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ABSTRACT 

Generating Web site schema is a core step for value-added 

services on the web such as comparative shopping and 

information integration systems. Several approaches have 

been developed to detect this schema. For a real web site, due 

to the complexity of the site schema, post process of this 

schema such as labeling the schema types, comparing among 

different schema types and generating an extractor to extract 

instances of a schema type is a challenge. In this paper, a new 

tree structured called schema-type semantic model is 

proposed as a classifier for a schema type. Given some 

instances of a schema type, HTML tags contents, DOM trees 

structural information and visual information of these 

instances are exploited for the classifier construction. Using 

multivariate normal distribution, the classifier can be used to 

compare between two different schema types; i.e., the 

classifier can be used for schema mapping which is a core 

step of information integration. Also, the suggested classifier 

can be used to detect and extract instances of a schema type; 

i.e., it can be used as an extractor for web data extraction 

systems. Furthermore, the classifier can be used to improve 

the performance of the schema generated by web data 

extraction systems; i.e., the classifier can be used to get, as 

much as possible, a perfect schema. The experiments show an 

encourage result with the schemas of the test web sites (a data 

set of 40 web sites).   
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Keywords 
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1. INTRODUCTION 
The explosive growth and popularity of the World Wide Web 

has resulted in a huge amount of information sources on the 

Internet. However, due to the heterogeneity and the lack of 

structure of web information sources, access to this huge 

collection of information has been limited to browsing and 

searching. This cost of browsing is becoming noticeable with 

the Deep Web (Invisible Web), which contains magnitudes 

more and valuable information than the Surface Web. Web 

pages in the Deep Web share the same template since they are 

encoded in a consistent manner across all pages. In other 

words, these pages are generated with a predefined template 

by plugging a data instance. Embedding a data instance x into 

the template T is an encoding process, λ(T; x), which 

generates HTML pages. Unsupervised wrapper induction is 

basically a reverse engineering of the page generation model, 

which induces the template and schema from a set of given 

pages and extracts the embedded data. Figure 1 gives an 

example of such web pages in which three data records are 

presented. Each data record is embedded in an HTML <tr> 

tag. The schema of a data instance in a web page can be 

defined as follows. 

 

Fig. 1: Example of an HTML page. 

Definition (Structured Data): A data schema can be of the 

following types [1]: 

1. A basic type 𝛽 represents a string of tokens, where a token 

is some basic units of text. 

2. If 𝜏1 , 𝜏2 , … , 𝜏𝑘  are types, then their ordered list 
 𝜏1 , 𝜏2 , … , 𝜏𝑘   also forms a type 𝜏. The type 𝜏 is 

constructed from the types 𝜏1 , 𝜏2 , … , 𝜏𝑘  using a type 

constructor of order k. An instance of the k-order 𝜏 is of 

the form  𝑥1 , 𝑥2 , … , 𝑥𝑘  , where 𝑥1, 𝑥2 , … , 𝑥𝑘  are instances 

of types 𝜏1 , 𝜏2 , … , 𝜏𝑘 , respectively. The type 𝜏 is called: 

a. A tuple, denoted by  𝑘 − 𝑡𝑢𝑝𝑙𝑒 𝜏 , if the cardinality 

(the number of instances) is 1 for every instantiation.  

b. An option, denoted by  𝑘 ?𝜏 , if the cardinality is either 

0 or 1 for every instantiation. 

c. A set, denoted by  𝑘 − 𝑠𝑒𝑡 𝜏 , if the cardinality is 

greater than 1 for some instantiation. 

d. A disjunction, denoted by  𝜏1|𝜏2|  … | 𝜏𝑘 𝜏 , if all 

𝜏𝑖  ( 𝑖 = 1, … , 𝑘) are options and the cardinality sum of 

the k options  𝜏1 − 𝜏𝑘  equals 1 for every instantiation 

of 𝜏. 

Figure 2 shows the schema of the web page in Figure 1, which 

presents a list ({}2) of publications; each one consists of a 4-

tuple (<>3) and an optional 2-tuple (()?10). The 4-tuple type 

includes five basic types (4-9), where the last two are 

optional. The optional tuple ()10 has two basic types (11-12). 

Each type in the schema of a web site has a set of instances in 
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each web page in the site. For example, Figure 3 shows two 

instances of the set type {}2. As shown in Figures 1-3, 

template, schema, and data instances are tree structured. 

 
Fig. 2: The schema of the HTML page in Fig. 1. 

 

Fig. 3: Two instances (A and B) of the schema set type {}2 

in Fig. 2. 

