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ABSTRACT 
The aim of this paper is to analyze the effects of variable 

viscosity and thermal conductivity on magneto hydrodynamic 

forced convective boundary layer flow past a 

stretching/shrinking sheet prescribed with variable heat flux in 

the presence of heat source and constant suction. The fluid 

viscosity and thermal conductivity are assumed to be inverse 

linear functions of temperature. The boundary equations are 

transformed into ordinary differential equations with 

similarity transformations. The effects of viscosity variation 

parameter and thermal conductivity variation parameter on 

velocity profile and temperature profile are discussed 

numerically by solving the governing transformed ordinary 

differential equations with the help of Runge-Kutta shooting 

method and plotted graphically. Skin-friction coefficient and 

wall temperature are also explored for typical values of the 

parameter involved in the study. 
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1. INTRODUCTION 
Boundary layer behaviour over a continuous moving solid 

surface is an important  of flow occurring in several 

engineering processes. The variation of viscosity and thermal 

conductivity of an ambient fluid is one of the thrust areas of 

current research. Such investigations find their application 

over a broad spectrum of science and engineering process, 

especially in the field of chemical engineering 

Sakiadis[1] initiated the study of the boundary layer flow over 

a continuous solid surface moving with constant speed. The 

boundary layer problem considered by Sakiadis[2] differs 

from the classical boundary layer problem addressed by 

Blasius mainly due to the entrainment of the ambient fluid. 

Here the surface is assumed to be inextensible whereas most 

of the physical situations concern with extensible surfaces  

moving in a cooling liquid. Crane[3] was the first to consider 

the boundary layer behaviour over an extensible surface 

where the velocity of the surface varies linearly with the 

distance from the slit. The linear stretching problem for 

hydromagnetic case was studied by Chakrabarti and 

Gupta[4]. The effects of variable surface temperature and 

variable surface heat flux over the heat transfer characteristics 

of a continuous linear stretching surface was investigated by 

Chen and Char[5].  

Thermal boundary layer on a power law stretched surface 

with suction or injection was investigated by Ali[6]. 

Elbashbeshy[7] examined the heat transfer over a stretching 

surface with variable surface heat flux. Liao[8] obtained a 

new branch of solution of boundary layer flow over a 

permeable stretching plate. The micropolar transport 

phenomena over a stretching sheet were discussed by 

Bhargava et al. [9]. MHD flow of a micropolar fluid past a 

stretched permeable surface with heat generation or 

absorption was studied by Khedr et al. [10]. Dissipation 

effects on nonlinear MHD flow over a stretching surface with 

prescribed heat flux was examined by Anjali Devi and Ganga 

[11]. Radiative MHD flow over a non-isothermal stretching 

sheet in a porous medium was investigated by Paresh Vyas 

and Nupur Srivastava [12]. Azeem Shahzad et al. [13] 

presented the exact solution for axisymmetric flow and heat 

transfer over a nonlinear radially stretching sheet.  

The problem in the reverse case i.e., very little is known about 

the shrinking sheet where the velocity on the boundary is 

towards the origin. For this flow configuration, the sheet is 

shrunk towards a slot and the flow is quite different from the 

stretching out case. It is also shown that mass suction is 

required to maintain the flow over a shrinking sheet. 

Literature survey indicates that the flow induced by a 

shrinking Sheet recently gains attention of modern researchers 

for its interesting characteristics.  

Shrinking sheet is a surface which decreases in size to a 

certain area due to an imposed suction or external heat. One of 

the most common applications of shrinking sheet problems in 

industries and engineering is shrinking film. In packaging of 

bulk products, shrink film is very useful as it can be 

unwrapped easily with adequate heat. Shrinking problem can 

also be applied to study the capillary effects in smaller pores, 

the shrink-swell behaviour and the hydraulic properties of 

agricultural clay soils.  

