and update operations

are to be performed, there is high possibility of data becoming

stale. Consider another scenario, in which data is stored in the

cache/memory of multiple servers in a cluster and update

takes place only at one location, then same data stored on

other locations becomes out of date. These are the main issues

and challenges that need to be addressed during development

of transactional applications accessing data from

cache/memory.

4. PROPOSED APPROACH TO

RESOLVE PERFORMANCE ISSUES
Scalability, fast data retrieval and high availability become

major issues with Browser based application software. Such

applications generally rely on a single database server. So

these applications are not scalable as they support scaling of

application server but not of database server. Database tier is

complex to replicate and may suffer from the problem of data

synchronization and consistency [16]. Cloud computing is

able to provide scalability, reliability and high availability of

data. It has been observed that read-mostly analytical data

management applications are better suited for deployment in

the Cloud than transactional data management applications

[17]. Clouds can be used with distributed database for

handling very large databases maintaining availability,

scalability as well as reliability [18]. Cloud computing

provides eventual consistency which is not considered

suitable for deploying transactional applications in the Cloud

as the basic requirement of transactional applications is to

ensure ACID guarantees.

The proposed approach is to use any middleware which

supports IMDG to ensure ACID guarantees while deploying

transactional applications in the Cloud. IMDG tools also

provide other services like failover recovery and backup but

persistence (writing to database) is still a problem. On the

other hand tools like CloudTran, extends the capability of

IMDG like Oracle Coherence and Gigaspaces to provide high

speed and ACID compliance transactions across different

servers. The usage of IMDG tools and middleware like

CloudTran provides scalable, reliable and faster access to

data. The proposed solution is described in Figure 1.

Performance of transactional applications can be achieved at

three levels during development and deployment of

transactional applications. At database level, optimization

techniques like indexing, primary key, references etc. are

used. At hardware level, high end servers are required. At

application level, tools and techniques like IMDG, Oracle

Coherence, CloudTran and Java can be used [19-22]. The

optimization at hardware and database level is beyond the

scope of this paper. The focus of this paper is on optimization

at the application level. In view of the above mentioned

performance issues, solution to resolve them is proposed and

verified by implementing an application of Student

Registration Return System (SRRS) for educational institutes.

The solution to each of the performance issues is proposed

below.

4.1 Initial Data
In the proposed solution, two-phase approach is used to

resolve issue of Initial Data: Filtering and Loading. First

phase of Filtering includes the filtering of data based on some

criteria. In the second phase, the filtered data is loaded into

cache/memory. Whenever user logs in, data is brought into

cache. Initially it takes more time, but subsequent read/write

operations will have improved performance. Middleware like

CloudTran does not allow interactions with database directly.

Therefore, data is fetched directly from the IMDG/database.

CloudTran first writes data into cache and then writes back to

database through backend process from time to time. After the

user logs out, data is evicted from cache. This ensures that

memory is free for the use by another application/data. The

algorithm showing the steps involved in the proposed

approach is given in Table 1.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 13, December 2014

16

Fig 1: Proposed Usage of IMDG in Transactional

Applications

4.2 Stale Data
To avoid stale data situation, There are four possibilities in

any application architecture; single application single

database, single application multiple databases, multiple

applications single database and multiple applications

multiple databases. In single application single database

architecture, there is one application and data resides in one

database server. In this kind of architecture, the problem

occurs when data is updated directly into database bypassing

application and IMDG. In single application multiple

databases architecture, there is one application server having

single application and data is stored across multiple databases.

In this kind of architecture, one application access data from

multiple sources of data. In multiple application single

database architecture, more than one application access data

stored in a single database. In multiple applications multiple

database architecture, any number of application can access

data stored in multiple databases. In Cloud, Database servers

lie at remote location, therefore their access is restricted. The

issue of multiple users accessing same data for update does

not arise as only data relevant to the user is shown and loaded

into memory.

Table 1. Algorithm for Reading and Writing Data

Phase Steps

Reading Data

Filtering Phase Define criteria // like user name

Retrieve data based on criteria //

retrieves data directly from database

Collection retrieved data

Loading Phase For object = 1 to size of Collection

 Put data in cache using key and

object

End for

Writing Data

Get object

Write object to cache using CloudTran with unique key

//CloudTran writes back to database automatically using

write behind(Back) concept

4.3 Data Caching in Cluster and ACID

Guarantees
In cluster, copies of data are replicated or partitioned across

multiple servers to ensure high availability and scalability.

