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ABSTRACT 

In this paper we applied the tanh  method for analytic study of 

the nonlinear equations of partial differential 

equations(PDEs).The proposed method gives more general 

exact traveling wave solutions without much extra effort. 

Three applications from literature of nonlinear equation of 

PDEs were solved by the method. The calculations 

demonstrate the effectiveness and convenience of the method 

for nonlinear sub system of PDEs. 
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1. INTRODUCTION 
The nonlinear partial differential equations (NPDEs) are 

widely used to describe many important phenomena and 

dynamic processes in physics, chemistry, biology, fluid 

dynamics, plasma, optical fibers and other areas of 

engineering. Many efforts have been made to study NPDEs. 

One of the most exciting advances of nonlinear science and 

theoretical physics has been a development of methods that 

look for exact solutions for nonlinear evolution equations. The 

availability of symbolic computations such as Mathematica 

program has popularized direct seeking for exact solutions of 

nonlinear equations. Therefore, exact solution methods of 

nonlinear evolution equations have become more and more 

important resulting in methods like  the tanh method [1–3], 

extended tanh function method [4], the modified extended 

tanh function method [5], the generalized hyperbolic function 

[6].Most of exact solutions have been obtained by these 

methods, including the solitary wave solutions, shock wave 

solutions, periodic wave solutions, and the like. 

In this paper, we propose tanh–coth and tan-cot, methods to 

obtain an exact single-soliton and travelling wave solutions of 

the Hirota equation with a source. In order to illustrate the 

effectiveness and convenience of the method, we consider the 

Hirota equation in the form [12,13], The standard tanh method 

and the proposed modifications all depend on the balance 

method, where the linear terms of highest order are balanced 

with the highest order nonlinear terms of the reduced 

equation. In this paper, we use the tanh method to find the 

exact solutions of the following nonlinear PDEs: the nonlinear 

equation of the Hirota equations. This will be useful in 

numerical studies. 

2. OUTLINE OF THE TANH & TAN 

METHODS 
The tanh method will be introduced as presented by Malfliet 

[8] and by Wazwaz [9–11]. The tanh method is based on a 

priori assumption that the traveling wave solutions can be 

expressed in terms of the tanh function to solve the coupled 

KdV equations.The tanh method is developed by Malfliet [8]. 

The method is applied to find out an exact solution of a 

nonlinear ordinary differential equation. Consider the 

following PDE. 

Consider the nonlinear partial differential equation in the form 

 𝐹 𝑢, 𝑢𝑡 , 𝑢𝑥 , 𝑢𝑥𝑥 , 𝑢𝑥𝑥𝑥 , … .  = 0                                            (1) 

Where 𝑢(𝑥, 𝑡) is the solution of nonlinear partial differential 

equation Eq. (1). We use the transformations, = 𝜅(𝑥 − 𝜆 𝑡) ,  

to transform 𝑢(𝑥 , 𝑡) to 𝑈(𝜉 ) give : 

  
∂  

∂  t
= −κ λ 

𝑑

𝑑𝜉  
, 

∂  

∂  x
= κ 

𝑑

𝑑𝜉  
, 

∂2  

∂  x2
=  𝜅2 𝑑2

𝑑𝜉2  
, 

∂3  

∂  x3
= 𝜅3 𝑑3

𝑑𝜉3  
 ,and 

so on,then Eq.(1)  becomes an ordinary differential equation 

              𝑁 𝑈, 𝜅𝜆𝑈′ , 𝜅𝑈′ , 𝜅2𝑈′′ , 𝜅3𝑈′′′ , … .  = 0,                 (2) 

With N being another polynomial form of its argument, which 

will be called the reduced ordinary differential equation of Eq. 

(2). Integrating Eq.(2) as long as all terms contain derivatives, 

the integration constants are considered to be zeros in view of 

the localized solutions. However, the nonzero constants can 

be used and handled as well [11]. Now finding the traveling 

wave solutions to Eq. (1) is equivalent to obtaining the 

solution to to the reduced ordinary differential equation (2). 

For the tanh method, we introduce the new independent 

variable [13] 

   Y  x, t  = tanh ξ , or Y  x, t  = coth ξ ,                         (3) 

that leads to a change in the derivatives:        

  
d

d ξ
= (1 − Y2)

d

d Y
      

 
𝑑2

𝑑  𝜉2 =  1 − 𝑌2  −2𝑌
𝑑

𝑑  𝑌
+  1 − 𝑌2 

𝑑2

𝑑  𝑌2             

 
𝑑3

𝑑  𝜉3
=  1 − 𝑌2  2 3𝑌2 − 1 

𝑑

𝑑  𝑌
− 6 𝑌(1 − 𝑌2)

𝑑2

𝑑  𝑌2
+

 1 − 𝑌2 2 𝑑3

𝑑  𝑌3
                                                                       (4)   

Where the other derivatives can be derived in a similar way. 

