
International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 1, December 2014

27

A Classifier for Schema Types Generated by Web Data

Extraction Systems

Mohammed Kayed
Faculty of Science

Beni-Suef University, Egypt

Awny Sayed
Faculty of Science,

Minia University, Egypt

Marwa Hashem
Faculty of Science,

Beni-Suef University, Egypt

ABSTRACT

Generating Web site schema is a core step for value-added

services on the web such as comparative shopping and

information integration systems. Several approaches have

been developed to detect this schema. For a real web site, due

to the complexity of the site schema, post process of this

schema such as labeling the schema types, comparing among

different schema types and generating an extractor to extract

instances of a schema type is a challenge. In this paper, a new

tree structured called schema-type semantic model is

proposed as a classifier for a schema type. Given some

instances of a schema type, HTML tags contents, DOM trees

structural information and visual information of these

instances are exploited for the classifier construction. Using

multivariate normal distribution, the classifier can be used to

compare between two different schema types; i.e., the

classifier can be used for schema mapping which is a core

step of information integration. Also, the suggested classifier

can be used to detect and extract instances of a schema type;

i.e., it can be used as an extractor for web data extraction

systems. Furthermore, the classifier can be used to improve

the performance of the schema generated by web data

extraction systems; i.e., the classifier can be used to get, as

much as possible, a perfect schema. The experiments show an

encourage result with the schemas of the test web sites (a data

set of 40 web sites).

General Terms

Information Extraction, Schema-Type Classifier

Keywords

Schema Mapping, Schema Type Classifier, Schema Filtration,

Web Data Extraction

1. INTRODUCTION
The explosive growth and popularity of the World Wide Web

has resulted in a huge amount of information sources on the

Internet. However, due to the heterogeneity and the lack of

structure of web information sources, access to this huge

collection of information has been limited to browsing and

searching. This cost of browsing is becoming noticeable with

the Deep Web (Invisible Web), which contains magnitudes

more and valuable information than the Surface Web. Web

pages in the Deep Web share the same template since they are

encoded in a consistent manner across all pages. In other

words, these pages are generated with a predefined template

by plugging a data instance. Embedding a data instance x into

the template T is an encoding process, λ(T; x), which

generates HTML pages. Unsupervised wrapper induction is

basically a reverse engineering of the page generation model,

which induces the template and schema from a set of given

pages and extracts the embedded data. Figure 1 gives an

example of such web pages in which three data records are

presented. Each data record is embedded in an HTML <tr>

tag. The schema of a data instance in a web page can be

defined as follows.

Fig. 1: Example of an HTML page.

Definition (Structured Data): A data schema can be of the

following types [1]:

1. A basic type 𝛽 represents a string of tokens, where a token

is some basic units of text.

2. If 𝜏1 , 𝜏2 , … , 𝜏𝑘 are types, then their ordered list
 𝜏1 , 𝜏2 , … , 𝜏𝑘 also forms a type 𝜏. The type 𝜏 is

constructed from the types 𝜏1 , 𝜏2 , … , 𝜏𝑘 using a type

constructor of order k. An instance of the k-order 𝜏 is of

the form 𝑥1 , 𝑥2 , … , 𝑥𝑘 , where 𝑥1, 𝑥2 , … , 𝑥𝑘 are instances

of types 𝜏1 , 𝜏2 , … , 𝜏𝑘 , respectively. The type 𝜏 is called:

a. A tuple, denoted by 𝑘 − 𝑡𝑢𝑝𝑙𝑒 𝜏 , if the cardinality

(the number of instances) is 1 for every instantiation.

b. An option, denoted by 𝑘 ?𝜏 , if the cardinality is either

0 or 1 for every instantiation.

c. A set, denoted by 𝑘 − 𝑠𝑒𝑡 𝜏 , if the cardinality is

greater than 1 for some instantiation.

d. A disjunction, denoted by 𝜏1|𝜏2| … | 𝜏𝑘 𝜏 , if all

𝜏𝑖 (𝑖 = 1, … , 𝑘) are options and the cardinality sum of

the k options 𝜏1 − 𝜏𝑘 equals 1 for every instantiation

of 𝜏.

Figure 2 shows the schema of the web page in Figure 1, which

presents a list ({}2) of publications; each one consists of a 4-

tuple (<>3) and an optional 2-tuple (()?10). The 4-tuple type

includes five basic types (4-9), where the last two are

optional. The optional tuple ()10 has two basic types (11-12).

Each type in the schema of a web site has a set of instances in

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 1, December 2014

28

each web page in the site. For example, Figure 3 shows two

instances of the set type {}2. As shown in Figures 1-3,

template, schema, and data instances are tree structured.

Fig. 2: The schema of the HTML page in Fig. 1.

Fig. 3: Two instances (A and B) of the schema set type {}2

in Fig. 2.

Given some instances of a schema type τ, this paper is aimed

to construct a schema-type semantic model that can be used as

a classifier for the type τ. HTML tags contents, DOM trees

structural information, and visual information of the instances

are used for the classifier construction. The constructed

classifier has three main contributions. First, it can be used to

compare between two different schema types (i.e., schema

matching). Second, the classifier of the type τ can be used to

decide whether a data value in some web page is an instance

of this type (i.e., as an extractor for web data extraction

systems). Third, it can be used to improve the performance of

the schema generated by web data extraction systems as we

shall discuss in details later.

The paper is organized as follows. Section 2 reviews the

related works. Section 3 provides the details of the proposed

schema-type semantic classifier. Section 4 gives an algorithm

to improve the performance of the schema generated by web

data extraction systems. The experiments and the conclusions

are presented in section 5 and section 6, respectively.

