
International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 12, December 2014

1

Software Refactoring Technique for Code Clone

Detection of Static and Dynamic Website

K. Kanagalakshmi. Ph.D.
Associate Professor

Department of Computer Application
Vidyasagar College of Arts and Science

Udumalpet – 642 126.

R.Suguna
Research Scholar

Department of Computer Application
Vidyasagar College of Arts and Science

Udumalpet – 642 126

ABSTRACT
Now-a-days cloning of codes or programs of the developer or

authorized person leads a positive approach. But the code

cloning is done by unauthorized person leads a negative

approach. In the recent years, many clone detection tools have

been proposed. It produces an over whelming volume of

simple clones of data or structure [3]. Code clone detection

the content similarity between the programs or webpages. An

attempt is made to desgn a method called “SD Code Clone

Detection” for both static and dynamic webpages. It is based

on levenshtein’s approach. This method comprises some steps

like, parsing & analysis, tree construction, code similarity

measure and clone detection. Experiments are carried out with

open source websites and webpages created by some

volunteers. Experimental results are recorded and are showing

the better detection rate.

Keywords
Refactoring, clone detection, code clone, static and dynamic

pages, DOM tree construct, Levenshtein distance algorithm.

1. INTRODUCTION
Refactoring is a process of transforming the program without

affecting the behavior and semantics and to improve the

quality [24]. In other term code refactoring is the process of

restructuring the existing computer code by changing the

factors without affecting its external behavior [24]. The

refactoring process also involves in the removal of duplication

and simplification of unclear code[34]. The refactoring

process offers many advantages such as improved code

readability and reduced complexity to improve source code

maintainability, creation of expressive internal structure [24].

The maintainability and extensibility are the two major

benefits of refactoring. But the other side of code refactoring

is called code clone. It is about the similarity of codes. Code

clone can be defined as a similar program or code structure of

considerable size and significant similarity [1]. Section 2

provides the literature review. In section 3 the proposed

methods is discussed. Experimental results are recorded in

section 4 and section 5 concludes the work.

2. LITERATURE REVIEW
The literature survey shows that cloning is an active area of

research [1]. Many refactoring and clone detection tools and

approaches have been proposed. A literature survey has been

made to have a knowledge on code clone detection and its

techniques[3]. Daniel. B [5] proposed a techniques and

described some examples of refactoring such as renaming

program element to be better convey its meaning, replacing

field references splitting large classes etc., many other code

refactor techniques have been proposed for code or software

systems [2,4,6,7,8,9,10,15,

16,17,11,12,20,13,14,19,28,22,24,25,26,27,28,29,30,31,32,

33].

3. PROPOSED METHOD: SD CODE

CLONE DETECTION TECHNIQUE
A approach to clone mining for Web applications has been

proposed together with a prototype implementation for

dynamic web pages. The proposed methods analyze the page

structure, implemented by specific sequences of HTML tags,

and the content displayed for both dynamic and static pages.

Moreover, for a pair of dynamic web pages we also consider

the similarity degree of their source is considered. The

similarity degree can be adapted and tuned in a simple way

for different web applications in one- to- many. The proposed

method called “SD Code Clone detection technique (SDCC)

aims the detection of clones on both static and dynamic web

pages. The proposed model consists of 4 phases namely

content feeding, parsing and analysis refactoring (code

extraction, DOM tree and similarity calculation), clone

deduction as shown in fig.

Figure 1: system level design of the proposed SDCC detection techniques

3.1 Algorithm for proposed Methodology

SDCC detection technique

Step 1: Input webpage

Step 2: Extract the contents from the input file

Step 3: Perform Parsing and analysis the extract content

Step 4: construct the DOM tree from the parsed data

Input percentage of

Website Cloning

Refactoring Code Extraction

Clone

Deduction

Content

Feeding

Parsing &

analysis DOM Tree

Construct

Similarity

Measure

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 12, December 2014

2

Step 5: Perform refactoring and Similarity measure using

Levenshtein’s approach.