We use new independent variables 

 𝑌  𝑥, 𝑡  = tan 𝜉 , or 𝑌  𝑥, 𝑡  = cot 𝜉 ,                            (5) 

that leads to the change of derivatives 

 
𝑑

𝑑  𝜉
= (1 + 𝑌2)

𝑑

𝑑  𝑌
                                                                                             

 
𝑑2

𝑑  𝜉2 =  1 + 𝑌2  −2𝑌
𝑑

𝑑  𝑌
+  1 + 𝑌2 

𝑑2

𝑑  𝑌2       

 
𝑑3

𝑑  𝜉3 =  1 + 𝑌2  2 3𝑌2 − 1 
𝑑

𝑑  𝑌
− 6 𝑌 1 + 𝑌2 

𝑑2

𝑑  𝑌2 +

 1 + 𝑌2 2 𝑑3

𝑑  𝑌3
                                                                       (6)                           

The next crucial step is that the solution we are looking for is 

expressed in the form 

   𝑢   𝑥, 𝑡  = 𝑈  𝜉  =  𝑎𝑖𝑌
𝑖 = 𝑎0 + ⋯ + 𝑎𝑚𝑌𝑚𝑚

𝑖=1 ,         (7) 

where the parameter 𝑚 can be found by balancing the highest-

order linear term with the 

nonlinear terms in Eq. (2), and  k , λ , 𝑎0  , 𝑎1  , … . . , 𝑎𝑚   are to 

be determined. Substituting (5) into (2) will yield a set of 

algebraic equations 𝑘 , λ , 𝑎0 , 𝑎1  , … . . , 𝑎𝑚 because all 

coefficients of 𝑌𝑖  have to vanish. From these relations, 

k , λ , 𝑎0 , 𝑎1  , … . . , 𝑎𝑚  can be obtained. Having determined 

these parameters, knowing that 𝑚 is a positive integer in most 

cases, and using (5) we obtain an analytic solution 𝑢   𝑥, 𝑡   in 
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a closed form [11].The tanh method seems to be powerful tool 

in dealing with coupled nonlinear physical models. For a 

coupled system of nonlinear differential equations with two 

unknowns: 

 𝐹1 𝑢, 𝑣, 𝑢𝑡 , 𝑣𝑡 , 𝑢𝑥 , 𝑣𝑥 , 𝑢𝑥𝑥 , 𝑣𝑥𝑥 , … .  = 0 

 𝐹2 𝑢, 𝑣, 𝑢𝑡 , 𝑣𝑡 , 𝑢𝑥 , 𝑣𝑥 , 𝑢𝑥𝑥 , 𝑣𝑥𝑥 , … .  = 0                               (8) 

As for the traveling wave solutions to (6) concerned, we have 

to solve its corresponding reduced ordinary differential 

equations 

𝑁1 𝑢, 𝑣, 𝑢′ , 𝑣′ , 𝑢′′ , 𝑣 ′′ , … .  = 0                             

𝑁2 𝑢, 𝑣, 𝑢′ , 𝑣′ , 𝑢′′ , 𝑣 ′′ , … .  = 0,                                            (9) 

In most cases, the exact solvability of (7) depends on a 

delicate explicit assumption between the two unknowns or 

their derivatives, for more details see [12]. 

3.   NUMERICAL EXAMPLES 
The tanh method is generalized on three examples including 

Hirota equations. 

Example 1.  
Let us consider the Hirota equation(1) in the form [12] 

 𝑖 𝑢𝑡 + 𝑢𝑥𝑥 + 2 𝑢 2𝑢 + 𝑖 𝛼 𝑢𝑥𝑥𝑥 + 6 𝑖 𝛼  𝑢 2𝑢𝑥 ,                (10) 

Which is the standard Schrödinger equation in the case when   

α =  0, is a famous mathematical and physical equation 

(Example(3)). Where the cubic term in Eq. (10) describes the 

nonlinear-self interaction in the high frequency subsystem, 

such a term corresponds to a self-focusing effect in plasma 

physics. The coefficient α is a real constant that can be a 

positive or negative number. 

𝑢  𝑥, 𝑡 =  𝑢1   𝑥, 𝑡 +  𝑖 𝑢2  𝑥, 𝑡 ,                                       (11) 

Using the traveling wave transformations.  