2. RELATED WORKS
In the last few years, web data extraction has been a hot topic.

Many approaches have been developed with different task

domain, automation degree, and techniques [2]. Many of the

developed approaches aim to detect the schema of a web site

which can be used with the generated wrapper for data

extraction. Examples of these wrapper induction systems are

EXLAG [1], FiVaTech [3], RoadRunner [4], Dela [5],

DEPTA [6], ViPER [7], and others [8-10]. FiVaTech,

EXLAG and RoadRunner are designed to solve the page-level

extraction task, while DeLa, DEPTA, and ViPER are

designed for the record-level extraction task. In this paper, we

use the schemas/instances detected by FiVaTech. Post process

of the generated schema such as labeling the schema types,

comparing among different schema types and generating an

extraction module to extract instances of a schema type is an

important step as this schema is a core for value-added

services on the Web.

The proposed classifier is aimed to “Match” schema types,

which produces a mapping between elements of the schema

that correspond semantically to each other [11-12]. So, this

paper is very relevant to “schema matching” which is a basic

problem in many database application domains, such as data

integration, E-business, data warehousing, and semantic query

processing. Database integration is a process with multiple

steps, leading from the identification of the databases to the

testing of the integrated system. The central step of the

database integration process is the identification of those

elements in the schema of the databases that match each other.

This step is termed schema matching. Schema matching

methods are primarily categorized by their use of schema-

level or instance-level information, although many methods

use both types of information [13].

 Schema-level techniques:

Three types of information may be used in the schema-level

techniques: constraint information, linguistic information and

structural information. Examples of constraint information are

data type constraints, optionality constraints and uniqueness

constraints of attributes [14-15]. Linguistic information may

be used by measuring character string similarity [16], or by

using externally supplied dictionaries, thesauri or lexical

databases [17-18] such as WordNet [19] or CyC [20].

Linguistics based techniques are limited to problems where

linguistic information are available. Example of structural

information is the relationships between database elements

such as relationship-types between entity-types or foreign-key

dependencies between tables. The use of structural

information for identifying matching database elements may

be limited to local structures, where relationships only

between directly connected database elements are considered,

or it may encompass global structures, where the overall

structure of the database is considered.

 Instance-level techniques:

In addition to or as an alternative to schema-level techniques,

schema instances could be used for schema matching. For

example, a schema-level matcher may be used to match entity

types and an instance-level matcher may subsequently be used

to match attributes [21]. To match semantically similar

attributes, instance information such as attribute value

distributions and term frequencies may be used. For example,

when two table attributes contain the same distribution of

values, then the columns are argued to be similar in meaning.

Machine learning techniques such as neural networks [22] and

Bayesian learners [21] among others can establish

characteristic features of an attribute or column which can

then be compared to others.

Various approaches and techniques have been proposed for

detecting schema-level correspondences across heterogeneous

databases. First, some of them apply linguistic techniques

[23], to measure the similarity between the names of schema

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 1, December 2014

29

elements. These approaches are therefore difficult to apply in

many legacy systems, where schema elements are not well

named using standard terms. Second, some other approaches

use heuristic formulae to measure the similarity between

schema elements, based on the names and structures of the

schema elements [24]. Third, another approach computes the

similarity between the text descriptions of schema elements

(in design documents) using similarity measures developed in

the information retrieval field [25]. The major difficulty with

this approach is that the design documents are often out of

date, inaccurate, or even not available in many legacy

systems. Fourth, other approaches have used cluster analysis

techniques to cluster schema elements based on the meta-data

(e.g., name, schematic specification, and summary statistics)

about the schema elements [26]. However, due to various

problems associated with the features for such cluster analysis

[27], users must carefully evaluate the results generated by the

cluster analysis techniques. In this paper, cluster analysis

techniques are used to cluster the similar schema elements.

In the absence of schema element name as the case for the

schema detected by web data extraction systems, data instance

is considered an important source of semantic information for

schema matching. Many characterizations can be exploited for

instance-based schema matching. For example, keywords and

themes extracted based on the relative frequencies of words

and combinations of words, etc. Also, a constraint-based

characterization, such as numerical value ranges and averages

or character patterns can be applied. For instance, this may

allow recognizing phone numbers, zip codes, geographical

names, addresses, ISBNs, SSNs, date entries, or money-

related entries (e.g., based on currency symbols). Finally,

statistical features such as alphabetic ratio (Letter Density),

digit ratio (Digit Density), punctuation ratio (Pun Density),

and tokenize the strings via capital-start token ratio (Capital

Start Token Density) and numerical token ratio, etc, can be

used as in [28]. Also, kushmerick [29] introduced RAPTURE

which uses nine features: digit density, letter density, upper-

case density, lower-case density, punctuation density, HTML

density, length, word count, and mean word length to measure

the similarities between data observed by the wrapper and that

expected.

3. THE PROPOSED CLASSIFIER
Web data extraction approaches aim to detect the schema of a

deep web site and extract instances of each schema type from

some given web pages. Given this extracted schema and the

instances of a schema type τ, we suggest a classifier called

schema-type semantic model for the schema type τ. The

suggested classifier can be used to compare between the

schema type τ and an instance value. So, it could be used as an

extractor to extract instances of the type τ from other web

pages. Also, the classifier can be used to compare among

different schema types. So, it could be used for schema

mapping. Furthermore, the classifier can be used to compare

among different instances. In this section, the details of using

the instances xi (i=1, …, k) to construct the suggested

classifier are discussed in details.