Step 6: Detect the Clone from the code

The algorithm of the proposed methodology based on

levenshtein distance measure is given below

3.2 Description

3.2.1 Input and content extraction
In the initial step, WebPages are read. The given input

WebPages is transferred to the next phase to extract the

contents. Web page are extracted one by one and the content

(or) pieces of webpage code and extracted sequentially.

Further these contents are forwarded to parse analysis [2].

3.2.2 Parsing and analysis
During this phase, the HTML parsing module accesses the

HTML as tokens. It gives one token at a time, much as a file

handler which gives one line at a time from a file. The HTML

is tokenized from the input file as a string. The tokenize

decodes the entities in attributes [35].

3.2.3 Tree construction
The tokenizes passes the output to construct tree. The data

instances of the same type have the same path from the root in

the DOM tree of the input page according to the page

generation model. This method focuses on all levels of nodes.

It starts from the root node <HTML>. It uses multiple string

arguments approach to the first level child node [35].

3.2.4 Similarity Measure
The next level of the method is to computes the similarity

measures using the levenshtein distance approach. It is based

on matrix. A matrix is reserved to hold the distance between

all prefix of the first string and all prefix of the second

Afterwards computation is done on values of the matrix in a

dynamic program. Fashion and them the distantness but the

two full strings can be measure [36].

3.2.5 Clone Detection
The last step of the stage of the method is to detect the clone

values from the outcome of the previous step. Clone detects

values (%) and clone index values are identified. The

experimental results are discussed in the next section. Path

from the root in the DOM tree of the input page according to

the page generation model. This method focuses on all levels

of nodes. It starts from the root node <HTML>. It uses

multiple string arguments approach to the first level child

node [4].

4. EXPERIMENTAL RESULTS &

DISCUSSION
The proposed refactoring techniques for clone detection have

been implemented in C# and experimental results are

observed. The following sources shown in table 1 and table 2

are used for the experiments.

Table 1 : The HTML files analyzed in the experimental

File ID File Name KB

1 \Index.html 8.07

2 \Special list \main frame.html 0.411

3 \Special list \Special list.html 1.75

4 \Special list text.html 2.30

5 \Special list \title.html 0.363

6 \Novita \Brugaletta.html 6.57

7 \Novita \CalendariotarNA.html 10.6

8 \Novita \ text.html 3.30

9 \Title.html 0.409

10 \Forum \main frame.html 0.506

11 \Forum \taxt.html 0.237

12 \Forum \title.html 0.4

13 \Common frame left.html 4.78

14 \Common \bottom frame.html 3.21

15 \Main frame.html 0.494

16 \irctc.html 0.46

17 \just dial.html 0.58

18 \Chisiamo \text.html 3.24

19 \Chisiamo \title.html 0.407

20 \Cerca.html 1.87

21 \Cerca \main frame.html 0.501

22 \Cerca \text.html 27.3

23 \Cerca \title.html 0.4

24 \Honda.html 0.48

25 \Swift.html 0.24

26 \TNEB.html 0.20

27 \Redbus.html 0.44

28 \NDTV.html 0.90

29 \Default.html 0.96

30 \Sample.html 0.79

31 \Naukri.html 0.125

32 \VAT.html 0.52

33 \Live cricket.html 0.269

34 \naukri.html 0.125

Table 2 : Real time HTML files created by the volunteers

File ID File Name KB

1 \A1.html 0.5

2 \A2.html 0.2

3 \B1.html 0.7

4 \B2.html 0.4

5 \C1.html 0.2

6 \C2.html 0.3

7 \C2.html 0.1

8 \C3.html 0.20

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 12, December 2014

3

9 \D1.html 0.12

10 \D2.html 0.10

11 \E1.html 0.7

12 \E2.html 0.4

The results of two files from the above mentioned table are

shown below in table 3. For instance the results of two files

namely Honda.html and SuzukiSwift.html are listed in table1.

It lists the tag index and clone detection value for both files

which are taken from open sources as mention in table 1.