Providing ACID guarantees in a cluster becomes a challenge.

To resolve this issue, middleware tools should be used which

can provide ACID guarantees. Table 2 summarizes the issues

and corresponding solutions to resolve them.

Table 2: Performance Issues and proposed solution

Performance Issue Description Proposed Solution

Initial Data Whenever an application is started afresh, initial

data is needed in the cache. To put application

related initial data in cache, more time is

required. But once data is in the cache, it can be

accessed easily.

Only relevant data is read from database and

stored in the cache whenever application is started

first time. A policy is enforced for bringing only

desired data in cache instead of whole set of data.

It may be user dependent or application

dependent.

Stale Data Data stored in cache becomes stale when one

application is accessing data from cache and

other application or part of same application

updates data directly on the database.

Direct updation of data in the database is avoided.

In case, more than one application is updating

data, optimistic lock can be used. Secondly,

refresh the data in the cache time to time i.e. use

cache invalidation. However, this process

degrades the performance but it is must for

maintaining consistency.

Data Caching in
Cluster and ACID
Guarantees

If data is stored at multiple locations in a cluster

and it is updated at one location, same data

available on other locations becomes out of date.

So, transactional application cannot be deployed

without ensuring ACID guarantees.

It is possible to avoid such situation by setting

configuration files of IMDG tools, using JPA and

by maintaining sessions. To ensure ACID

guarantees, tools like CloudTran can be used on

the top of any IMDG.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 13, December 2014

17

5. EXPERIMETATION WITH CASE

STUDY OF EDUCATIONAL

INSTITUTES
Education sector like any other sector uses transactional

applications for the purpose of fast, efficient and reliable data

processing. Student Information System, Fee Management,

Library Management, Payroll and Personnel Information,

Financial Accounting and Store Keeping applications are the

commonly used transactional applications in educational

institutes. An application of Student Return Registration

System (SRRS) commonly used in educational institutes is

taken as a pilot application to explore the role of IMDG in

deploying transactional applications in Cloud environment.

Most of the universities have affiliated colleges and

departments where students are enrolled and their registration

data is sent to the respective universities. Currently, affiliated

colleges submit data of enrolled students for a particular

session in the prescribed format as hard or soft copy to their

respective universities for further processing. Few universities

are also using browser based software to get this data from the

affiliated colleges. A general discussion was held with

lecturers and administrative staff of colleges of different

universities. This interaction helped in understanding the flow

of information and data exchanged between universities and

colleges.

To verify the proposed approach, tools like CloudTran, Oracle

Coherence and MySQL as backend database are used. An

application is developed using Java and its features of JPA.

The issue wise implementation of solution is described below.

5.1 Initial Data
Pilot application SRRS is meant for educational institutes like

universities. A university has to interact with different users

belonging to its affiliated colleges and departments.

Therefore, logins are created for each college/department that

can access data. University has its own login to access data of

all colleges/departments. Since, registration process is done

once a year, login ID and year are two main parameters that

are required to filter data. Login IDs are linked to a particular

college/department and college/department is further

associated to a university. Since this application can be used

for any university, data is filtered on the basis of three

parameters- University, college/department and year. Only

limited and desired data will be cached for college/department

level users. When a university user logs in to have

information on consolidated data of all of its affiliated

colleges, two parameters are required; university and year.

Views on database tables are useful for this type of scenario

due to read only characteristics of query.

5.2 Stale Data
In case of university user, data is refreshed time to time.

Cache Invalidation is better approach to avoid stale data. Data

from cache is removed and is fetched from database again.

5.3 Data Caching in Cluster and ACID

Guarantees
CloudTran runs over Oracle Coherence IMDG. JPA features

are used to put data into cache/ memory across servers in a

cluster. CloudTran middleware is used to ensure ACID

guarantees while developing SRRS.