The existence and uniqueness of similarity solution of the 

equation for the flow due to a shrinking sheet with suction 

was established by Miklavcic and Wang [14]. MHD rotating 

flow of a viscous fluid over a shrinking surface was analyzed 

by Sajid et al. [15]. Closed form exact solution of MHD 

viscous flow over a shrinking sheet was examined by Fang 

and Zhang [16] without considering the heat transfer. The 

application of homotopy analysis method for MHD viscous 

flow over a shrinking sheet was examined by Sajid and Hayat 

[17]. An analytical solution for thermal boundary layer flow 

over a shrinking sheet considering prescribed wall 

temperature and prescribed wall heat flux cases was 

investigated by Fang and Zhang [18]. Hayat et al. [19] 

examined the analytical solution of shrinking flow of second 

grade fluid in a rotating frame. Ali et al. [20] presented MHD 
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flow and heat transfer due to a permeable shrinking sheet of a 

viscous electrically conducting fluid with prescribed surface 

heat flux. Noor et al. [21] obtained simple non-perturbative 

solution for MHD viscous flow due to a shrinking sheet. The 

effect of heat source/sink on MHD flow and heat transfer over 

a shrinking sheet with heat transfer over a shrinking sheet 

with mass suction for constant surface temperature was 

analysed by Bhattacharyya [22]. Das [23] investigated the 

effects of slip on MHD mixed convection stagnation flow of a 

micropolar fluid towards a shrinking vertical sheet.  

Recently, Anjali Devi and Raj[24] have studied on the MHD 

forced convective boundary layer flow past a 

stretching/shrinking sheet prescribed with variable heat flux in 

the presence of heat source and constant suction.  

In most of the studies, of this type of problems, the viscosity 

and thermal conductivity of the fluid were assumed to be 

constant. However it is known from the work of Herwig and 

Gerstem[25] that these properties may change with 

temperature, especially the fluid viscosity. When the effects of 

variable viscosity and thermal conductivity are taken into 

account, the flow characteristics are significantly changed 

compared to the constant property case. Hence, aim of the 

problem is to investigate the effects of varying viscosity and 

thermal conductivity on the MHD forced convective boundary 

layer flow past a stretching/shrinking sheet prescribed with 

variable heat flux in the presence of heat source and constant 

suction. Following Lai and Kulacki[26], the fluid viscosity 

and thermal conductivity are assumed to vary as an inverse 

linear functions of temperature. The governing boundary layer 

equations are transformed into dimensionless forms using                                                                                                                        

suitable similarity transformations and then solved 

numerically for the prescribed boundary layer conditions 

using Runge-Kutta shooting method.         

2. MATHEMATICAL FORMULATION 

OF THE PROBLEM 
Consider a steady, laminar, two-dimensional boundary layer 

flow of a viscous, incompressible, electrically conducting 

fluid due to a stretching/shrinking sheet subjected to suction 

in the presence of uniform transverse magnetic field. The 

velocity components u  and v  are taken in x and y

directions respectively. A magnetic field of strength 0B  is 

applied normal to the boundary.  

The analysis is based on the following assumptions: 

(i) The fluid has constant physical properties, except 

for the fluid viscosity and thermal conductivity, 

which are assumed to be inverse linear functions of 

temperature. 

(ii) The magnetic Reynolds number is assumed to be 

small so that the induced magnetic field is 

negligible.  

(iii) Since the induced magnetic field is assumed to be 

negligible and as 0B  is independent of time, curl 

0E  . Also div E  = 0 in the absence of surface 

charge density. Hence 0E   is assumed.  

(iv) The energy equation involves the heat source term 

and variable heat flux is prescribed at the 

stretching/shrinking surface.  

(v) The effect of the viscous and joule dissipation are 

assumed to be negligible in the energy equation.  

 

 

 

 

 

 

 

 

 

 

Fig.1: Schematic diagram of the problem 

Under the above  assumptions, the governing equations of the 

problem are given by: 

The equation of continuity: 

          

0
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                                       ...(1)                                                                      

The momentum equation:
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      ...(2)                               

The energy equation:

                          
 p

T T T
c u v k Q T T
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 

      
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    ...(3) 

Where  , k  are the viscosity and thermal conductivity of 

the fluid, 
pC  is the specific heat at constant pressure,   is 

the electrical conductivity, T  is the temperature,   is the 

density of the fluid at infinity,  Q  is the internal heat 

generation. 