Table 3 : Tag index and clone detection value for two files

(Honda, Swift)

F1 : Honda.html F2 : Swift.html

Tags

index

Clone

detection

value

Tags

index

Clone

detection

value

doc type 1 doc type 1

Html 1 html 1

Head 1 head 1

Meta 5 mea 2

Title 1 File 1

Script 55 Link 12

Script 55 Link 1

Link 8 Body 1

Style 3 Div 12

Body 1 Ul 6

Form 1 Li 48

Div 153 A 59

Input 44 A 59

Input 43 Sript 14

Div 153 Script 10

Input 44 Ins 10

Input 43 Ins 5

A 288 Fname 5

Img 153 H1 1

Select 1 H2 2

Option 1 P 32

Strong 46 P 31

Span 74 Img 2

Table 30 B 11

Tbody 30 B 10

Tr 78 H3 9

Td 166 Strong 2

Br 89 Br 42

Ul 38 Br 30

Li 204 Table 1

Li 73 Tbody 1

Form 1 Tr 6

Div 153 Td 23

Input 44 Td 1

Input 43 Ui 1

A 288 File 6

Img 153 Small 8

Select 1 Small 4

Option 1 Form 1

Strong 46 Input 6

Table 30 Lable 2

Tbody 30 Lable 1

Tr 78 Text area 1

Td 166 No script 1

H2 1 - -

Em 1 - -

Em 1 - -

Font 2 - -

Font 2 - -

H4 1 - -

Embed 1 - -

B 2 - -

B 1 - -

Map 1 - -

Area 3 - -

H3 3 - -

Fig. 2 Visualizes clone detection value of the above

mentioned files. From the result, it is observed and calculated

the clone detection value. This result shows the html tags and

index value of first file (Honda.html) and second file

(Swift.html). About 26.1% of code clones are identified from

the two files.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 12, December 2014

4

Figure 2: Comparison of clone detection value of two files (F1 : Honda, F2 : Swift).

In Fig. 3 The upper portion of the screen shows the individual clone detection of F1 and F2. Lower portion of the screen shows the

comparison of clone detection value of two files.

Figure 3: Comparison chart of clone detection on individual values (html tags / and index values).

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 12, December 2014

5

Table 4: Tag index and clone detection value for two files

(TNEB, Redbus)

F3: TNEB.html

F4 : Redbus.html

Tags

index

Clone

deduction

value

Tags

index

Clone

value

doc type 1 doc type 1

html 1 Html 1

head 1 Head 1

Meta 1 Meta 2

Link 2 Title 1

Link 2 Link 4

Script 4 Link 3

Title 1 Script 21

Body 1 Script 18

Table 1 Body 1

Tbody 4 Div 100

Tr 18 Header 1

Td 53 Ul 6

Title 1 Li 73

Body 1 A 87

Table 4 A 85

Tbody 4 Span 77

Tr 18 Span 21

Td 53 Img 6

Img 9 Br 1

P 2 H3 1

A 44 Section 2

Font 1 H1 1

Div 23 Label 15

Span 27 Input 13

Span 21 Input 11

Form 1 Button 9

Br 3 Aside 1

Br 2 Footer 1

Thead 1 H6 1

Th 6 Sup 1

Th 1 P 1

Input 3 Fname 4

Input 1 Noscript 2

B 1 Noscript 1

- - Table 4

- - Tbody 4

- - Tr 32

- - Td 179

- - Td 178

- - Th 27

- - Th 1

- - H2 2

Fig. 4 Visualizes clone detection value of the above mentioned files. From the result , the clone detection value is calculated. This

result shows the html tags and index value of F3 and F4. About 21.81% of code clones are identified in between two files (TNEB.html,

Redbus.html).

Figure 4 : Comparison of clone detection value of two files (F3 : TNEB, F4 : Redbus).

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 12, December 2014

6

In fig. 5 the upper portion of the chart shows the individual clone detection of F3 and F4. The lower portion of the represents the

comparison of clone detection value of two files. This chart shows the individual clone detection value of F3 and F4. The below chart

shows the comparison of clone detection value of two files.

Figure 5: Comparison chart of clone detection on individual values (html tags / and index values).

Table 5: Tag index and clone detection value for two files

(A1.html , A2.html) created by voluntaries.