Given some instances of a schema type τ, this paper is aimed 

to construct a schema-type semantic model that can be used as 

a classifier for the type τ. HTML tags contents, DOM trees 

structural information, and visual information of the instances 

are used for the classifier construction. The constructed 

classifier has three main contributions. First, it can be used to 

compare between two different schema types (i.e., schema 

matching). Second, the classifier of the type τ can be used to 

decide whether a data value in some web page is an instance 

of this type (i.e., as an extractor for web data extraction 

systems). Third, it can be used to improve the performance of 

the schema generated by web data extraction systems as we 

shall discuss in details later. 

The paper is organized as follows. Section 2 reviews the 

related works. Section 3 provides the details of the proposed 

schema-type semantic classifier. Section 4 gives an algorithm 

to improve the performance of the schema generated by web 

data extraction systems. The experiments and the conclusions 

are presented in section 5 and section 6, respectively. 

2. RELATED WORKS 
In the last few years, web data extraction has been a hot topic. 

Many approaches have been developed with different task 

domain, automation degree, and techniques [2]. Many of the 

developed approaches aim to detect the schema of a web site 

which can be used with the generated wrapper for data 

extraction. Examples of these wrapper induction systems are 

EXLAG [1], FiVaTech [3], RoadRunner [4], Dela [5], 

DEPTA [6], ViPER [7], and others [8-10]. FiVaTech, 

EXLAG and RoadRunner are designed to solve the page-level 

extraction task, while DeLa, DEPTA, and ViPER are 

designed for the record-level extraction task. In this paper, we 

use the schemas/instances detected by FiVaTech. Post process 

of the generated schema such as labeling the schema types, 

comparing among different schema types and generating an 

extraction module to extract instances of a schema type is an 

important step as this schema is a core for value-added 

services on the Web. 

The proposed classifier is aimed to “Match” schema types, 

which produces a mapping between elements of the schema 

that correspond semantically to each other [11-12]. So, this 

paper is very relevant to “schema matching” which is a basic 

problem in many database application domains, such as data 

integration, E-business, data warehousing, and semantic query 

processing. Database integration is a process with multiple 

steps, leading from the identification of the databases to the 

testing of the integrated system. The central step of the 

database integration process is the identification of those 

elements in the schema of the databases that match each other. 

This step is termed schema matching. Schema matching 

methods are primarily categorized by their use of schema-

level or instance-level information, although many methods 

use both types of information [13]. 

 Schema-level techniques: 

Three types of information may be used in the schema-level 

techniques: constraint information, linguistic information and 

structural information. Examples of constraint information are 

data type constraints, optionality constraints and uniqueness 

constraints of attributes [14-15]. Linguistic information may 

be used by measuring character string similarity [16], or by 

using externally supplied dictionaries, thesauri or lexical 

databases [17-18] such as WordNet [19] or CyC [20]. 

Linguistics based techniques are limited to problems where 

linguistic information are available. Example of structural 

information is the relationships between database elements 

such as relationship-types between entity-types or foreign-key 

dependencies between tables. The use of structural 

information for identifying matching database elements may 

be limited to local structures, where relationships only 

between directly connected database elements are considered, 

or it may encompass global structures, where the overall 

structure of the database is considered. 

 Instance-level techniques: 

In addition to or as an alternative to schema-level techniques, 

schema instances could be used for schema matching. For 

example, a schema-level matcher may be used to match entity 

types and an instance-level matcher may subsequently be used 

to match attributes [21]. To match semantically similar 

attributes, instance information such as attribute value 

distributions and term frequencies may be used. For example, 

when two table attributes contain the same distribution of 

values, then the columns are argued to be similar in meaning. 

Machine learning techniques such as neural networks [22] and 

Bayesian learners [21] among others can establish 

characteristic features of an attribute or column which can 

then be compared to others. 

Various approaches and techniques have been proposed for 

detecting schema-level correspondences across heterogeneous 

databases. First, some of them apply linguistic techniques 

[23], to measure the similarity between the names of schema 
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elements. These approaches are therefore difficult to apply in 

many legacy systems, where schema elements are not well 

named using standard terms. Second, some other approaches 

use heuristic formulae to measure the similarity between 

schema elements, based on the names and structures of the 

schema elements [24]. Third, another approach computes the 

similarity between the text descriptions of schema elements 

(in design documents) using similarity measures developed in 

the information retrieval field [25]. The major difficulty with 

this approach is that the design documents are often out of 

date, inaccurate, or even not available in many legacy 

systems. Fourth, other approaches have used cluster analysis 

techniques to cluster schema elements based on the meta-data 

(e.g., name, schematic specification, and summary statistics) 

about the schema elements [26]. However, due to various 

problems associated with the features for such cluster analysis 

[27], users must carefully evaluate the results generated by the 

cluster analysis techniques. In this paper, cluster analysis 

techniques are used to cluster the similar schema elements. 