6. PERFORMANCE ANALYSIS OF

PROPSOED APPROACH
The proposed approach to improve the performance using

IMDG was applied on Student Registration Return System

(SRRS). To verify the implementation of proposed approach,

a small set of 1000 records of 40 characters variable length

was prepared according to SRRS application. The database

was created in MySQL. Records were read directly from the

database as well as from the cache. The above steps are

implemented in Java over CloudTran and Coherence with

backend support of MySQL database. The observations were

recorded for the time taken both for direct access of data from

the database and the data reading from the cache. The time

slightly varies as other processes were also running along with

the application. The machine configuration includes Core i7

processor with 4GB RAM. However, time may vary from

machine to machine. The time values taken to read data shows

relative advantage of reading from cache when data is

frequently required rather than having it from database again

and again.

The developed program was executed on same set of data for

ten times. During each execution, start and end time was

noted. In the program, start time was displayed before

fetching data. End time is displayed when program finishes

task of fetching data and stores fetched data in memory. The

time taken to read data from cache is almost 1/3rd than that of

reading data directly from database. The average time for this

experiment comes out to be 204.1 ms for cache read and

659.6 ms for database read. The time values taken by system

are shown in Table 3. The results are graphically shown in

Figure 2.

Table 3. Performance Analysis

Sr. No. Direct from Database
(Time in ms)

From Cache

(Time in ms)

1. 641 236

2. 672 201

3. 710 162

4. 604 255

5. 799 267

6. 561 240

7. 671 153

8. 638 185

9. 692 151

10. 608 191

Average
Time

659.6 204.1

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 13, December 2014

18

 Fig 2. Comparison of Direct and Cached data

accesses

From the above results, it is clear that when data is to be read

frequently, it is better to load it into cache using IMDG like

Oracle Coherence as done in SRRS application. For providing

ACID compliance over write/update operations on data of

educational institutes, middleware tools like CloudTran help

in storing data into cache. Such tools also help in persisting

data to database from IMDG using Write-behind approach

while maintaining ACID rules.

7. CONCLUSION AND SCOPE FOR

FUTURE WORK
Conventional databases are not able to deliver the

performance level required by transactional applications

deployed in Cloud. They are unable to scale with fluctuations

in demand. IMDG has the ability to considerably improve the

performance and scaling for transactional applications. It can

be used to cut the costs of data scaling by reducing the

dependence upon relational databases. Distributed nature of

IMDG makes it suitable for transactional applications of any

organization and helps them in achieving flexibility and high

performance for their applications. Cloud Computing

environment is used mainly for analytical applications.

Therefore, it is explored to deploy transactional applications

for educational institutes in Cloud while ensuring ACID

guarantees with the help of IMDG, Oracle Coherence and

middleware CloudTran. It is further concluded that future

belongs to IMDG due to technology innovations, application

requirements and their flexibility to work in diverse IT

environments.

Current study uses simple data for experimentation. Same

approach would be implemented using live data having more

complex data sets, data relationships and applications for

more generic interpretation.

8. REFERENCES
[1] Vasilios Andrikopoulos, Binz, Tobias, Leymann, Frank,

Strauch Steve, “How to Adapt Applications for the

Cloud Environment”, In: Computing, Springer, vol.

95(6), 2013, Pages 493-535.

[2] N Ram Ganga Charan, S. Truiputi Roa, Dr. P.V.S.

Sriniva, “Deploying Application in Cloud”, International

Journal of Advanced Computer Science and Application,

vol 2, Issue 5, 2011, Pages 119-125.

[3] David Villegas, Ivan Rodero, Liana Fong, Norman

Bobroff, Yanbin Liu, Manish Parashar, S. Masoud

Sadjadi. The role of Gird Computing Technologies in

Cloud Computing. Handbook of Cloud Computing ,

Springer Link, 2010, Pages 183-218.

[4] Razorfish, 2012, Using In-memory Data Gird to Bridge

the Cloud, Gigaspaces

[5] Sushma R. Vhatkar, Sanchika A. Bajpai, “Throughput

Genome Data Processing and Real - Time Analysis using

Oracle Coherence In-Memory Technology”,

International Journal of Advanced Research in Computer

Science and Software Engineering, vol 4, Issue 4, 2014,

Pages 623-528.