F5:A1.html F6 : A2.html

Tags

index

Clone deduction

value

Tags

index

Clone

value

Html 1 Html 1

Head 1 Head 1

Title 1 Title 1

Body 1 Body 1

H1 1 H1 1

H2 1 H2 1

H2 1 H2 1

Left 1 Left 1

Ul 5 A 1

Li 4 B 5

A 1 B 5

B 1 B 4

B 1 - -

P 4 - -

P 1 - -

Div 1 - -

Fig. 6 Visualizes clone detection value of the above mentioned files that the result shows the html tags and index value of F5 and F6.

About 19.35% of code clones are identified between two files (A1.html, A2.html).

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 12, December 2014

7

Figure 6: Comparison of clone detection value of two files (F5: A1, F6 : A1).

In fig. 7, the upper portion of the chart shows the individual clone detection of F5 and F6. The lower portion of the chart compares

the clone detection value of two files.

Figure 7: Comparison chart of clone detection on individual values (html tags / and index values).

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 12, December 2014

8

4.1 Performance Measure
The performance of the proposed methods is based on

clone percentage and also time taken to detect the clone.

Table 6 lists the two measures for some files.

Table 6: Performance measure on clone percentage

Name of the webpage(s)

Clone percent (%)

Static

web

pages

Dynamic

web

pages

Default.html

Net carry .html 100

40

Swift.html

Net carry .html 33

27

Search.html Compile.asp 24 46

Code.html Sample.asp 29 70

Chart describes fig. 8 clone detection percentage of static and

dynamic web pages.

Figure 8: This chart measure comparison of clone

percentage.

Table.7: Performance measure to time taken of clone

detection

Name of the webpage(s)

Clone

detection time

(in seconds)

Default.html

Net carry .html 0.55

Swift.html

Net carry .html 0.12

Search.html Compile.asp 0.06

Code.html Sample.asp 0.05

Table 7 and Fig. 9 indicate the time measure of clone

detection in open source web pages.

Figure 9: This chart measures clone detection time (In

seconds).

Table 8: Performance measure on clone percentage

Name of the webpage(s)

Clone percent (%)

Static

web pages

Dynamic

web pages

B1.html A1.html 49 80

B2.html A2.html 67 55

VAT.html Compile.asp 58 93

C1.html Sample.asp 49 35

Table 8, 9 and Fig. 10, 11 give information about the clone

detection percentage of static and dynamic web page.

Figure 10: This chart measure comparison of clone

percentage.

0
20
40
60
80

100
120

N
et

ca
rr

y
.h

tm
l

N
et

ca
rr

y
.h

tm
l

C
o

m
p

ile
.a

sp

Sa
m

p
le

.a
sp

Default.html Swift.html Search.html Code.html

Percentage of Clone
Detection

Static web
pages

Dynamic web
pages

0

0.1

0.2

0.3

0.4

0.5

0.6

N
et

ca
rr

y
.h

tm
l

N
et

ca
rr

y
.h

tm
l

C
o

m
p

ile
.a

sp

Sa
m

p
le

.a
sp

Default.html Swift.html Search.html Code.html

Clone detection time
(in seconds)

Clone
detection time
(in seconds)

0

10

20

30

40

50

60

70

80

90

100

A
1
.h

tm
l

A
2
.h

tm
l

C
o
m

p
il
e

.a
s
p

S
a
m

p
le

.a
s
p

B1.htmlB2.html VAT. html C1html

Clone percent (%) Static

web pages

Clone percent (%)

Dynamic web pages

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 12, December 2014

9

Table 9 : Performance measure to time taken of clone

detection

Name of the webpage(s)

Clone detection

time

(in seconds)

B1.html A1.html 0.58

B2.html A2.html 0.10

VAT.html Compile.asp 0.05

C1.html Sample.asp 0.03

Fig. 11 gives information about the clone detection percentage

of static and dynamic web page.

Figure 11: This chart measures clone detection time (In

seconds).

5. CONCLUSION
Code clone detection is an art of detecting the content

similarity between the programs or WebPages. An attempt is

made to design a method called “SD Code Clone Detection”

for both static and dynamic WebPages. It is based on

levenshtein’s approach. This method comprises some steps

like, parsing & analysis, tree construction, code similarity

measure and clone detection. Experiments are carried out with

open source websites and WebPages created by some

volunteers. Experimental results are recorded and are showing

the better detection rate. Future research on Web data

extraction focuses on comparing the contents appearing on the

page as well as the code to measure the standard and

originality of the web page. However, they are redesigned or

applied in a different sequence and scenario to solve key

issues in page-level data extraction and comparison to the

code of web site and its contents to find the fake and the real.