In the absence of schema element name as the case for the 

schema detected by web data extraction systems, data instance 

is considered an important source of semantic information for 

schema matching. Many characterizations can be exploited for 

instance-based schema matching. For example, keywords and 

themes extracted based on the relative frequencies of words 

and combinations of words, etc. Also, a constraint-based 

characterization, such as numerical value ranges and averages 

or character patterns can be applied. For instance, this may 

allow recognizing phone numbers, zip codes, geographical 

names, addresses, ISBNs, SSNs, date entries, or money-

related entries (e.g., based on currency symbols). Finally, 

statistical features such as alphabetic ratio (Letter Density), 

digit ratio (Digit Density), punctuation ratio (Pun Density), 

and tokenize the strings via capital-start token ratio (Capital 

Start Token Density) and numerical token ratio, etc, can be 

used as in [28]. Also, kushmerick [29] introduced RAPTURE 

which uses nine features: digit density, letter density, upper-

case density, lower-case density, punctuation density, HTML 

density, length, word count, and mean word length to measure 

the similarities between data observed by the wrapper and that 

expected. 

3. THE PROPOSED CLASSIFIER 
Web data extraction approaches aim to detect the schema of a 

deep web site and extract instances of each schema type from 

some given web pages. Given this extracted schema and the 

instances of a schema type τ, we suggest a classifier called 

schema-type semantic model for the schema type τ. The 

suggested classifier can be used to compare between the 

schema type τ and an instance value. So, it could be used as an 

extractor to extract instances of the type τ from other web 

pages. Also, the classifier can be used to compare among 

different schema types. So, it could be used for schema 

mapping. Furthermore, the classifier can be used to compare 

among different instances. In this section, the details of using 

the instances xi (i=1, …, k) to construct the suggested 

classifier are discussed in details. 

If τ is a basic type (𝜏 = 𝛽) of k text node instances, i.e., each 

instance xi of type τ is a leaf text node with a text value, then 

the function 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 for a basic-type 𝛽 is defined as an N-

tuple as follows: 

𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝛽 =  𝑎1, 𝑎2, … , 𝑎𝑁 , 

𝑎𝑖 =  
 𝑓𝑖 𝑥𝑗  

𝑘
𝑗=1

𝑘
 is the average of the feature values fi for all of 

the instances xj of the basic type 𝛽 which are calculated as 

shown in Table 1. 

The semantic function that is calculated based on statistical 

features (syntactical/NLP features may also be used in the 

future) can be used to measure the similarity between the 

basic type 𝛽 and an instance x using the multivariate normal 

distribution as follows. 

Basic_𝑆𝑖𝑚 𝑥, 𝛽 =  𝑒𝑥𝑝  − 
 𝑓𝑖(𝑥) − 𝑎𝑖 

2

𝜎𝑖
2

𝑁

𝑖=1

  

where fi(x); i =1, …, N, are the feature values of the instance 

x, and 𝜎𝑖  is the standard deviation of the feature values fi for 

all of the instances of the basic type 𝛽. The instance value x is 

considered similar to the basic type 𝛽 if the value 

𝐵𝑎𝑠𝑖𝑐_𝑆𝑖𝑚 𝑥, 𝛽  is greater than a threshold which is selected 

based on the instances extracted by FiVaTech. 

Table 1: List of the features used to calculate the semantic 

of a basic type. 

Feature Name Description 

f1(x) Letter Density The alphabetic ratio in the 

instance x. 

f2(x) Digit Density The digit ratio in the instance x. 

f3(x) Pun Density The punctuation ratio in the 

instance x. 

f4(x) Capital Start 

Token Density 

The ratio of the capital-start 

tokens in x. 

f5(x) Is Upper Case Boolean: true if the instance 

text value x is upper case, false 

otherwise. 

f6(x) Is Http Start Boolean: true if the instance x is 

a URL, false otherwise. 

If τ is a non-basic (tuple/set) type with tree-structured 

instances 𝑥𝑖  (i=1, .…, k), we propose a classifier of the type τ 

that exploits structural information, HTML tags contents, 

visual information, and data semantics of the instances of τ. 

The proposed classifier for the non-basic type τ includes two 

parts (phases): semantic-based classifier and statistical-based 

classifier. The formal one, semantic-based, is a tree structure 

embedded with semantic data of the text nodes. The later 

classifier is a K-tuple which exploits both visual and HTML 

tags contents information of the instances of the type τ. An 

instance x is similar to the non-basic type τ, only if x is similar 

to both of the two proposed classifier parts. The two classifier 

parts will be discussed in the following subsections. 