If τ is a basic type (𝜏 = 𝛽) of k text node instances, i.e., each

instance xi of type τ is a leaf text node with a text value, then

the function 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 for a basic-type 𝛽 is defined as an N-

tuple as follows:

𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝛽 = 𝑎1, 𝑎2, … , 𝑎𝑁 ,

𝑎𝑖 =
 𝑓𝑖 𝑥𝑗

𝑘
𝑗=1

𝑘
 is the average of the feature values fi for all of

the instances xj of the basic type 𝛽 which are calculated as

shown in Table 1.

The semantic function that is calculated based on statistical

features (syntactical/NLP features may also be used in the

future) can be used to measure the similarity between the

basic type 𝛽 and an instance x using the multivariate normal

distribution as follows.

Basic_𝑆𝑖𝑚 𝑥, 𝛽 = 𝑒𝑥𝑝 −
 𝑓𝑖(𝑥) − 𝑎𝑖

2

𝜎𝑖
2

𝑁

𝑖=1

where fi(x); i =1, …, N, are the feature values of the instance

x, and 𝜎𝑖 is the standard deviation of the feature values fi for

all of the instances of the basic type 𝛽. The instance value x is

considered similar to the basic type 𝛽 if the value

𝐵𝑎𝑠𝑖𝑐_𝑆𝑖𝑚 𝑥, 𝛽 is greater than a threshold which is selected

based on the instances extracted by FiVaTech.

Table 1: List of the features used to calculate the semantic

of a basic type.

Feature Name Description

f1(x) Letter Density The alphabetic ratio in the

instance x.

f2(x) Digit Density The digit ratio in the instance x.

f3(x) Pun Density The punctuation ratio in the

instance x.

f4(x) Capital Start

Token Density

The ratio of the capital-start

tokens in x.

f5(x) Is Upper Case Boolean: true if the instance

text value x is upper case, false

otherwise.

f6(x) Is Http Start Boolean: true if the instance x is

a URL, false otherwise.

If τ is a non-basic (tuple/set) type with tree-structured

instances 𝑥𝑖 (i=1, .…, k), we propose a classifier of the type τ

that exploits structural information, HTML tags contents,

visual information, and data semantics of the instances of τ.

The proposed classifier for the non-basic type τ includes two

parts (phases): semantic-based classifier and statistical-based

classifier. The formal one, semantic-based, is a tree structure

embedded with semantic data of the text nodes. The later

classifier is a K-tuple which exploits both visual and HTML

tags contents information of the instances of the type τ. An

instance x is similar to the non-basic type τ, only if x is similar

to both of the two proposed classifier parts. The two classifier

parts will be discussed in the following subsections.

3.1 Semantic-Based Classifier
The semantic-based classifier of the non-basic type τ

(Semantic-Classifier(τ)) is constructed by replacing all basic

type nodes 𝛽𝑖 by 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝛽𝑖 in the schema tree

corresponds to the type τ, where 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝛽𝑖 is calculated

as defined above. As an example, Figure 4 is the semantic-

based classifier of the set type {}2 in the schema given in

Figure 2. Every basic type node 𝛽 in the schema tree is

replaced by its semantic (𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝛽) to construct the

classifier. The semantic-based classifier can also be defined

for an instance subtree x (Semantic-Classifier(x)) as follows.

Semantic-Classifier(x) is the same subtree as x such that every

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 1, December 2014

30

text node xi in the instance subtree x is replaced by its

semantic Semantic(xi). In summary, we can notice that

Semantic-Classifier(τ) is carrying both structural and semantic

information about the type τ, where these semantic

information are accumulated by using the instances of the

type τ.

Fig. 4: the semantic-based classifier of the set type {}2.

Now, the tree-edit distance is used to measure the similarity

between two semantic-based classifiers C1 and C2. We use

paths instead of individual nodes for subtrees matching. Let p1

and p2 are two paths in C1, and q1 and q2 are two paths in C2,

we define the matching between the two trees C1 and C2 as a

mapping M such that for every two pairs 𝑝1, 𝑞1 ∈ 𝑀 and
 𝑝2, 𝑞2 ∈ 𝑀, the following two conditions are satisfied:

(1) p1 = p2 iff q1 = q2;

(2) C1[p1] is on the left of C1[p2] iff C2[q1] is on the left of

C2[q2];

The first condition requires that each path can appear only

once in the mapping, while the second condition enforces the

order preservation between the paths in the tree. A maximum

matching is a matching with the maximum number of pairs.

Finally, similarity between the two classifiers C1 and C2 is

calculated as:

𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐_𝑆𝑖𝑚 𝐶1, 𝐶2 =
 𝑀

𝐴𝑣𝑔 𝑛1 ,𝑛2
;

where n1 and n2 are the total number of different paths in C1

and C2, respectively, and |M| is the size of the matching pairs

(maximum matching) in M. The two trees C1 and C2 are

similar if their similarity is greater than a threshold.

The two paths p (a1/… / am) and q (b1/… / bm) are matched

(i.e., 𝑝, 𝑞 ∈ 𝑀)) if there is a one-one corresponding mapping

between every two nodes ai and bi in the two paths p and q,

respectively (see Figure 5). The node ai has a mapping with

the node bi (at the same level i) when one of the following

cases is satisfied:

- The two nodes ai and bi are instances of some basic

types and they are similar, i.e., Sim (ai, bi) is greater

than a threshold.

- The two nodes ai and bi are leaf (text/img) nodes,

but they are part of the template of the same value.

For example, the text node “Full Text” in Figure 3

is an example of such nodes.

- The two nodes ai and bi correspond to a same

HTML tag.

Fig. 5: A mapping between the two paths p and q.

3.2 Statistical-Based Classifier
We define a statistical-based classifier of the non-basic type τ

as a K-tuple which exploits both visual and HTML tags

contents information of the instances (subtrees) of the type τ:

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙_𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝜏) = 𝑏1 , 𝑏2, … , 𝑏𝐾 ;

𝑏𝑖 =
 𝑔𝑖 𝑥𝑗

𝑚
𝑗=1

𝑚
 is the average of the statistical feature values

gi for all of the m instances xj of the type τ which are

calculated as shown in Table 2.