The System can also be enhanced work to detect the script

injection and projected towards the detection of malwares

attached to web pages that harms the user’s machine and acts

as a spy ware and sends the information of the end user to the

attacker. These systems are still in research to prevent the

attackers. It is planned to exploit the results of the clone

mining method to support web application reengineering

activities.

6. REFERENCES
[1] Aversano, L., Canfora, G., De Lucia, A., and Gallucci,

P., 2001. Web Site Reuse: Cloning and Adapting. Proc.

Of 3rd International Workshop on Web Site Evolution,

Florence, Italy, IEEE CS Press, pp. 107-111.

[2] Chang C.-H. and S.-C. Lui, “IEPAD: Information

Extraction Based on Pattern Discovery,” Proc. Int’l Conf.

World Wide Web (WWW-10), pp. 223-231, 2001.

[3] Cloning http://msdn.microsoft.com/en-

us/library/hh205279.aspx

[4] De Lucia, A., Scanniello, G., and Tortora, G.,

2004."Identifying Clones in Dynamic Web Sites Using

Similarity Thresholds," Proc. Intl. Conf. on Enterprise

Information Systems (ICEIS'04), pp.391-396.

[5] Daniel B, D. Dig, K. Garcia, and D. Marinov,

“Automated Testing of Refactoring Engines,” Proc. Sixth

Joint Meeting European Software Eng. Conf. and ACM

SIGSOFT Symp. The Foundations of Software Eng., pp.

185-194, 2007.

[6] Dig D, and R. Johnson, “The Role of Refactorings in

API Evolution,” Proc. 21st IEEE Int’l Conf. Software

Maintenance,pp. 389-398, 2005.

[7] Eclipse.org, “Eclipse Project,”at http://www.eclipse.org,

2011.

[8] EmbarcaderoTechnologies,“JBuilder,”

http://www.codegear.com/br/products/jbuilder, 2011.

[9] “JDT Core Component,” Eclipse.org,

http://www.eclipse.org/ jdt/core/, 2011.

[10] Fowler M., Refactoring: Improving the Design of

Existing Code. Addison-Wesley Longman Publishing

Co., 1999.

[11] Goodenough J.B. and S.L. Gerhart, “Toward a Theory of

Test Data Selection,” SIGPLAN Notes, vol. 10, pp. 493-

510, Apr. 1975.

[12] Gligoric M, T. Gvero, V. Jagannath, S. Khurshid, V.

Kuncak, and D. Marinov, “Test Generation through

Programming in UDITA,” Proc. 32nd Int’l Conf.

Software Eng., vol. 1, pp. 225-234, 2010.

[13] Hoffman D.M, D. Ly-Gagnon, P. Strooper, and H.-Y.

Wang, “Grammar-Based Test Generation with YouGen,”

Software: Prac- tice and Experience, vol. 41, pp. 427-

447, Apr. 2011.

[14] Jackson D., I. Schechter, and H. Shlyahter, “Alcoa: The

Alloy Constraint Analyzer,” Proc. 22nd Int’l Conf.

Software Eng., pp. 730-733, 2000.

[15] Jin W, A. Orso, and T. Xie, “Automated Behavioral

Regression Testing,” Proc. 23rd Int’l Conf. Software

Testing, Verification and Validation, pp. 137-146, 2010.

[16] Kushmerick, D. Weld, and R. Doorenbos, “Wrapper

Induction for Information Extraction,” Proc. 15th Int’l

Joint Conf. Artificial Intelligence (IJCAI), pp. 729-735,

1997.

[17] Muslea I., S. Minton, and C. Knoblock, “A Hierarchical

Approach to Wrapper Induction,” Proc. Third Int’l Conf.

Autonomous Agents (AA ’99), 1999.