3.1 Semantic-Based Classifier 
The semantic-based classifier of the non-basic type τ 

(Semantic-Classifier(τ)) is constructed by replacing all basic 

type nodes 𝛽𝑖  by 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝛽𝑖  in the schema tree 

corresponds to the type τ, where 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝛽𝑖  is calculated 

as defined above. As an example, Figure 4 is the semantic-

based classifier of the set type {}2 in the schema given in 

Figure 2. Every basic type node 𝛽 in the schema tree is 

replaced by its semantic (𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝛽 ) to construct the 

classifier. The semantic-based classifier can also be defined 

for an instance subtree x (Semantic-Classifier(x)) as follows. 

Semantic-Classifier(x) is the same subtree as x such that every 
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text node xi in the instance subtree x is replaced by its 

semantic Semantic(xi). In summary, we can notice that 

Semantic-Classifier(τ) is carrying both structural and semantic 

information about the type τ, where these semantic 

information are accumulated by using the instances of the 

type τ. 

 
Fig. 4: the semantic-based classifier of the set type {}2. 

Now, the tree-edit distance is used to measure the similarity 

between two semantic-based classifiers C1 and C2. We use 

paths instead of individual nodes for subtrees matching. Let p1 

and p2 are two paths in C1, and q1 and q2 are two paths in C2, 

we define the matching between the two trees C1 and C2 as a 

mapping M such that for every two pairs  𝑝1, 𝑞1 ∈ 𝑀 and 
 𝑝2, 𝑞2 ∈ 𝑀, the following two conditions are satisfied: 

(1) p1 = p2 iff q1 = q2; 

(2) C1[p1] is on the left of C1[p2] iff C2[q1] is on the left of 

C2[q2]; 

The first condition requires that each path can appear only 

once in the mapping, while the second condition enforces the 

order preservation between the paths in the tree. A maximum 

matching is a matching with the maximum number of pairs. 

Finally, similarity between the two classifiers C1 and C2 is 

calculated as: 

𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐_𝑆𝑖𝑚 𝐶1, 𝐶2 =
 𝑀 

𝐴𝑣𝑔 𝑛1 ,𝑛2 
; 

where n1 and n2 are the total number of different paths in C1 

and C2, respectively, and |M| is the size of the matching pairs 

(maximum matching) in M. The two trees C1 and C2 are 

similar if their similarity is greater than a threshold. 

The two paths p (a1/… / am) and q (b1/… / bm) are matched 

(i.e.,  𝑝, 𝑞 ∈ 𝑀)) if there is a one-one corresponding mapping 

between every two nodes ai and bi in the two paths p and q, 

respectively (see Figure 5). The node ai has a mapping with 

the node bi (at the same level i) when one of the following 

cases is satisfied: 

- The two nodes ai and bi are instances of some basic 

types and they are similar, i.e., Sim (ai, bi) is greater 

than a threshold. 

- The two nodes ai and bi are leaf (text/img) nodes, 

but they are part of the template of the same value. 

For example, the text node “Full Text” in Figure 3 

is an example of such nodes.  

- The two nodes ai and bi correspond to a same 

HTML tag. 

 

Fig. 5: A mapping between the two paths p and q. 

3.2 Statistical-Based Classifier 
We define a statistical-based classifier of the non-basic type τ 

as a K-tuple which exploits both visual and HTML tags 

contents information of the instances (subtrees) of the type τ: 

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙_𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝜏) =  𝑏1 , 𝑏2, … , 𝑏𝐾 ; 

𝑏𝑖 =  
 𝑔𝑖 𝑥𝑗  

𝑚
𝑗=1

𝑚
 is the average of the statistical feature values 

gi for all of the m  instances xj of the type τ which are 

calculated as shown in Table 2. 

The statistical classifier can be used to measure the similarity 

between the type τ and an instance x using the multivariate 

normal distribution as follows. 

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙_𝑆𝑖𝑚 𝑥, 𝜏 =  𝑒𝑥𝑝  − 
 𝑔𝑖(𝑥) − 𝑏𝑖 

2

𝑠𝑖
2

𝐾

𝑖=1

  

Table2: List of the features used to calculate the semantic 

of a basic type. 