The statistical classifier can be used to measure the similarity

between the type τ and an instance x using the multivariate

normal distribution as follows.

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙_𝑆𝑖𝑚 𝑥, 𝜏 = 𝑒𝑥𝑝 −
 𝑔𝑖(𝑥) − 𝑏𝑖

2

𝑠𝑖
2

𝐾

𝑖=1

Table2: List of the features used to calculate the semantic

of a basic type.

Feature Name Description

g1(x) Width

Percentage

The percentage of the width of the

image corresponds to the instance x

to the page width.

g2(x) Height

Percentage

The percentage of the height of the

image corresponds to the instance x

to the page height.

g3(x) Area

Percentage

The percentage of the area of the

image corresponds to the instance x

to the whole page area.

g4(x) Template

Percentage

The percentage of the template text

nodes in the tree x.

g5(x) Text Nodes

Percentage

The percentage of the text nodes in

the tree x.

g6(x) Leaves

Percentage

The percentage of the leaf nodes in

the tree x.

g7(x) Decoration

Percentage

The percentage of the decorative

tag nodes (that emphasize the text

nodes) in the tree x.

where gi(x); i =1, …, N, are the feature values of the instance x

(shown in Table 2), and 𝑠𝑖 is the standard deviation of the

feature values gi for all of the instances of τ. The instance

value x is considered similar to the type τ if the value

Statistical_𝑆𝑖𝑚 𝑥, 𝜏 is greater than a threshold.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 1, December 2014

31

The two formulas Semantic_Sim and Statistical_Sim can be

used now to measure the similarity among different schema

types, among different instances, or between a schema type

and an instance. The former formula measures both structural

and semantic similarities, while the later one measures both

content and visual similarities.

4. CASE STUDY: SCHEMA

FILTRATION
In this section, we use the proposed classifier to post-process

of the schema generated by web data extraction systems. We

give an algorithm that tries to filter out the schema by using

the proposed classifier. The first subsection defines the

schema filtration problem. The second subsection illustrates

the problem by giving a simple example. Finally, the filtration

algorithm is discussed in the third subsection.

4.1 Problem Definition
Let 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 τ1 = 𝑥1 , 𝑥2 , … , 𝑥𝑘1

 and Instance τ2 =

 𝑦1, 𝑦2 , … , 𝑦𝑘2
 are the instances of the schema types 𝜏1 and

τ2, respectively. We give the following definitions.

Definition (Incomplete Schema Type): The schema type 𝜏1

is called incomplete if there is some value x such that

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝜏1 , 𝑥 is greater than a threshold, while x is

identified as an instance of a different type 𝜏2; i.e., 𝜏1 is an

incomplete type if there is some value x such that x is similar

to the instances of the type 𝜏1, while 𝑥 ∉ 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝜏1 .

Definition (Incorrect Schema Type): The schema type 𝜏 is

called incorrect if there is some instance 𝑥𝑖 ∈ 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝜏 ,

where 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝜏, 𝑥 is less than a threshold.

Definition (Web Site Schema Filtration): Given a schema

tree, schema filtration is the process of identifying incomplete

and incorrect schema types, and then handling them to get a

perfect/correct (as much as possible) schema.

In the definitions above, the function 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝜏, 𝑥 is used

to decide that x is an instance of the type 𝜏 as follows. If 𝜏 is a

basic type, then x is an instance of 𝜏 when 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝜏, 𝑥 =
𝑏𝑎𝑠𝑖𝑐_𝑆𝑖𝑚(𝜏, 𝑥) is greater than a threshold. If 𝜏 is a non-basic

type, then x is an instance of 𝜏 when each of the two values

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑆𝑖𝑚(𝜏, 𝑥) and 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙_𝑆𝑖𝑚(𝜏, 𝑥) is greater

than a threshold.

4.2 An Illustrative Example
In this subsection, we give a simple example to demonstrate

the definitions defined above. Figure 6(b) gives the schema

identified by FiVaTech for a part of a web page in Figure

6(a), where Figure 6(c) shows the DOM tree of this part of the

web page. As shown in the figure, the three instances i1, i2,

and i3 have the same structure, so FiVaTech has identified all

of them as instances of a same type {}2. Similarly, i5–i14 are

instances of {}6. The tuple <>4 has only one instance (i4)

which displays the current page in a STRONG html tag.

Although all the instances i1-i3 and i5-i14 have the same

structure (each one displays a link to a web page),

semantically, we have two types of data in these instances:

link to a particular page and link to next/previous pages. As

we defined above, the type {}2 is incorrect, because not all of

its instances are similar (e.g., i3 is not similar to the two other

instances i1 and i2). Similarly, the type {}6 is incorrect. Also,

the set type {}6 gives an example of an incomplete type

because the instance i3 is similar to the instances i5-i12

although they are identified as instances of different types.

The challenge here is how we can filter out such schema by

handling incorrect and incomplete schema types.

Fig. 6: (a) A part of a web page, (b) its schema, and (c) its

DOM tree.