[6] Brian Tierney, William Johnston, Jason Lee, 2000, A

Cache based Data Intensive Distributed Architecture for

Grid Applications, Lawrence Berkeley National

Laboratory, Berkeley.

[7] Octavian Paul Rotaru, 2008, “Caching Patterns and

Implementation”, Leonardo Journal of Sciences, Issue

8,2008, Pages 61-76.

[8] John Ousterhout, Parag Agrawal, David Erickson,

Christos Kozyrakis, Jacob Leverich, David Mazières,

Subhasish Mitra, Aravind Narayanan, Guru Parulkar,

Mendel Rosenblum, Stephen M. Rumble, Eric

Stratmann, Ryan Stutsman, “The Case for RAMClouds:

Scalable High-Performance Storage Entirely in DRAM”,

SIGOPS Operating Systems Review, vol. 43, Issue 4,

2009, Pages 92-105.

[9] Barkha Bahl, Vandana Sharma, Navin Rajpal ,”Boosting

Geographic Information System’s Performance using In-

Memory Data Grid”, BIJIT, BVICAM’s International

Journal of Information Technology, vol. 4, No. 2,

2012,Pages 468-471.

[10] Nick Kloski , Nitin Ramannavar, Satish Vanga, 2011,

Oracle Optimized Solution for WebLogic Suite: An

Optimal In-Memory Data Grid Architecture. An Oracle

White Paper Version 1.1, Oracle Corporation.

[11] Luo Liqun, He Sijin , “A Memory Architecture Design

for High-performance Cloud Computing”, Advanced

Materials Research, vol 532-533,2012, Pages 671-681.

[12] Dough Clarke, Andrei Badea, 2008, Developing Java

Persistence API Application with the Netbeans IDE and

EclipseLink, JavaOne Conference. Available at

http://www.oracle.com/technetwork/ systems/ts-5400-

159039.pdf, Last accessed October 1, 2014.

[13] Nilayam Kumar, Kamila, Renu Raghvan, Naveen

Chalicheemala, “Object Caching Design for Improving

Data Access Performance In enterprise Applications”,

International Journal of Computer Applications, vol 88,

No. 13,2014, Pages 30-34.

[14] Qiong Luo, Sailesh Krishnamurthy, C. Mohand Hamid

Piraheshd , Honguk Wooq, Bruce G. Lindsayd, Jeffrey

F. Naughton, “Middle Tier Database Caching for e-

business” in ACM SIGMOD International Conference on

Management of Data, 2002, Pages 600-611.

[15] Understanding EclipseLink, 2.4. 2013, EclipseLink,

available at http://www.eclipse.org/eclipselink/

documentation/2.4/eclipselink_otlcg.pdf, Last accessed

July 10, 2014.

[16] Suvanam Sasidhar Babu, A. Chandra Sekhara Sarma,

Yellepeddi Vijayalakshmi, N.V.Kalyankar, “Scalability

of Multi Tier Transactions Towards Data Confidentiality

For Cloud Applications”, International Journal of Soft

Computing and Engineering (IJSCE), vol. 2, Issue 4,

2012, Pages 247-250.

http://dx.doi.org/10.1007/s00607-012-0248-2
http://dx.doi.org/10.1007/s00607-012-0248-2
http://dx.doi.org/10.1007/s00607-012-0248-2

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 13, December 2014

19

[17] Daniel J. Abadi, “Data Management in the Cloud:

Limitations and Opportunities”, Bulletin of the IEEE

Computer Society Technical Committee on Data

Engineering: Vol. 32, No. 1, 2009, Pages 3-12.

[18] Arpita Mathur, Mridul Mathur, Palllavi

Upadhyay,”Cloud Based Distributed Databases: The

Future Ahead”, International Journal on Computer

Science and Engineering (IJCSE), vol. 3, No. 6, 2011,

Pages 2471-2481.

[19] Data Layer Server for Web Applications, 2014,

CloudTran.

[20] Joseph Ruzzi, 2013, Oracle Fusion Middleware

Developing Applications with Oracle Coherence. Oracle

Corporation.

[21] Java EE 6 Tutorial, 2013, Oracle Corporation. Mike

Keith, Merrick Schincorial ,2009, Pro JPA2, Mastering

the Java Persistence API. Apress.

IJCATM : www.ijcaonline.org