Feature Name Description 

g1(x) Width 

Percentage 

The percentage of the width of the 

image corresponds to the instance x 

to the page width. 

g2(x) Height 

Percentage 

The percentage of the height of the 

image corresponds to the instance x 

to the page height. 

g3(x) Area 

Percentage 

The percentage of the area of the 

image corresponds to the instance x 

to the whole page area. 

g4(x) Template 

Percentage 

The percentage of the template text 

nodes in the tree x. 

g5(x) Text Nodes 

Percentage 

The percentage of the text nodes in 

the tree x. 

g6(x) Leaves 

Percentage 

The percentage of the leaf nodes in 

the tree x. 

g7(x) Decoration 

Percentage 

The percentage of the decorative 

tag nodes (that emphasize the text 

nodes) in the tree x. 

where gi(x); i =1, …, N, are the feature values of the instance x 

(shown in Table 2), and 𝑠𝑖  is the standard deviation of the 

feature values gi for all of the instances of τ. The instance 

value x is considered similar to the type τ if the value 

Statistical_𝑆𝑖𝑚 𝑥, 𝜏  is greater than a threshold. 
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The two formulas Semantic_Sim and Statistical_Sim can be 

used now to measure the similarity among different schema 

types, among different instances, or between a schema type 

and an instance. The former formula measures both structural 

and semantic similarities, while the later one measures both 

content and visual similarities. 

4. CASE STUDY: SCHEMA 

FILTRATION 
In this section, we use the proposed classifier to post-process 

of the schema generated by web data extraction systems. We 

give an algorithm that tries to filter out the schema by using 

the proposed classifier. The first subsection defines the 

schema filtration problem. The second subsection illustrates 

the problem by giving a simple example. Finally, the filtration 

algorithm is discussed in the third subsection. 

4.1 Problem Definition 
Let 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 τ1 =  𝑥1 , 𝑥2 , … , 𝑥𝑘1

  and Instance τ2 =

 𝑦1, 𝑦2 , … , 𝑦𝑘2
  are the instances of the schema types 𝜏1 and 

τ2, respectively. We give the following definitions. 

Definition (Incomplete Schema Type): The schema type 𝜏1 

is called incomplete if there is some value x such that 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝜏1 , 𝑥  is greater than a threshold, while x is 

identified as an instance of a different type 𝜏2; i.e., 𝜏1 is an 

incomplete type if there is some value x such that x is similar 

to the instances of the type 𝜏1, while  𝑥 ∉ 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝜏1 . 

Definition (Incorrect Schema Type): The schema type 𝜏 is 

called incorrect if there is some instance 𝑥𝑖 ∈ 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝜏 , 

where 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝜏, 𝑥  is less than a threshold. 

Definition (Web Site Schema Filtration): Given a schema 

tree, schema filtration is the process of identifying incomplete 

and incorrect schema types, and then handling them to get a 

perfect/correct (as much as possible) schema. 

In the definitions above, the function 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝜏, 𝑥  is used 

to decide that x is an instance of the type 𝜏 as follows. If 𝜏 is a 

basic type, then x is an instance of 𝜏 when 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝜏, 𝑥 =
𝑏𝑎𝑠𝑖𝑐_𝑆𝑖𝑚(𝜏, 𝑥) is greater than a threshold. If 𝜏 is a non-basic 

type, then x is an instance of 𝜏 when each of the two values 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑆𝑖𝑚(𝜏, 𝑥) and 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙_𝑆𝑖𝑚(𝜏, 𝑥) is greater 

than a threshold. 

4.2 An Illustrative Example 
In this subsection, we give a simple example to demonstrate 

the definitions defined above. Figure 6(b) gives the schema 

identified by FiVaTech for a part of a web page in Figure 

6(a), where Figure 6(c) shows the DOM tree of this part of the 

web page. As shown in the figure, the three instances i1, i2, 

and i3 have the same structure, so FiVaTech has identified all 

of them as instances of a same type {}2. Similarly, i5–i14 are 

instances of {}6. The tuple <>4 has only one instance (i4) 

which displays the current page in a STRONG html tag. 

Although all the instances i1-i3 and i5-i14 have the same 

structure (each one displays a link to a web page), 

semantically, we have two types of data in these instances: 

link to a particular page and link to next/previous pages. As 

we defined above, the type {}2 is incorrect, because not all of 

its instances are similar (e.g., i3 is not similar to the two other 

instances i1 and i2). Similarly, the type {}6 is incorrect. Also, 

the set type {}6 gives an example of an incomplete type 

because the instance i3 is similar to the instances i5-i12 

although they are identified as instances of different types. 

The challenge here is how we can filter out such schema by 

handling incorrect and incomplete schema types. 

 
Fig. 6: (a) A part of a web page, (b) its schema, and (c) its 

DOM tree. 