Boundary conditions  are: 

at              0y     ;                      

u bx ,  0v v  ,   
n

w

T
k q Dx

y



  


       ...(4.a) 

 as y   ;   0u  ,  T T       ...(4.b)                                         

                                                                                              

Where  k is the thermal conductivity of the fluid at infinity, 

wq  is the heat flux at the surface , D be a positive constant, 

b<0  is the shrinking constant and   b>0  is the stretching 

constant. 

The velocity components along the axes can be expressed as: 
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                                       ...(5)                          

where   is the stream function such that the continuity 

equation is satisfied. 
Now we introduce the following similarity transformations 

with dimensionless stream function  F   given by: 

   ,x y a xF    , 

 
Dx

T T
k a


  





  ,   
a

y


               ...(6)      

where    is the kinematic viscosity of the fluid at infinity.       

From Eqs. (5) and (6), the velocity components become:       

   'u axF  ,        v a F                                     ...(7)              

Where the prime (‘) denotes derivative with respect to  . 

It is known that, viscosity and thermal conductivity are 

inverse linear functions of temperature, following Lai and 

Kulacki[25], we assume  

 
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or,           
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Where  ,  , rT   and  cT     are constants and their values 

depend on the reference state and thermal properties of the 

fluid i.e.,   ( kinematic viscosity) and  k (thermal 

conductivity). In general   >0  for liquids and  <0 for 

gases.  The non-dimensional form of viscosity and thermal 

conductivity parameters r  and c  can be written as,    

r
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Substituting Eqs. (6)-(10) with the boundary conditions given 

in Eqs.(4.a)-(4.b) in the Eqs. (2)-(3),  we have       
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where  

2
2 0B

M
a





   is the magnetic parameter, 

Pr
pC




  is the Prandtl number, 

p

Q
B

a C
   is the 

heat source parameter, n is the heat flux parameter. 

The boundary conditions with the new variables are: 

F S ,      'F  ,      ' 1       at      =0    ...(13.a)                                       

' 0F    ,    0             as                       ...(13.b)        

Where  
0v

S
a

 , ( 0v >0 ) is the suction 

parameter  and 
b

a
     is the stretching/shrinking parameter 

and  >0 denotes the stretching sheet and  <0 denotes the 

shrinking sheet. 

The governing Eqns.(11)-(12) with boundary conditions given 

in Eqns.(13.a)-(13.b) are solved numerically by using the 4th 

order Runge-Kutta Shooting method. 

3. SKIN FRICTION ANALYSIS       
The parameters which we considered in this problem are very 

important in science and technology and the effect of the 

parameters plays a significant role on the skin friction 

coefficient 
fC , which indicate physically wall shear stress. 

The shear stress at the wall is given by : 

0

w

y

u

y
 



 
  

 
      . 

4. RESULTS AND DISCUSSION 
The effects of variable viscosity and thermal conductivity on 

nonlinear MHD boundary flow and heat transfer over a 

stretching/shrinking surface with variable heat flux is 

presented. The viscosity-temperature variation and 

conductivity-temperature variation are represented by the 

dimensionless parameters r and c  respectively.   

The system of differential equations (11)-(12) governed by the 

boundary conditions are solved numerically by an efficient 

numerical technique based on the fourth order Runge-Kutta  

Shooting method. The numerical method can be programmed 

and applied easily. It is experienced that the convergence of 

the iteration process is quite rapid. 

Numerical values of the solution are obtained by fixing 

various values for the physical parameters involved in the 

problem namely suction parameter S, magnetic parameter M2, 

Prandtl number Pr, heat source parameter B, 

stretching/shrinking parameter ε and heat flux parameter n. 