4.3 Schema Filtration Algorithm
In this subsection, we discuss the details of the proposed

algorithm for schema filtration. Experimentally, as clear in the

simple example given above in the previous section, incorrect

and incomplete schema types almost are set types. For

example, both of the two set types {}2 and {}6 are incorrect

and incomplete. Also, incomplete non-set types appear with

consecutive tuple/basic types. Therefore, the suggested

filtration algorithm includes two main steps in order:

Step 1: Set-type filtration

Step 2: Consecutive non-set types filtration

In the first step, Step I, the proposed algorithm traverses the

schema tree and handles incorrect and incomplete types

among set-type nodes in the schema as shown in Figure 7. An

important notice here is that incorrect schema types should be

handled before incomplete types. If we do the converse, we

may get an incorrect semantic function 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝛽 for

some basic type 𝛽 (i.e., it does not correctly reflect the

semantic of the type 𝛽), so we could not correctly measure the

similarity between 𝛽 and another type/instance. Furthermore,

a semantic-based classifier that has incorrect schema types

could not be used perfectly to measure the similarity among

non-basic types. For example, in Figure 6, before handling the

incorrect schema type {}2, the function 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝛽3

(Semantic-Classifier({}2)) will be calculated based on the

instance values “<<”, “previous”, and “1”. So, the function

will not semantically reflect the instance data because they are

not semantically similar. Therefore, the proposed algorithm

will handle incorrect types before handling of incomplete

types. In the second step, Step II, we traverse the schema tree

and combine similar consecutive non-set types as a new set

type. The similarity is measured based on the formulas

defined in Section 4.1. We shall discuss the two steps in

details below.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 1, December 2014

32

Fig. 7: The proposed set-type filtration algorithm.

As shown in Figure 7, for a web site, given as input to the set-

type filtration algorithm the site schema as a tree (ST), a set of

web pages from the site (Σ), and the pattern tree (constructed

by FiVaTech), the algorithm traverses the schema tree ST in a

post-order traversing fashion (lines 1-2). For each set-type

node c (line 4), we use the instances of c from the collection

of pages Σ to handle it by calling (in order) the two methods

“handleIncorrectType” and “handleIncompleteType”.

The first method handleIncorrectType shown in Figure 8, if c

is an incorrect set type, divides the instances of the type c into

different clusters (lines 4-13) such that all instances in each

cluster are similar (peer instances) while two instances of

different clusters are not similar. The method works as

follows. Let 𝐷 = 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑐 = 𝑥1 , 𝑥2, … , 𝑥𝑘 is a set of all

instances of 𝑐, the method starts by having only one cluster

L=clust1 which has one instance, say x1. It then calculates both

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑐𝑙𝑢𝑠𝑡𝑖) and 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙_𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑐𝑙𝑢𝑠𝑡𝑖) for

each existing cluster. For each instance xi (i=2, ..k), the

method either updates the existing clusters by adding xi to one

of them (line 7) or creates a new cluster clusti which contains

the new instance xi (line 10). Again, 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑐𝑙𝑢𝑠𝑡𝑖) and

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙_𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑐𝑙𝑢𝑠𝑡𝑖) for each cluster clusti is re-

calculated after the cluster is updated/created. The instance xi

is added to the cluster clusti based on the similarity values

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑆𝑖𝑚 and 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙_𝑆𝑖𝑚 between the instance xi

and clusti. After all instances are processed, the method

defines a new type 𝜏𝑖 for each cluster clusti, and then the

subtree from the node c in the schema tree ST is replaced by

different sibling subtrees of roots 𝜏1 , … , 𝜏𝑘 (line 16). Finally,

we modify the types of the instances in the DOM trees and

replace them with the new schema types (line 17).

The method handleIncompleteType merges all peer schema

types on the left hand side of the current node c (the nodes

𝜏1 , … , 𝜏𝑘 that replace c). Let c1 and c2 are two node types, the

method merges them if they are peer types (instances of the

second type are similar to the instances of the first one). At

this time, the method identifies c1 as an incomplete type,

deletes the type c2 from ST, and finally identifies all the

instances of c2 in Σ as instances of c1

(i.e., 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 c1 = 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 c1 ∪ 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 c2). Also,

each node in the subtree from c2 is merged to its

corresponding peer node in the subtree from c1.

To clarify the proposed filtration algorithm, we apply the

algorithm on the schema example shown in Figure 6. As

shown in Figure 7, the algorithm handles the two nodes {}2

and {}6 in the schema tree in Figure 6(b). For the node c={}2,

the method handleIncorrectType divides the instances {i1, i2,

i3} of the node c into two different clusters clust1={i1, i2} and

clust2={i3}. As shown in Figure 6, the two instances i1 and i2

in clust1 are similar, while i3 is not similar to both i1 and i2. So,

the set type node in the schema tree is replaced by the two

types 𝜏1 and 𝜏2 that correspond to the two clusters clust1 and

clust2, respectively. The type 𝜏1 is identified as a set type

because it has more than one instance in a web page, while 𝜏2

is identified as a tuple because it has one instance (i3) in each

page. The method handleIncompleteType does not make any

merging among the different types because there is no sibling

node on the left hand side. The result of the algorithm after

processing the set type node {}2 in the schema tree in Figure

6(b) is shown in Figure 9(a). Similarly, the set-type node {}6

in the schema tree in Figure 6(b) is divided into the two set-

types 𝜏3 and 𝜏4 that correspond to the two clusters clust3 = {i5,

…, i12} and clust4 = {i13, i14}, respectively, after calling the

method handleIncorrectType (see Figure 9(b)). Moreover, the

method handleIncompleteType conquers the two set types 𝜏1

and 𝜏4 in Figure 9(b) by removing the type 𝜏4 from the

schema tree and identifying 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝜏1 = 𝑖1, 𝑖2 ∪
 𝑖13 , 𝑖14 . Also, it removes 𝜏2 and identifies 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝜏3 =
 𝑖5, … , 𝑖12 ∪ 𝑖3 . The schema tree in Figure 9(c) is the result

of applying the algorithm on the schema tree in Figure 6(b),

where 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝜏1 = 𝑖1, 𝑖2 , 𝑖13 , 𝑖14 and 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝜏3 =
 𝑖3, 𝑖5, … , 𝑖14 .