4.3 Schema Filtration Algorithm 
In this subsection, we discuss the details of the proposed 

algorithm for schema filtration. Experimentally, as clear in the 

simple example given above in the previous section, incorrect 

and incomplete schema types almost are set types. For 

example, both of the two set types {}2 and {}6 are incorrect 

and incomplete. Also, incomplete non-set types appear with 

consecutive tuple/basic types. Therefore, the suggested 

filtration algorithm includes two main steps in order: 

Step 1: Set-type filtration 

Step 2: Consecutive non-set types filtration 

In the first step, Step I, the proposed algorithm traverses the 

schema tree and handles incorrect and incomplete types 

among set-type nodes in the schema as shown in Figure 7. An 

important notice here is that incorrect schema types should be 

handled before incomplete types. If we do the converse, we 

may get an incorrect semantic function 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝛽  for 

some basic type 𝛽 (i.e., it does not correctly reflect the 

semantic of the type 𝛽), so we could not correctly measure the 

similarity between 𝛽 and another type/instance. Furthermore, 

a semantic-based classifier that has incorrect schema types 

could not be used perfectly to measure the similarity among 

non-basic types. For example, in Figure 6, before handling the 

incorrect schema type {}2, the function 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝛽3  

(Semantic-Classifier({}2)) will be calculated based on the 

instance values “<<”, “previous”, and “1”. So, the function 

will not semantically reflect the instance data because they are 

not semantically similar. Therefore, the proposed algorithm 

will handle incorrect types before handling of incomplete 

types. In the second step, Step II, we traverse the schema tree 

and combine similar consecutive non-set types as a new set 

type. The similarity is measured based on the formulas 

defined in Section 4.1. We shall discuss the two steps in 

details below. 



International Journal of Computer Applications (0975 – 8887)  

Volume 107 – No. 1, December 2014 

32 

 

Fig. 7: The proposed set-type filtration algorithm. 

As shown in Figure 7, for a web site, given as input to the set-

type filtration algorithm the site schema as a tree (ST), a set of 

web pages from the site (Σ), and the pattern tree (constructed 

by FiVaTech), the algorithm traverses the schema tree ST in a 

post-order traversing fashion (lines 1-2). For each set-type 

node c (line 4), we use the instances of c from the collection 

of pages Σ to handle it by calling (in order) the two methods 

“handleIncorrectType” and “handleIncompleteType”.  

The first method handleIncorrectType shown in Figure 8, if c 

is an incorrect set type, divides the instances of the type c into 

different clusters (lines 4-13) such that all instances in each 

cluster are similar (peer instances) while two instances of 

different clusters are not similar. The method works as 

follows. Let 𝐷 = 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑐 =  𝑥1 , 𝑥2, … , 𝑥𝑘  is a set of all 

instances of 𝑐, the method starts by having only one cluster 

L=clust1 which has one instance, say x1. It then calculates both 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑐𝑙𝑢𝑠𝑡𝑖) and 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙_𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑐𝑙𝑢𝑠𝑡𝑖) for 

each existing cluster. For each instance xi (i=2, ..k), the 

method either updates the existing clusters by adding xi to one 

of them (line 7) or creates a new cluster clusti which contains 

the new instance xi (line 10). Again, 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑐𝑙𝑢𝑠𝑡𝑖) and 

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙_𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑐𝑙𝑢𝑠𝑡𝑖) for each cluster clusti is re-

calculated after the cluster is updated/created. The instance xi 

is added to the cluster clusti based on the similarity values 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑆𝑖𝑚 and 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙_𝑆𝑖𝑚 between the instance xi 

and clusti. After all instances are processed, the method 

defines a new type 𝜏𝑖  for each cluster clusti, and then the 

subtree from the node c in the schema tree ST is replaced by 

different sibling subtrees of roots 𝜏1 , … , 𝜏𝑘  (line 16). Finally, 

we modify the types of the instances in the DOM trees and 

replace them with the new schema types (line 17). 

The method handleIncompleteType merges all peer schema 

types on the left hand side of the current node c (the nodes 

𝜏1 , … , 𝜏𝑘  that replace c). Let c1 and c2 are two node types, the 

method merges them if they are peer types (instances of the 

second type are similar to the instances of the first one). At 

this time, the method identifies c1 as an incomplete type, 

deletes the type c2 from ST, and finally identifies all the 

instances of c2 in Σ as instances of c1 

(i.e., 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 c1 = 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 c1 ∪ 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 c2 ). Also, 

each node in the subtree from c2 is merged to its 

corresponding peer node in the subtree from c1. 