The effect of pertinent parameters on the velocity, 

temperature, skin friction coefficient and wall temperature are 

presented. The skin friction at the plate and the wall 
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temperature for prescribed wall heat flux case are found and 

shown  by graph. 

When constant viscosity and thermal conductivity are 

prescribed on the shrinking sheet the present results are 

identical to the results for the two dimensional case of Anjali 
Devi and Raj[24], which is shown in the Figs. (2– 4). 

Further it is seen that when viscosity and thermal conductivity 

are taken as constant the results for the skin friction 

coefficient give us a good agreement with that of the result of 

Anjali Devi and Raj[24] for S=3, M2 =2, B=0.05, Pr=0.71, 
= -1, n=2. This is noted through Table 1. 

Table 1:   

Present Study 

(Author’s) 

Anjali Devi and 

Raj[24] 

3.302776 3.302775 

 

The missing values are found for different parameters in the 

Tables (2-6). Tables(2-5) and in Table 6 show the values of 

''F (0) and  (0) for varying viscosity parameter r and 

thermal conductivity c  with respect to parameter M2 and 

stretching/shrinking parameter ε respectively for various 

values of S, B, Pr, n. In Table 2 and Table 3, it is observed 

that the missing values of ''F (0) increases as the values of 

r and M2 increases while that of  (0) decreases. From the 

Table 4 and Table 5 it is seen that an increase in magnetic 

parameter M2 missing values of ''F (0)  increases while that 

of  (0) decreases. On the other hand missing values of ''F

(0) and  (0) increases as  c  increases. The study reveals 

that in case of a shrinking sheet skin friction coefficient 

increases as M2, r  and c  increases while that of wall 

temperature decreases for increasing values of M2 and r  , 

and increases for c  increases.  

Table 6 depicts the effects of viscosity parameter and  

stretching/shrinking parameter on skin friction coefficient and 

wall temperature. It is cleared from the table that 

stretching/shrinking parameter retarded the skin friction 

coefficient and wall temperature. And in case of shrinking 

sheet for increasing values of r  skin friction coefficient 

increases while that of wall temperature decreases, whereas in 

case of  stretching sheet reverse activity is shown.  

Figs.(5-8) represent that with the increase in the value of 
r  

longitudinal as well as transverse velocity profiles increases in 

a shrinking sheet, while that of Figs.(9-12) show that for 

increasing values of r longitudinal and transverse velocity 

profiles decreases in a stretching sheet. 

In Fig.13 and Fig.14 it is observed that, both the longitudinal 

and transverse velocity does not change significantly with the 

change in conductivity parameter c .  

Fig.15 shows that the effects of variation of thermal 

conductivity  on the temperature profiles and it is seen that  

temperature of the fluid increases with increase in the value of 

c .  

The variation of missing values of ''(0)f  are shown for 

various values of heat source parameter B, heat flux parameter 

n and suction parameter S against r in the Figs.(16-20). And 

it is observed from Figs.(16-19) that the missing values of 

''(0)f  increases with the increase in the value of the 

parameters B, n and S. Fig.20 conveys the effect of Prandtl 

number Pr over  ''(0)f  and it is seen that as Pr increases, 

the ''(0)f  decreases. From the unknown values of ''(0)f
we can say about wall shear stress. 

Table 2: Estimated missing  values of ''F (0) and  (0) for various θr, M2 and θc= -10.00,   Pr=0.71,  S=3.00,  n=2.00,   = -

1.00,  B=0.05 

M2  0 

 

1 

 

2 

 

3 

 

4 

 
   θr  

    F''(0) θ(0) F''(0) θ(0) F''(0) θ(0) F''(0) θ(0) F''(0) θ(0) 

2 1.600938 0.698207 1.988469 0.663358 2.276746 0.644527 2.516775 0.63184 2.726818 0.622391 

5 2.230833 0.658044 2.612682 0.635487 2.90981 0.621874 3.161627 0.612236 3.384095 0.604844 