Fig. 8: HandleIncorrecteType algorithm.

Fig. 9: The process of filtering out the schema in Fig. 6(b).

For Step II, combining consecutive non-set similar types, we

traverse the schema tree ST in a post-order traversing fashion

as shown in Figure 10. For each non-leaf node c (line 4),

using the method “mergeSimilarConsecutiveTypes” in line 5,

we identify every similar consecutive non-set types and

replace them by a new set type 𝜏, and then change the types of

the instances of these consecutive types to the new type 𝜏. As

a simple example shown in Figure 11(a), if the parent non-leaf

type c in the schema tree has 4 child types 𝜏1, 𝜏2, 𝜏3 and 𝜏4,

where the two consecutive types 𝜏2 and 𝜏3 are similar (with

similar instances), then the algorithm merges the two types 𝜏2

and 𝜏3 into a set type 𝜏 as in Figure 11(b). Then, the types of

the instances of 𝜏2 or 𝜏3 are replaced by the new type 𝜏.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 1, December 2014

33

Fig. 10: Non-set type filtration algorithm.

Fig. 11: An example of similar consecutive non-set schema

types.

5. EXPERIMENTS
We conduct three experiments to measure the performance of

the proposed classifier and the performance for the two steps

of the filtration algorithm. We use a data set of 40 web sites.

For each web site, given some pages as input, we run

FiVaTech to get as output: the schema of the web site (ST)

and the instances of every schema type from the pages.

5.1 Classifier Performance for Different

Number of Training Pages
In this experiment, we show the performance of the suggested

classifier when various number of training pages for each site

are used. For each Web site, we fix 5 pages for testing and

measure the accuracy of the classifier trained from n (2-5)

pages. As shown in Figure 9, the classifier performs better

when 3-5 pages have used than when 2 pages are used. Also, a

slight increment in the performance is found when 3 to 5

pages have been used.

5.2 Set-Type Filtration Performance
In this experiment, we evaluate the performance of the set-

type filtration step. For each web site, we manually identify

incorrect/incomplete set-type schema types. We use the

instances of each set-type to identify whether the set-type is

incorrect /incomplete or not. As we discussed in section 4, a

set-type is identified as incorrect if there is some instance of

this type that is not similar to the type, while the set-type is

identified as incomplete if there is some instance which is

similar to this type but identified by FiVaTech as an instance

of another type. For each schema type τ, we collect all of the

instances of the type identified by FiVaTech

(InstancesFiVaTech (τ)) and the instances of the type identified

manually (InstancesManual (τ)). If the two sets

InstancesFiVaTech (τ) and InstancesManual (τ) are equal, we

identify the type τ as correct. If
 InstancesFiVaTech (τ) < InstancesManual (τ) , we identify the

type τ as incomplete, otherwise, we identify τ as incorrect.

Finally, we evaluate the performance of the set-type filtration

algorithm by calculating the recall and precision for the

schema tree of each web site as follows.

Precision: Precision is the proportion of schema types

predicted by the algorithm as incorrect/incomplete that are

targets (correctly identified).

Recall: Recall is the proportion of incorrect/incomplete types

that are predicted by the algorithm.

Let A is the set of incomplete/incorrect set-types that are

identified by the algorithm and B is the set of

incomplete/incorrect set-types that are identified manually, so

we can define recall and precision as follows:

Recall =
 A ∩ B

 B
 , Precision =

 A ∩ B

 A

Fig. 12: The Classifier accuracy for different training

pages (2-5) of a Web site.

The performance of the algorithm with the 40 web sites is

shown in Table 3. The experiment, as shown in the table

shows an encourage result (recall = 0.85 and precision = 0.56)

for the test web sites. In other words, the proposed algorithm

can detect/handle reasonable percentage of

incomplete/incorrect schema types in the schemas of the test

web sites.

5.3 Non-Set Consecutive Types Filtration

Performance
In this experiment, we evaluate the performance of the second

step (consecutive similar non-set types). For each one of the

40 web sites, we count the number of new set-types that

should replace consecutive non-set types identified manually

and by the algorithm. As we discussed before, every

consecutive similar non-set types are replaced by a new set

type. Table 4 shows the results for all of the 40 web sites. The

performance of the non-set types filtration algorithm is also

measured using recall and precision as shown in Table 5,

where recall and precision are measured as follows.

Recall =
 A∩B

 B
 , Precision =

 A∩B

 A
 ,

where A is the number of new set types identified by the

algorithm to replace non-set consecutive types and B is the

number of new set-types identified manually. To avoid the

cases where either |A| or |B| equal zero, we consider recall =

precision = 1.0 if manually there are no consecutive non-set

types (|A| = 0) and also the algorithm does not detect any

consecutive non-set types (|B| = 0). If one of the two values

|A| and |B| equals zero while the other is not equal to zero, we

set both recall and precision as zero (recall = precision = 0.0).

Also, the experiment as shown in the table gives a reasonable

result (recall = 0.58 and precision = 0.55) for the test web

sites.

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5

Training

Testing

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 1, December 2014

34

Table 3: The performance of the set-type filtration

algorithm.