𝑢1    𝑥, 𝑡  = 𝑈   𝜉  =  𝑎𝑖𝑌
𝑖𝑚

𝑖=1 , 

 𝑢2   𝑥, 𝑡  = 𝑉   𝜉  =  𝑏𝑖𝑌
𝑖𝑚

𝑖=1 , 𝜉 = 𝜅 𝑥 − 𝜆 𝑡 ,             (12)  

The nonlinear system of partial differential equations (10) is 

carried to a system of ordinary differential equations. 

𝜆𝜅
𝑑𝑉

𝑑𝜉
+ 2 𝑉2 + 𝑈2 𝑈 + 𝜅2

𝑑2𝑈

𝑑𝜉2 − 𝛼𝜅3
𝑑3𝑉

𝑑𝜉3

− 6𝛼𝜅 𝑉2 + 𝑈2 
𝑑𝑉

𝑑𝜉
= 0, 

𝜆𝜅
𝑑𝑈

𝑑𝜉
− 2 𝑉2 + 𝑈2 𝑉 − 𝜅2 𝑑2𝑉

𝑑𝜉2 − 𝛼𝜅3 𝑑3𝑈

𝑑𝜉3 − 6𝛼𝜅 𝑉2 +

𝑈2 𝑑𝑈

𝑑𝜉
= 0,                                                                                  (13) 

We postulate the following tanh series in Eq. (11), Eq. (3) and 

the transformation given in (4), the equation in (13) reduces to 

 𝜆𝜅 1 − 𝑌2 
𝑑𝑉

𝑑  𝑌
+ 2 𝑉2 + 𝑈2 𝑈 + 𝜅2 1 − 𝑌2  −2𝑌

𝑑𝑈

𝑑  𝑌
+

 1 − 𝑌2 
𝑑2𝑈

𝑑  𝑌2
 − 𝛼𝜅3 1 − 𝑌2  2 3𝑌2 − 1 

𝑑𝑉

𝑑  𝑌
−

6 𝑌 1 − 𝑌2 
𝑑2𝑉

𝑑  𝑌2 +  1 − 𝑌2 2 𝑑3𝑉

𝑑  𝑌3
 − 6𝛼𝜅 𝑉2 + 𝑈2  1 −

𝑌2 𝑑𝑉

𝑑  𝑌
= 0,                                                                          (14) 

−𝜆𝜅 1 − 𝑌2 
𝑑𝑈

𝑑  𝑌
+ 2 𝑉2 + 𝑈2 𝑉 + 𝜅2 1 − 𝑌2  −2𝑌

𝑑𝑉

𝑑  𝑌
+

 1 − 𝑌2 
𝑑2𝑉

𝑑  𝑌2
 + 𝛼𝜅3 1 − 𝑌2  2 3𝑌2 − 1 

𝑑𝑈

𝑑  𝑌
−

6 𝑌 1 − 𝑌2 
𝑑2𝑈

𝑑  𝑌2 +  1 − 𝑌2 2 𝑑3𝑈

𝑑  𝑌3
 + 6𝛼𝜅 𝑉2 + 𝑈2  1 −

𝑌2 𝑑𝑈

𝑑  𝑌
= 0,                                                                          (15) 

Now, to determine the parameters 𝑚 and 𝑛, we balance the 

linear term of highest-order with the highest order nonlinear 

terms. So, in Eq. (14) we balance 𝑉′′′  with 𝑈2𝑉′  , to obtain  

2𝑚 =  2 , then 𝑚 =  1.while in Eq. (15) we balance 𝑈′′′  with 

𝑉2𝑈′  , to obtain 

2𝑛 =  2 , then 𝑛 = 1.The tanh method admits the use of the 

finite expansion for both 

  𝑢1 𝑥, 𝑡 = 𝑈 𝑌 =  𝑎0 + 𝑎1𝑌,          𝑎1 ≠ 0,                     (16) 

  𝑢2 𝑥, 𝑡 = 𝑉 𝑌 =  𝑏0 + 𝑏1𝑌,          𝑏1 ≠ 0,                      (17) 

Substituting 𝑈 , 𝑈 ′  , 𝑈′′   , 𝑈′′′   and𝑉 , 𝑉 ′  , 𝑉′′ ,𝑉′′′   from Eq. 

(16) and Eq. (17) respectively into Eqs.(14-15), then equating 

the coefficient of 𝑌𝑖   , 𝑖 =  0, 1, 2, 3,4 leads to the following 

nonlinear system of algebraic equations. 

𝑌0 Coeff.   

2 𝑎0
3 + 2 𝑎0𝑏0

2 − 6 𝑎0
2 𝑏0ακ − 6 𝑏0

2𝑏1  ακ + 2 𝑏1 𝛼𝜅3 + 𝑏1  𝜅𝜆
= 0 

𝑌1 Coeff. 