To clarify the proposed filtration algorithm, we apply the 

algorithm on the schema example shown in Figure 6.  As 

shown in Figure 7, the algorithm handles the two nodes {}2 

and {}6 in the schema tree in Figure 6(b). For the node c={}2, 

the method handleIncorrectType divides the instances {i1, i2, 

i3} of the node c into two different clusters clust1={i1, i2} and 

clust2={i3}. As shown in Figure 6, the two instances i1 and i2 

in clust1 are similar, while i3 is not similar to both i1 and i2. So, 

the set type node in the schema tree is replaced by the two 

types 𝜏1 and 𝜏2 that correspond to the two clusters clust1 and 

clust2, respectively. The type 𝜏1 is identified as a set type 

because it has more than one instance in a web page, while 𝜏2 

is identified as a tuple because it has one instance (i3) in each 

page. The method handleIncompleteType does not make any 

merging among the different types because there is no sibling 

node on the left hand side. The result of the algorithm after 

processing the set type node {}2 in the schema tree in Figure 

6(b) is shown in Figure 9(a). Similarly, the set-type node {}6 

in the schema tree in Figure 6(b) is divided into the two set-

types 𝜏3 and 𝜏4 that correspond to the two clusters clust3 = {i5, 

…, i12} and clust4 = {i13, i14}, respectively, after calling the 

method handleIncorrectType (see Figure 9(b)). Moreover, the 

method handleIncompleteType conquers the two set types 𝜏1 

and 𝜏4 in Figure 9(b) by removing the type 𝜏4 from the 

schema tree and identifying 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝜏1 =  𝑖1, 𝑖2 ∪
 𝑖13 , 𝑖14 . Also, it removes 𝜏2 and identifies 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝜏3 =
 𝑖5, … , 𝑖12 ∪  𝑖3 . The schema tree in Figure 9(c) is the result 

of applying the algorithm on the schema tree in Figure 6(b), 

where 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝜏1 =  𝑖1, 𝑖2 , 𝑖13 , 𝑖14   and 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝜏3 =
 𝑖3, 𝑖5, … , 𝑖14 . 

 
Fig. 8: HandleIncorrecteType algorithm. 

 
Fig. 9: The process of filtering out the schema in Fig. 6(b). 

For Step II, combining consecutive non-set similar types, we 

traverse the schema tree ST in a post-order traversing fashion 

as shown in Figure 10. For each non-leaf node c (line 4), 

using the method “mergeSimilarConsecutiveTypes” in line 5, 

we identify every similar consecutive non-set types and 

replace them by a new set type 𝜏, and then change the types of 

the instances of these consecutive types to the new type 𝜏. As 

a simple example shown in Figure 11(a), if the parent non-leaf 

type c in the schema tree has 4 child types 𝜏1, 𝜏2, 𝜏3 and 𝜏4, 

where the two consecutive types 𝜏2 and 𝜏3 are similar (with 

similar instances), then the algorithm merges the two types 𝜏2 

and 𝜏3 into a set type 𝜏 as in Figure 11(b). Then, the types of 

the instances of 𝜏2 or 𝜏3 are replaced by the new type 𝜏. 
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Fig. 10: Non-set type filtration algorithm. 

 

Fig. 11: An example of similar consecutive non-set schema 

types. 

5. EXPERIMENTS 
We conduct three experiments to measure the performance of 

the proposed classifier and the performance for the two steps 

of the filtration algorithm. We use a data set of 40 web sites. 

For each web site, given some pages as input, we run 

FiVaTech to get as output: the schema of the web site (ST) 

and the instances of every schema type from the pages. 

5.1 Classifier Performance for Different 

Number of Training Pages 
In this experiment, we show the performance of the suggested 

classifier when various number of training pages for each site 

are used. For each Web site, we fix 5 pages for testing and 

measure the accuracy of the classifier trained from n (2-5) 

pages. As shown in Figure 9, the classifier performs better 

when 3-5 pages have used than when 2 pages are used. Also, a 

slight increment in the performance is found when 3 to 5 

pages have been used. 

5.2 Set-Type Filtration Performance 
In this experiment, we evaluate the performance of the set-

type filtration step. For each web site, we manually identify 

incorrect/incomplete set-type schema types. We use the 

instances of each set-type to identify whether the set-type is 

incorrect /incomplete or not. As we discussed in section 4, a 

set-type is identified as incorrect if there is some instance of 

this type that is not similar to the type, while the set-type is 

identified as incomplete if there is some instance which is 

similar to this type but identified by FiVaTech as an instance 

of another type. For each schema type τ, we collect all of the 

instances of the type identified by FiVaTech 

(InstancesFiVaTech (τ)) and the instances of the type identified 

manually (InstancesManual (τ)). If the two sets 

InstancesFiVaTech (τ) and InstancesManual (τ) are equal, we 

identify the type τ as correct. If 
 InstancesFiVaTech (τ) < InstancesManual (τ) , we identify the 

type τ as incomplete, otherwise, we identify τ as incorrect. 

Finally, we evaluate the performance of the set-type filtration 

algorithm by calculating the recall and precision for the 

schema tree of each web site as follows. 

Precision: Precision is the proportion of schema types 

predicted by the algorithm as incorrect/incomplete that are 

targets (correctly identified). 