8 2.378289 0.650863 2.760027 0.630142 3.059338 0.617408 3.31386 0.608312 3.539149 0.601297 

11 2.444379 0.647842 2.826127 0.627865 3.126407 0.615495 3.38212 0.606626 3.608653 0.599769 

Table 3: Estimated missing  values of ''F (0) and  (0) for various θr, M
2 and θc= -10.00,   Pr=0.71,  S=3.00 , n=2.00,   = -

1.00,  B=0.05 

M2  0   1   2   3   4   

   θr  

    F''(0) θ(0) F''(0) θ(0) F''(0) θ(0) F''(0) θ(0) F''(0) θ(0) 

-11 2.78863 0.633775 3.170769 0.617044 3.475897 0.606322 3.737573 0.598498 3.970349 0.592381 

-8 2.851841 0.631457 3.234083 0.615228 3.54006 0.60477 3.802781 0.597116 4.036659 0.591121 

-5 2.98963 0.626647 3.372111 0.611432 3.679884 0.601515 3.944832 0.594212 4.18106 0.588469 
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Table 4:Estimated missing  values of ''F (0) and  (0) for various θc, M
2 and θr = -10.00,   Pr=0.71,  S=3.00,  n=2.00,   = -

1.00,  B=0.05 

M2  0   1   2   3   4   

   θc  

    F''(0) θ(0) F''(0) θ(0) F''(0) θ(0) F''(0) θ(0) F''(0) θ(0) 

2 2.761062 0.486794 3.146127 0.479159 3.452648 0.474099 3.715125 0.470321 3.948406 0.467315 

5 2.784345 0.563573 3.168071 0.551609 3.474073 0.543821 3.736336 0.538078 3.96955 0.533553 

8 2.790021 0.582243 3.173356 0.569084 3.479198 0.560555 3.741387 0.554283 3.974569 0.54935 

11 2.792535 0.59051 3.17569 0.576809 3.481458 0.567944 3.743613 0.561432 3.976778 0.556316 

Table 5: Estimated missing  values of ''F (0) and  (0) for various θc, M
2 and θr = -10.00,   Pr=0.71,  S=3.00 , n=2.00,   = -

1.00 , B=0.05 

M2  0 
 

1 
 

2 
 

3 
 

4 
 

θc  

 F''(0) θ(0) F''(0) θ(0) F''(0) θ(0) F''(0) θ(0) F''(0) θ(0) 

-11 2.804955 0.631285 3.187167 0.614819 3.492541 0.604248 3.754507 0.596526 3.987584 0.590485 

-8 2.807058 0.638177 3.189101 0.621234 3.494405 0.610371 3.756338 0.602441 3.989398 0.596242 

-5 2.811395 0.652382 3.193085 0.634456 3.498243 0.622988 3.760104 0.614632 3.993131 0.608106 

-2 2.824592 0.695476 3.20516 0.674635 3.509859 0.66138 3.771502 0.651761 4.004428 0.644274 

Table 6: Estimated missing  values of ''F (0) and  (0) for various θr,   and θc = -10.00,  M2=2.00,  Pr=0.71,  S=3.00,  n=2.00,   

B=0.05 

   -1   -0.5   0.5   1   

θr  F''(0) θ(0) F''(0) θ(0) F''(0) θ(0) F''(0) θ(0) 

-10 3.493045 0.605904 1.803389 0.534855 -1.9127 0.445234 -3.92922 0.414704 

-8 3.54006 0.60477 1.82455 0.534518 -1.93091 0.445386 -3.96368 0.414927 

-6 3.617959 0.602936 1.859713 0.533967 -1.96124 0.445638 -4.02107 0.415295 

-4 3.772149 0.599457 1.929659 0.532903 -2.02181 0.446133 -4.13578 0.416024 

-2 4.223585 0.590301 2.136758 0.52997 -2.20286 0.447563 -4.47933 0.418152 

 

 

Fig. 2: Longitudinal velocity profiles for  different M2 

 