 𝑎0
2 𝑎1 + 𝑎1𝑏0

2 + 2 𝑎0𝑏0𝑏1 − 6 𝑎0 𝑎1𝑏1ακ − 6𝑏0𝑏1
2 𝛼𝜅

− 𝑎1𝜅
2 = 0 

𝑌2 Coeff. 

 6 𝑎0 𝑎1
2 + 4𝑎1𝑏0𝑏1 + 2  𝑎0𝑏1

2 + 6 𝑎0
2 𝑏1 𝛼𝜅 − 6 𝑎1

2𝑏1 𝛼𝜅 +
6 𝑏0

2𝑏1 ακ −   6𝑏1
3 𝛼𝜅 − 8 𝑏1 𝛼𝜅3 − 𝑏1  𝜅𝜆 = 0 

 𝑌3 Coeff. 

 𝑎1
3 + 𝑎1𝑏1

2 + 6 𝑎0 𝑎1𝑏1 𝛼𝜅 + 6 𝑏0𝑏1
2 𝛼𝜅 + 𝑎1𝜅

2 = 0 

 𝑌4 Coeff.     𝑎1
2 + 𝑏1

2 + 𝜅2 = 0, 

 and  

 𝑌0 Coeff. 

2 𝑎0
2 𝑏0 + 2𝑏0

3 + 6 𝑎0
2𝑎1ακ + 6 𝑎1𝑏0

2ακ − 2 𝑎1 α𝜅3 − 𝑎1 𝜅𝜆
= 0, 

𝑌1 Coeff. 

2 𝑎0 𝑎1𝑏0 + 𝑎0
2 𝑏1 + 3 𝑏0

2𝑏1 + 6 𝑎0 𝑎1
2 𝛼𝜅 + 6 𝑎1𝑏0𝑏1  𝛼𝜅

− 𝑏1κ
2 = 0, 

 𝑌2 Coeff. 

 2 𝑎1
2𝑏0 + 4 𝑎0 𝑎1𝑏1 + 6𝑏0𝑏1

2 − 6𝑎0
2 𝑎1 𝛼𝜅 + 6 𝑎1

3 𝛼𝜅 −
6 𝑎1𝑏0

2 𝛼𝜅 +   6 𝑎1𝑏1
2 𝛼𝜅 + 8 𝑎1 𝛼𝜅3 + 𝑎1κλ = 0, 

𝑌3 Coeff. 

𝑏1
3 + 𝑎1

2𝑏1 − 6 𝑎0𝑎1
2 𝛼𝜅 − 6 𝑏0 𝑎1𝑏1  𝛼𝜅 + 𝑏1𝜅

2 = 0, 

𝑌4 Coeff.    −𝑏1
2−𝑎1

2 −  𝜅2 = 0,                                       (18) 

Solving the nonlinear systems of equations (18) with help of 

Mathematica we can get: 

Case(1) 

  𝑎0 = ±  𝑎1
2 + 𝜅2, 𝑏0 = ±ⅈ𝑎1, 𝑏1 = ±𝑖 𝑎1

2 + 𝜅2, 

 and 𝜆 = 2 2𝛼𝜅2 ± ⅈ𝜅 , 

The kink solitons solutions (1) take the forms, 

 𝑢 𝑥, 𝑡 =   1 ± tanh 𝑘  𝑥 − 𝜆𝑡   (  𝑎1
2 + 𝜅2 ± 𝑎1),  and  

 𝑢 𝑥, 𝑡 =   1 ± coth 𝑘  𝑥 − 𝜆𝑡   (  𝑎1
2 + 𝜅2 ± 𝑎1),     (19) 
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Case(2) 

𝜆 = 2(2𝛼𝜅2 ± ⅈ𝜅),  𝑎0 = ±𝜅,  𝑎1 = 0,  𝑏0 = 0,  

and  𝑏1 = ±𝑖𝜅;                                                                     (20)     

The kink solitons solutions(2) take the forms, 

 𝑢 𝑥, 𝑡 = ± 𝜅   1 + tanh 𝑘  𝑥 − 𝜆𝑡   , and   

 𝑢 𝑥, 𝑡 = ± 𝜅   1 + coth 𝑘  𝑥 − 𝜆𝑡   ,                           (21)     

The solitary wave and behavior of the solutions 𝑢1(𝑥, 𝑡) , 

𝑢2(𝑥, 𝑡) and 𝑢(𝑥, 𝑡) are shown in Figure (1) for some fixed 

values of the parameters, (𝑎1 =  2, 𝛼 = 1, 𝜅 =  0.5 ) 

Fig 1: the component  𝐮𝟏 , the component  𝐮𝟐 , and  𝐮  of 

the example(1) 