Web site Recall Precision

YAHP 0.50 0.25

CDPL 1.00 0.50

BUSINESS 1.00 0.67

TELEVISION 0.78 0.64

FOR5 1.00 0.50

THRV 0.50 0.50

USPA 0.50 1.00

USTX 1.00 0.50

VGAR 1.00 0.50

CESP 0.67 1.00

ALTA 1.00 0.33

EXPE 0.50 0.33

LYCO 1.00 0.20

META 0.80 0.67

NEWS 1.00 1.00

WEBC 1.00 0.50

QUESTION 0.50 0.50

NUMERICAL 0.80 0.67

COMPSKILL 0.67 0.50

JOBS 0.50 0.33

ART 1.00 0.67

COMPONLINE 0.80 0.80

COMPHARDWARE 1.00 0.67

NOKIA 1.00 0.75

BIOLOGICAL 1.00 0.33

OSHISTORY 1.00 0.33

PHOTOS 0.67 0.50

ENGENIRING 1.00 0.25

ANIMAL 1.00 0.67

ENERGY 0.67 1.00

FINANCE 1.00 0.40

HUMAN 1.00 0.50

INDUSTRY 0.75 0.50

INTERNET 1.00 0.25

MATHEMATICAL 1.00 0.67

MUSIC 1.00 0.50

PHYSIC 0.80 0.67

SCIENCE 0.67 0.86

SHOP 1.00 0.50

ECONOMY 0.75 0.50

Average 0.85 0.56

6. CONCLUSIONS
In this paper, we proposed a new versatile classifier for

schema type. The classifier can be used as an extractor for

web data extraction systems, used for schema mapping and

used for post process of the schema generated by web data

extraction systems (schema filtration). Since the types in the

detected schema have missing names, we use the instances of

such types for the classifier construction. Moreover, we used

HTML tags contents, DOM trees structural information, and

visual information of the schema type instances for the

classifier construction. We also defined the schema filtration

problem and suggested an algorithm to filter out the schema

generated by web data extraction systems. In the future, we

aim to use other characterizations of the instance-based

schema matching such as relative frequencies of words and

combinations of words, phone numbers, zip codes,

geographical names, NLP techniques, etc. Also, we plan to

extend this work to match elements in different levels of a

schema tree or even elements in different schema trees.

Table 4: Number of new set-types identified manually and

by the algorithm.

Web site

of new set-types

Manual Algorithm

YAHP 0 0

CDPL 2 1

BUSINESS 1 0

TELEVISION 4 3

FOR5 0 1

THRV 1 2

USPA 2 1

USTX 0 0

VGAR 1 2

CESP 2 3

ALTA 2 1

EXPE 0 1

LYCO 2 1

META 3 4

NEWS 1 2

WEBC 1 0

QUESTION 2 3

NUMERICAL 3 4

COMPSKILL 5 2

JOBS 1 0

ART 2 1

COMPONLINE 0 0

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 1, December 2014

35

COMPHARDWARE 0 1

NOKIA 2 3

BIOLOGICAL 2 4

OSHISTORY 1 2

PHOTOS 1 0

ENGENIRING 0 0

ANIMAL 1 1

ENERGY 2 3

FINANCE 3 1

HUMAN 1 2

INDUSTRY 2 0

INTERNET 1 2

MATHEMATICAL 1 0

MUSIC 2 4

PHYSIC 2 1

SCIENCE 3 2

SHOP 0 0

ECONOMY 3 4

Table 5: The performance of the consecutive non-set

filtration algorithm.

Web site Recall Precision

YAHP 1.00 1.00

CDPL 0.50 1.00

BUSINESS 0.00 0.00

TELEVISION 0.50 0.67

FOR5 0.00 0.00

THRV 1.00 0.50

USPA 0.50 1.00

USTX 1.00 1.00

VGAR 1.00 0.50

CESP 1.00 0.67

ALTA 0.50 1.00

EXPE 0.00 0.00

LYCO 0.50 1.00

META 0.67 0.50

NEWS 1.00 0.50

WEBC 0.00 0.00

QUESTION 0.50 0.33

NUMERICAL 0.67 0.50

COMPSKILL 0.20 0.50

JOBS 0.00 0.00

ART 0.50 1.00

COMPONLINE 1.00 1.00

COMPHARDWARE 0.00 0.00

NOKIA 1.00 0.67

BIOLOGICAL 1.00 0.50

OSHISTORY 1.00 0.50

PHOTOS 0.00 0.00

ENGENIRING 1.00 1.00

ANIMAL 1.00 1.00

ENERGY 0.50 0.33

FINANCE 0.33 1.00

HUMAN 1.00 0.50

INDUSTRY 0.00 0.00

INTERNET 1.00 0.50

MATHEMATICAL 0.00 0.00

MUSIC 1.00 0.50

PHYSIC 0.50 1.00

SCIENCE 0.33 0.50

SHOP 1.00 1.00

ECONOMY 0.67 0.50

Average 0.58 0.55

7. REFERENCES
[1] Arasu A. and Garcia-Molina H.,“ Extracting Structured

Data from Web Pages”, Proc. ACM SIGMOD, pp. 337-

348, 2003.

[2] Chang C-H., Kayed M., Girgis M. and Shaalan K., “A

Survey of Web Information Extraction Systems”, IEEE

Transactions on Knowledge and Data Engineering, vol.

18, no. 10, pp. 1411-1428, 2006.

[3] Kayed M. and Chang C.-H., “Page-level web data

extraction from template pages”, IEEE Trans. on Know

and Data Eng., vol. 22, no. 2, pp. 249–263, 2010.

[4] Crescenzi V., Mecca G. and Merialdo P., “ RoadRunner:

towards-automatic data extraction from large Web sites,”

Proceedings of the 26t International Conference on very

Large Database Systems (VLDB), Rome, Italy, pp. 109-

118, 2001.

[5] Wang and Lochovsky F.,“Data Extraction and Label

Assignment for Web Databases”, Proc. Int’l Conf. World

Wide Web (WWW-12), pp. 187-196, 2003.

[6] Zhai Y. and Liu B., “Web Data Extraction Based on

Partial Tree Alignment”, Proc. Int’l Conf. World Wide

Web (WWW-14), pp. 76-85, 2005.