Fig. 3: Transverse velocity profiles for different M2 
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Fig. 4: Temperature profiles for different M2 

 

Fig. 5: Longitudinal velocity profiles for  different positive 
values of θr 

 

Fig. 6: Longitudinal velocity profiles for different negative 

values of θr 

 

Fig. 7: Transverse velocity profiles for different positive 
values of θr 

 

Fig. 8: Transverse velocity profiles for different negative 

values of  θr 

 

Fig. 9: Longitudinal velocity profiles for different positive 

values of θr 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6




( 


 )

 

 

M2=0

M2=1

M2=2

M2=3

M2=4

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0



F
'(
 

 )

 

 


r
=2


r
=7


r
=12

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0



F
'(
 

 )

 

 


r
=-12


r
=-7


r
=-2

0 0.5 1 1.5 2 2.5 3 3.5 4
2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3



F
( 


 )

 

 


r
=2


r
=7


r
=12

0 0.5 1 1.5 2 2.5 3 3.5 4
2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3



F
( 


 )

 

 


r
=-12


r
=-7


r
=-2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



F
'(
 

 )

 

 


r
=2


r
=7


r
=12

 Pr=0.71, S=3, n=2,        

 = -1,  B=0.05 

θc= -10, M=0.51, Pr=0.71, 

S=3, n=2,  = -1,  B=0.05 

θc= -10, M=0.51, Pr=0.71, 

S=3, n=2,  = -1,  B=0.05 

θc= -10,  M=0.51, Pr=0.71, 

S=3, n=2, = -1, B=0.05 

θc= -10, M=0.51, Pr=0.71, 

S=3, n=2,  = -1,  B=0.05 

θc= -10, M=0.51, Pr=0.71, 

S=3, n=2,  = 1,  B=0.05 



International Journal of Computer Applications (0975 – 8887)  

Volume 107 – No. 1, December 2014 

56 

 

Fig. 10: Longitudinal velocity profiles for different 

negative values of θr 

 

Fig.11: Transverse velocity profiles for different positive 

values of  θr 

 

Fig. 12: Transverse velocity profiles for different 

negative values of  θr 

 

Fig. 13: Longitudinal velocity profiles for different  θc 

 

Fig. 14: Transverse velocity profiles for different  θc 

 

Fig.15: Temperature profile for different θc 
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Fig. 16: Variation of ''(0)f  for different B 

 

 

Fig. 17: Variation of ''(0)f  for different n 

 

Fig. 18: Variation of ''(0)f  for different S when θc= -10,  

M2=2, Pr=0.71,  B=0.05, n=2, = -1 

 

Fig. 19: Variation of ''(0)f  for different S when θc= -10, 

M2=2, Pr=0.71,  B=0.05, n=2, = -1 

 

Fig. 20: Variation of skin friction for different Pr 
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6. CONCLUSIONS 
In general, the flow field and temperature distribution are 

affected by the physical parameters. 

In order to assure the accuracy of the applied numerical 

scheme the computed values of skin friction coefficient are 

compared with the available results of Anjali Devi and 

Raj[24] for two dimensional case and viscosity and thermal 

conductivity are taken as constant. 

From the above results and discussion, the following 

conclusion are arrived: 

 Viscosity parameter enhances the velocity profiles 

in a shrinking sheet where retards it in a stretching. 

 Both viscosity parameter and thermal conductivity 

parameter enhance the skin friction coefficient. 

 Viscosity parameter retards the wall temperature 

while that of thermal conductivity parameter 

enhances it.  
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 Magnetic parameter increases the wall shear stress 

whereas wall temperature decreases significantly 

i.e., the temperature of the fluid decreases with an 

increase in values of magnetic parameter. 

 Stretching/shrinking parameter retards both the wall 

shear stress and wall temperature.  

 The heat source parameter, heat flux parameter and 

suction parameter increases the wall shear stress 

whereas it is decreased significantly by the Prandtl 

number. 

 It is believed that the results of the present work 

finds application in production engineering to 

upgrade the quality of the final product. 
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