Example 2 

The Hirota Equation(2) [12]  

   𝑞𝑡 + 3𝛼 𝑞 2𝑞𝑥 + 𝛾 𝑞𝑥𝑥𝑥 = 0,                                           (22) 

Where 𝑞 is a complex valued function of the spatial 

coordinate 𝑥 and the time 𝑡, α and γ are positive real 

constants. This equation is an integrable equation which has a 

number of physical applications, such as the propagation of 

optical pluses in nematic liquid crystal waveguides. The 

Hirota equation is closely related to both the nonlinear 

Schrodinger (NLS) and modified Korteweg-de Vries (mKdV) 

equations,as it is complex generalization of the mKdV 

equation and it is a part of the NLS hierarchy of the integrable 

equation. Also, its soliton solution has a very similar form to 

the NLS soliton.The Hirota equation (22) has a two-parameter 

soliton family, with amplitude and velocity 

To avoid complex computation we assume 

𝑞  𝑥, 𝑡 =  𝑢  𝑥, 𝑡 +  𝑖 𝑣  𝑥, 𝑡 ,             𝑖2  =  −1,               (23) 

where  𝑢  𝑥, 𝑡  , 𝑣  𝑥, 𝑡  are real functions. This will reduce 

Hirota equation to the coupled system 

  −𝜆
𝑑𝑈

𝑑𝜉
+ 3𝛼 𝑉2 + 𝑈2 

𝑑𝑈

𝑑𝜉
+ 𝛾𝜅2 𝑑3𝑈

𝑑𝜉3 = 0, 

    −𝜆
𝑑𝑉

𝑑𝜉
+ 3𝛼 𝑉2 + 𝑈2 

𝑑𝑉

𝑑𝜉
+ 𝛾𝜅2 𝑑3𝑉

𝑑𝜉3 = 0,                       (24) 

We postulate the following tanh series in Eq. (4), Eq. (23) and 

the transformation, the equation (24) reduces to 

−𝜆 1 − 𝑌2 
𝑑𝑈

𝑑  𝑌
+ 3𝛼 𝑉2 + 𝑈2  1 − 𝑌2 

𝑑𝑈

𝑑  𝑌
+ 𝛾𝜅2 1 −

𝑌2  2 3𝑌2 − 1 
𝑑𝑈

𝑑  𝑌
−  6 𝑌 1 − 𝑌2 

𝑑2𝑈

𝑑  𝑌2
+  1 − 𝑌2 2 𝑑3𝑈

𝑑  𝑌3
 =

0,                                                                                          (25) 

 −𝜆 1 − 𝑌2 
𝑑𝑉

𝑑  𝑌
+ 3𝛼 𝑉2 + 𝑈2  1 − 𝑌2 

𝑑𝑉

𝑑  𝑌
+ 𝛾𝜅2 1 −

𝑌2  2 3𝑌2 − 1 
𝑑𝑉

𝑑  𝑌
−  6 𝑌 1 − 𝑌2 

𝑑2𝑉

𝑑  𝑌2
+  1 − 𝑌2 2 𝑑3𝑉

𝑑  𝑌3
 =

0,                                                                                          (26) 

Now, determine the parameters, we find  𝑚 = 𝑛 =  1. .The 

tanh method admits the use of the finite expansion for both 

  𝑢 𝑥, 𝑡 = 𝑈 𝑌 =  𝑎0 + 𝑎1𝑌,          𝑎1 ≠ 0,                       (27) 

  𝑣 𝑥, 𝑡 = 𝑉 𝑌 =  𝑏0 + 𝑏1𝑌,            𝑏1 ≠ 0,                      (28) 

Substituting U , U ′  , U′′   , U′′′   and  ,V′′   from Eq. (27) and Eq. 

(28) respectively into Eq.(25,26), then equating the coefficient 

of Yi   , i =  0, 1, 2, 3,4 leads to the following nonlinear system 

of algebraic equations 

𝒀𝟎  Coeff.     𝟑𝒂𝟎
𝟐𝜶 + 𝟑𝒃𝟎

𝟐𝜶 − 𝟐𝜸𝜿𝟐 − 𝝀 = 𝟎 

𝒀𝟏  Coeff.     𝒂𝟎𝒂𝟏 + 𝒃𝟎𝒃𝟏 = 𝟎 

𝒀𝟐  Coeff.−𝟑𝒂𝟎
𝟐𝜶 + 𝟑𝒂𝟏

𝟐𝜶 − 𝟑𝒃𝟎
𝟐𝜶 + 𝟑𝒃𝟏

𝟐𝜶 + 𝟖𝜸𝜿𝟐 + 𝝀 = 𝟎 

𝒀𝟑 Coeff.  −𝒂𝟎 𝒂𝟏 − 𝒃𝟎𝒃𝟏=0 

𝒀𝟒 Coeff. −𝒂𝟏
𝟐𝜶 − 𝒃𝟏

𝟐𝜶 − 𝟐𝜸𝜿𝟐 = 𝟎,           (29) 

Solving these systems, We find the kink solitons solutions  

take the forms. 