[7] Simon K. and Lausen G., “ViPER: Augmenting

Automatic Information Extraction with Visual

Perceptions”, CIKM 2005, 2005.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 1, December 2014

36

[8] Thamviset W. and Wongthanavasu S., “Information

extraction for deep web using repetitive subject pattern”.

World Wide Web, August 2013.

[9] Derouiche N., Cautis B., Abdessalem T.,

"Automatic Extraction of Structured Web Data with

Domain Knowledge”. 28th Int. Conference on Data

Engineering, pp. 726-737, 2012.

[10] Jinglun G., Zhou Y., Barner K., "View: Visual

Information Extraction Widget for improving chart

images accessibility”, 19th IEEE Int. Conference on

Image Processing, pp. 2865-2868, 2012.

[11] Algergawy A., Nayak R. and Saake G., “Element

similarity measures in XML schema matching”,

Information Sciences, pp. 4975-4998, 2010.

[12] Milo T. and Zohar S., “Using schema matching to

simplify heterogeneous data translation”, Proc. 24th Int.

Conf. On Very Large Data Bases, pp. 122–133, 1998.

[13] Rahm E. and Bernstein P., “A survey of approaches to

automatic schema matching”, VLDB Journal, vol. 10, no.

4, pp. 334-350, 2001.

[14] Lerner S., “A model for compound type changes

encountered in schema evolution”, ACM Trans,

Database System, vol. 25, no. 1, pp. 83-127, 2000.

[15] Bertino E., Guerrini G. and Mesiti M., “A matching

algorithm for measuring the structural similarity between

an XML document and a DTD and its applications”,

Information Systems, vol. 29, pp. 23–46, 2004.

[16] Palopoli L., Sacca D., Terracina G. and Ursino D.,

“Uniform techniques for deriving similarities of objects

and sub schemas in heterogeneous databases”, IEEE

Trans. Knowledge. Data Eng, vol. 15, no. 2, pp. 271-294,

2003.

[17] Yeh P., Porter B. and Barker K., “Using transformations

to improve semantic matching”, in: Proceedings of K-

CAP’03, Sanibel Island, FL, pp. 180-189, 2003.

[18] Noy N. and Musen M., “The PROMPT suite: interactive

tools for ontology merging and mapping”, J. Hum

.Computer. Stud, vol. 59(6), pp. 983-1024, 2003.

[19] Fellbaum C., “WordNet: An Electronic Lexical

Database”, The MIT Press, Cambridge, MA, 1998.

[20] Lenat D., “CYC: a large-scale investment in knowledge

infrastructure”, Commun. ACM, vol. 38, no. 11, pp. 33-

38, 1995.

[21] Berlin J. and Motro A., “Database schema matching

using machine learning with feature selection”, CAISE

2002, Toronto, ON, pp. 452-466, 2002.

[22] Li W., Clifton C. and Liu S., “Database integration using

neural networks: implementation and experiences”,

Knowledge. Inf. Syst, vol. 2(1), pp. 73-96, 2000.

[23] Mirbel I., “Semantic integration of conceptual schemas”,

Data & Knowledge Engineering, vol. 21, no. 2, pp. 183-

195, 1997.

[24] Madhavan J., Bernstein P. and Rahm E., “Generic

schema matching with cupid”, 27th Int. Conferences on

Very Large Databases, pp. 49–58, 2001.

[25] Benkley S., Fandozzi J., Housman E. and Woodhouse

G., “Data element tool-based analysis (DELTA)”, The

MITRE Corporation, Bedford, MA, Technical Report,

MTR 95B0000147, 1995.

[26] Zhao H. and Ram S., “Clustering schema elements for

semantic integration of heterogeneous data sources”, J.

of Database Management, vol. 15(4), pp. 88–106, 2004.

[27] Zhao H. and Ram S., “Clustering similar schema

elements across heterogeneous databases: a first step in

database integration”, in: K. Siau (Ed.), Advanced

Topics in Database Research, Idea Group Publishing,

vol. 5, pp. 235–256, 2006.

[28] Algergawy A., Schallehn E. and Saake G., “A Schema

Matching-based Approach to XML Schema Clustering”,

Linz, Austria. ACM 978 1-60558-349-5/08/0011,

November pp. 24-26, 2008.

[29] Kushmerick N., "Wrapper Verification," World Wide

Web Journal, vol. 3, no. 2, pp. 79-94, 2000.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Thamviset,%20W..QT.&searchWithin=p_Author_Ids:38467726700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Thamviset,%20W..QT.&searchWithin=p_Author_Ids:38467726700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Derouiche,%20N..QT.&searchWithin=p_Author_Ids:38252289600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Cautis,%20B..QT.&searchWithin=p_Author_Ids:38228127300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Abdessalem,%20T..QT.&searchWithin=p_Author_Ids:38252357000&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6228128&ranges%3D2010_2014_p_Publication_Year%26queryText%3DWeb+Data+Extraction+System
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6228128&ranges%3D2010_2014_p_Publication_Year%26queryText%3DWeb+Data+Extraction+System
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jinglun%20Gao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jinglun%20Gao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Barner,%20K.E..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6467497&ranges%3D2011_2014_p_Publication_Year%26pageNumber%3D2%26queryText%3DWeb+data+extraction+system
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6467497&ranges%3D2011_2014_p_Publication_Year%26pageNumber%3D2%26queryText%3DWeb+data+extraction+system
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6467497&ranges%3D2011_2014_p_Publication_Year%26pageNumber%3D2%26queryText%3DWeb+data+extraction+system
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6467497&ranges%3D2011_2014_p_Publication_Year%26pageNumber%3D2%26queryText%3DWeb+data+extraction+system