Clone detection time (in seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
1
.h

tm
l

A
2
.h

tm
l

C
o
m

p
ile

.a
s
p

S
a
m

p
le

.a
s
p

B1.htmlB2.htmlVAT. html C1. html

Clone detection

time (in seconds)

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 12, December 2014

10

[18] Mens T. and T. Tourwe , “A Survey of Software

Refactoring,” IEEE Trans. Software Eng., vol. 30, no. 2,

pp. 126-139, Feb. 2004.

[19] Demeyer. S, Mens T, and D. Janssens, “Formalising

Behaviour Preserving Program Transformations,” Proc.

First Int’l Conf. Graph Transformation, pp. 286-301,

2002.

[20] Marinov D and S. Khurshid, “TestEra: A Novel

Framework for Automated Testing of Java Programs,”

Proc. IEEE 16th Int’l Conf. Automated Software Eng.,

pp. 22-34, 2001.

[21] Opdyke W.F, “Refactoring Object-Oriented

Frameworks,” PhD dissertation, Univ. of Illinois at

Urbana-Champaign, 1992.

[22] Overbey J.L and R.E. Johnson, “Differential

Precondition Check-ing: A Lightweight, Reusable

Analysis for Refactoring Tools,” Proc. 26th IEEE/ACM

Int’l Conf. Automated Software Eng., pp. 303-312,

[23] Refactoring http://www.informit.com/articles/article.aspx

[24] Simon K and G. Lausen, “ViPER: Augmenting

Automatic Information Extraction with Visual

Perceptions,” Proc. Int’l Conf. Information and

Knowledge Management (CIKM), 2005.

[25] Sun Microsystems, “NetBeans IDE,”

http://www.netbeans.org/,2011.

[26] Scha fer M, M. Verbaere, T. Ekman, and O. Moor,

“Stepping Stones over the Refactoring Rubicon,” Proc.

23rd European Conf. Object-Oriented Programming, pp.

369-393, 2009.

[27] Moor O. de, Scha fer M and “Specifying and

Implementing Refactorings,” Proc. 25th ACM

Int’l Conf. Object-Oriented Programming, Systems,

Languages, and Applications, pp. 286-301, 2010.

[28] Ekman T. Scha fer M, and O. de Moor, “Challenge

Proposal: Verification of Refactorings,” Proc. Third

Workshop Programming Languages Meets Program

Verification, pp. 67-72, 2008.

[29] Gheyi. R Soares G, D. Serey, and T. Massoni, “Making

Program Refactoring Safer,” IEEE Software, vol. 27, no.

4, pp. 52-57, July/ Aug. 2010.

[30] Mongiovi M., Soares G, and R. Gheyi, “Identifying

Overly Strong Conditions in Refactoring

Implementations,” Proc. Conf. Software Maintenance,

pp. 173-182, Sept. 2011.

[31] Silva L, A. Sampaio, and Z. Liu, “Laws of Object-
Orientation with Reference Semantics,” Proc. Sixth IEEE

Int’l Conf. Software Eng. And Formal Methods, pp. 217-

226, 2008.

[32] Moor O. de, Scha fer M, T. Ekman, and “Sound and

Extensible Renaming for Java,” Proc. 23rd ACM

SIGPLAN Conf. Object Oriented Programming,

Systems, Languages, and Applications, pp. 277-294,

2008.

[33] Tokuda L and D. Batory, “Evolving Object-Oriented

Designs with Refactoring,” Automated Software Eng.,

vol. 8, pp. 89-120, Jan.2001.

[34] Sourcemaking

http://sourcemaking.com/refactoring/introduction-to-

refactoring

[35] DOM Tree Algorithm

:http://dbs.snu.ac.kr/papers/xsym09.pdf.

[36] Levenshtein Edit Distance Algorithm:

http://www.levenshtein.net/ levenshtein measure

http://en.wikibooks.org/wiki/Algorithm_Implementation/

Strings/Levenshtein_distance.

IJCATM : www.ijcaonline.org

http://sourcemaking.com/refactoring/introduction-to-refactoring
http://sourcemaking.com/refactoring/introduction-to-refactoring
http://dbs.snu.ac.kr/papers/xsym09.pdf