Case (1) 

𝝀 = −𝟐𝜸𝜿𝟐, 𝝕𝟏 = (±
 𝒂𝟏

𝟐𝜶+𝟐𝜸𝜿𝟐

 𝜶
), 𝒃𝟏 = 𝒊 𝝕𝟏, 𝒃𝟎 = 𝟎, 

and 𝒂𝟎 = 𝟎, 

𝒒 = (𝒂𝟏 − 𝝕𝟏) 𝐭𝐚𝐧𝐡(𝜿(𝒙 − 𝝀 𝒕)), or 

𝒒 = (𝒂𝟏 − 𝝕𝟏) 𝐜𝐨𝐭𝐡(𝜿(𝒙 − 𝝀 𝒕)), 

Case(2) 

𝝀 = 𝟑𝐛𝟎
𝟐𝜶 − 𝟐𝜸𝜿𝟐, 𝒂𝟏 = ±

ⅈ 𝟐 𝜸𝜿

 𝜶
,  𝒂𝟎 = 𝟎, and 𝒃𝟏 = 𝟎, 

𝒒 = 𝒊𝒃𝟎 ±
ⅈ 𝟐 𝜸𝜿

 𝜶
 𝐭𝐚𝐧𝐡(𝛋(𝐱 − 𝛌 𝐭)),or 

𝒒 = 𝒃𝟎 ±
ⅈ 𝟐 𝜸𝜿

 𝜶
 𝐜𝐨𝐭𝐡(𝛋(𝐱 − 𝛌 𝐭)) 

Case(3) 

𝝀 = 𝟑𝒂𝟎
𝟐𝜶 − 𝟐𝜸𝜿𝟐, 𝒃𝟏 = ±

ⅈ 𝟐 𝜸𝜿

 𝜶
, 𝒃𝟎 = 𝟎, and 𝒂𝟏 = 𝟎 

𝒒 = 𝒂𝟎 ±
ⅈ𝟐 𝟐𝜸 

 𝜶
𝜿 𝐭𝐚𝐧𝐡(𝛋(𝒙 − 𝛌 𝐭)), or  𝒒 = 𝒂𝟎 ±

ⅈ𝟐 𝟐𝜸 

 𝜶
𝜿 𝐜𝐨𝐭𝐡(𝛋(𝒙 − 𝛌 𝐭)) 

Case(4)     

𝝀  = −𝟐(𝟏 + 𝟑𝒂𝟎
𝟐)𝜸𝜿𝟐,  𝝕𝟐 =  𝟏 +

𝟐𝜸𝜿𝟐

𝜶
, 

𝒃𝟎 = ±𝒊𝒂𝟎𝝕𝟐, 𝒃𝟏 = 𝟏, and 𝒂𝟏 = ±𝒊𝝕𝟐, 

𝒒 =  ±𝝕𝟐   𝒊 𝐭𝐚𝐧𝐡 𝛋 𝒙 − 𝛌 𝐭  − 𝒂𝟎 + 

(𝒂𝟎 + 𝒊 𝐭𝐚𝐧𝐡(𝜿(𝒙 − 𝝀 𝒕))),                  (30) 
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In terms tan method   

Similar as the tanh method we can obtain the tan method 

through the equation (6) 

Case(1) 𝜆 = 2  𝛾𝜅2 −
3𝑎0

2𝛾𝜅2

𝑏1
2  , 𝜛3 = ± (𝑏1

2  𝛼+2𝛾𝜅2)

 𝛼
, 

𝑎1 = 𝑖 𝜛3,  𝑏0 =
𝑖𝑎0

𝑏1
𝜛3, 

𝒒 = 𝒂𝟎 − 𝝕𝟑(
𝒂𝟎

𝒃𝟏
+ 𝒊 𝐭𝐚𝐧(𝛋(𝒙 − 𝛌 𝐭))) + 𝐢 𝒃𝟏𝐭𝐚𝐧(𝛋(𝒙 −

𝛌 𝐭)), 𝒒 = 𝒂𝟎 − 𝝕𝟑(
𝒂𝟎

𝒃𝟏
+ 𝒊 𝐜𝐨𝐭(𝛋(𝒙 − 𝛌 𝐭))) +

𝐢 𝒃𝟏𝐜𝐨𝐭(𝛋(𝒙 − 𝛌 𝐭)),                                 

Case(2) 

𝝀 = 𝟐𝜸𝜿𝟐,  𝒂𝟏 = 𝒊 𝝕𝟑, 𝒃𝟎 = 𝟎,  and 𝒂𝟎 = 𝟎,           

𝒒 = 𝒊(𝒃𝟏 −  𝝕𝟑)𝐭𝐚𝐧(𝜿(𝒙 − 𝝀 𝒕)),   or 

𝒒 = 𝒊(𝒃𝟏 −  𝝕𝟑)𝐜𝐨𝐭 𝜿(𝒙 − 𝝀 𝒕) ,                

Case(3) 

𝝀 = 𝟑𝒃𝟎
𝟐𝜶 + 𝟐𝜸𝜿𝟐,  𝒂𝟏 = ±

ⅈ 𝟐 𝜸𝜿

 𝜶
,  𝒃𝟏 = 𝟎,  and  

𝒂𝟎 = 𝟎,       

𝒒 = 𝒊 𝒃𝟎 ±
ⅈ 𝟐 𝜸𝜿

 𝜶
 𝐭𝐚𝐧(𝜿(𝒙 − 𝝀 𝒕)), or 

𝒒 = 𝒊 𝒃𝟎 ±
ⅈ 𝟐 𝜸𝜿

 𝜶
 𝐜𝐨𝐭(𝜿(𝒙 − 𝝀 𝒕)),             

(31) 

The solitary wave and behavior of the solutions u(x, t) and 

v(x, t) are shown in Figure(2) for some fixed values of the 

parameters, (λ =  0.5 , κ =  0.05 ) 

 

 

Fig 2: The component  𝒖 , the component  𝒗 , and  𝒒  of 

the example(2) in terms tanh method 

Example 3.  

The Hirota Equation(3).One of the most important model 

equations in nonlinear science is the nonlinear Schrodinger   

(NLS) equation,[14] 

 𝑖 𝜂𝑡  +  𝜂𝑥𝑥  +  𝜂|𝜂|2  =  0,                                                 (32) 

Physically, the NLS equation describes the modulation of 

weakly-nonlinear wave trains. In deep water. Benjamin and 

Feir [Benjamin and Feir(1967)] showed that an uniform wave 

train is unstable to long wave perturbations. Peregrine 

[Peregrine(1985)] and Yuen and Lake [Yuen and Lake(1982)] 

present a historical overview of fluid mechanics applications 

of the NLS equation and its physical origins. In the optical 

context, the NLS equation was derived by Hasegawa and 

Tappert [Hasegawa and Tappert(1973)]. It also describes the 

evolution of the slowly varying envelope of an optical pulse. 

Derived asymptotically from Maxwell’s equations, it assumes 

slow variation in the carrier frequency and the Kerr 

dependence . The NLS equation is central to understanding 

soliton propagation in optical fibres, which is of critical 

importance to the field of fibre-based telecommunications 

Wabnitz,Kodama and Aceves].Motivated by these physical 

applications,  

the evolution of a NLS soliton has been studied extensively  

in both the physical and mathematical communities. 

  𝜂  𝑥, 𝑡 =  𝜑  𝑥, 𝑡 +  𝑖 𝜓  𝑥, 𝑡 ,                                        (33) 

where   𝜑  𝑥, 𝑡  , 𝜓  𝑥, 𝑡  are real functions. This will reduce 

Hirota equation to the coupled system 

 −𝜆𝜅
𝑑𝜙

𝑑𝜉
+  Ψ2 + 𝜙2 𝜙 + 𝜅2 𝑑2𝜙

𝑑𝜉2 = 0, 

  −𝜆𝜅
𝑑Ψ

𝑑𝜉
+  Ψ2 + 𝜙2 Ψ + 𝜅2 𝑑2Ψ

𝑑𝜉2 = 0,                             (34) 

We postulate the following tanh series in Eq. (33), Eq. (3) and 

the transformation given in (4), the equation (34) reduces to 

−𝜆 1 − 𝑌2 
𝑑𝜙

𝑑 𝑌
+ 

 Ψ2 + 𝜙2  1 − 𝑌2 
𝑑𝜙

𝑑  𝑌
+ 𝛾𝜅2 1 − 𝑌2  2 3𝑌2 − 1 

𝑑𝜙

𝑑  𝑌
−

                6 𝑌 1 − 𝑌2 
𝑑2𝜙

𝑑  𝑌2
 = 0,                                          (35) 

 −𝜆 1 − 𝑌2 
𝑑Ψ

𝑑  𝑌
+  Ψ2 + 𝜙2  1 − 𝑌2 

𝑑Ψ

𝑑  𝑌
+ 𝜅2 1 −

𝑌2  2 3𝑌2 − 1 
𝑑Ψ

𝑑  𝑌
− 6 𝑌 1 − 𝑌2 

𝑑2Ψ

𝑑  𝑌2 = 0,                   (36) 

Now, to determine the parameters 𝑚 and 𝑛, we balance the 

linear term of highest-order with the highest order nonlinear 

terms. then 𝑚 = 𝑛 =  1.The tanh method admits the use of 

the finite expansion for both 

 𝜑 𝑥, 𝑡 = Φ 𝑌 =  𝑎0 + 𝑎1𝑌,          𝑎1 ≠ 0,                       (37) 

 𝜓 𝑥, 𝑡 = Ψ 𝑌 =  𝑏0 + 𝑏1𝑌,          𝑏1 ≠ 0,                        (38) 

Substituting from Eq. (37) and Eq. (38) respectively into 

Eq.(35-36), then equating the coefficient of 𝑌𝑖   , 𝑖 =  0, 1, 2, 3 

leads to the following nonlinear system of algebraic equations 

       𝑌0 Coeff.      𝑎0
3 + 𝑎0𝑏0

2 + 𝑏1𝜅𝜆 = 0, 

       𝑌1 Coeff.     3𝑎0
2 𝑎1 + 𝑎1𝑏0

2 + 2𝑎0𝑏0𝑏1 − 2 𝑎1𝜅
2 = 0,        

       𝑌2 Coeff.    6𝑎0𝑎1
2 + 4 𝑎1𝑏0𝑏1 + 2𝑎0𝑏1

2 − 2𝑏1𝜅𝜆 = 0, 

       𝑌3 Coeff.      𝑎1
2 + 𝑏1

2 + 2𝜅2 = 0, 

  and  

       𝑌0 Coeff.      𝑎0
2𝑏0 + 𝑏0

3 −  𝑎1𝜅𝜆 = 0,    

       𝑌1 Coeff.    2𝑎0 𝑎1𝑏0 + 𝑎0
2 𝑏1 + 3𝑏0

2 𝑏1 − 2 𝑏1𝜅
2 = 0,  
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       𝑌2 Coeff.    2𝑏0𝑎1
2 + 4 𝑎0𝑎1𝑏1 + 6𝑏0𝑏1

2 + 2𝑎1𝜅𝜆 = 0, 

       𝑌3 Coeff.      𝑎1
2 + 𝑏1

2 + 2𝜅2 = 0,                                (39) 

Solving these systems, we find the solitons solutions take the 

forms 

Case (1) 

 𝜆 = ±2𝑖κ,   𝑎1 = (±
 2𝑎0

2+𝜆2

 2
), 𝑏1 = ±𝑖 𝑎0,  and 𝑏0 = ± 𝑖 𝑎1,  

𝜂 = 𝑎0(1 ± 𝑖  tanh(κ x ± 2𝑖κ 𝑡 )) ±  2𝑎0
2+𝜆2

2
(tanh(x ±

2𝑖κ 𝑡) ± 𝑖), or  

 𝜂 = 𝑎0(1 ± 𝑖 coth(κ x ± 2𝑖κ 𝑡 )) ±  2𝑎0
2+𝜆2

2
(coth(κ x ±

2𝑖κ 𝑡)±𝑖),                   

Case (2) 

 𝜅 =
ⅈ𝜆

2
, 𝑏1 = 0,  𝑎1 = −

𝜆

 2
 ,  𝑏0 =

ⅈ𝜆

 2
,  𝑎0 = 0,              

  𝜂 = ± 2𝑖𝜅 (𝑖 ±   tanh(𝜅 𝑥 ± 2𝑖𝜅 𝑡 )), or 

  𝜂 = ± 2𝑖𝜅 (𝑖 ±   coth(𝜅 𝑥 ± 2𝑖𝜅 𝑡 )),                           (40) 

The solitary wave and behavior of the solutions φ(x, t) and 

ψ(x, t)  are shown in Figure (3) for some fixed values of the 

parameters, (𝑎0 =  1 , 𝜅 = 0. 5)  

 

 

Fig 3: the component  𝝋 , the component  𝝍 , and  𝜼  of 

the example(3) 

4. CONCLUSIONS 
The powerful tanh method was employed for analytic 

treatment of nonlinear coupled partial differential equations. 

The tanh  method require transformation formulas. Traveling 

wave solutions, kinks solutions were derived.The performance 

of the tanh  method show that these methods are reliable and 

effective. The applied methods will be used in further works 

to establish more entirely new solutions for other kinds of 

nonlinear equations. 
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