Recall: Recall is the proportion of incorrect/incomplete types 

that are predicted by the algorithm. 

Let A is the set of incomplete/incorrect set-types that are 

identified by the algorithm and B is the set of 

incomplete/incorrect set-types that are identified manually, so 

we can define recall and precision as follows: 

Recall =  
 A ∩ B 

 B 
       ,     Precision =  

 A ∩ B 

 A 
 

 

Fig. 12: The Classifier accuracy for different training 

pages (2-5) of a Web site. 

The performance of the algorithm with the 40 web sites is 

shown in Table 3. The experiment, as shown in the table 

shows an encourage result (recall = 0.85 and precision = 0.56) 

for the test web sites. In other words, the proposed algorithm 

can detect/handle reasonable percentage of 

incomplete/incorrect schema types in the schemas of the test 

web sites. 

5.3 Non-Set Consecutive Types Filtration 

Performance 
In this experiment, we evaluate the performance of the second 

step (consecutive similar non-set types). For each one of the 

40 web sites, we count the number of new set-types that 

should replace consecutive non-set types identified manually 

and by the algorithm. As we discussed before, every 

consecutive similar non-set types are replaced by a new set 

type. Table 4 shows the results for all of the 40 web sites. The 

performance of the non-set types filtration algorithm is also 

measured using recall and precision as shown in Table 5, 

where recall and precision are measured as follows. 

Recall =  
 A∩B 

 B 
       ,     Precision =  

 A∩B 

 A 
 , 

where A is the number of new set types identified by the 

algorithm to replace non-set consecutive types and B is the 

number of new set-types identified manually. To avoid the 

cases where either |A| or |B| equal zero, we consider recall = 

precision = 1.0 if manually there are no consecutive non-set 

types (|A| = 0) and also the algorithm does not detect any 

consecutive non-set types (|B| = 0). If one of the two values 

|A| and |B| equals zero while the other is not equal to zero, we 

set both recall and precision as zero (recall = precision = 0.0). 

Also, the experiment as shown in the table gives a reasonable 

result (recall = 0.58 and precision = 0.55) for the test web 

sites. 
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Table 3: The performance of the set-type filtration 

algorithm. 

Web site Recall Precision 

YAHP 0.50 0.25 

CDPL 1.00 0.50 

BUSINESS 1.00 0.67 

TELEVISION 0.78 0.64 

FOR5 1.00 0.50 

THRV 0.50 0.50 

USPA 0.50 1.00 

USTX 1.00 0.50 

VGAR 1.00 0.50 

CESP 0.67 1.00 

ALTA 1.00 0.33 

EXPE 0.50 0.33 

LYCO 1.00 0.20 

META 0.80 0.67 

NEWS 1.00 1.00 

WEBC 1.00 0.50 

QUESTION 0.50 0.50 

NUMERICAL 0.80 0.67 

COMPSKILL 0.67 0.50 

JOBS 0.50 0.33 

ART 1.00 0.67 

COMPONLINE 0.80 0.80 

COMPHARDWARE 1.00 0.67 

NOKIA 1.00 0.75 

BIOLOGICAL 1.00 0.33 

OSHISTORY 1.00 0.33 

PHOTOS 0.67 0.50 

ENGENIRING 1.00 0.25 

ANIMAL 1.00 0.67 

ENERGY 0.67 1.00 

FINANCE 1.00 0.40 

HUMAN 1.00 0.50 

INDUSTRY 0.75 0.50 

INTERNET 1.00 0.25 

MATHEMATICAL 1.00 0.67 

MUSIC 1.00 0.50 

PHYSIC 0.80 0.67 

SCIENCE 0.67 0.86 

SHOP 1.00 0.50 

ECONOMY 0.75 0.50 

Average 0.85 0.56 

6. CONCLUSIONS 
In this paper, we proposed a new versatile classifier for 

schema type. The classifier can be used as an extractor for 

web data extraction systems, used for schema mapping and 

used for post process of the schema generated by web data 

extraction systems (schema filtration). Since the types in the 

detected schema have missing names, we use the instances of 

such types for the classifier construction. Moreover, we used 

HTML tags contents, DOM trees structural information, and 

visual information of the schema type instances for the 

classifier construction. We also defined the schema filtration 

problem and suggested an algorithm to filter out the schema 

generated by web data extraction systems. In the future, we 

aim to use other characterizations of the instance-based 

schema matching such as relative frequencies of words and 

combinations of words, phone numbers, zip codes, 

geographical names, NLP techniques, etc. Also, we plan to 

extend this work to match elements in different levels of a 

schema tree or even elements in different schema trees. 

Table 4: Number of new set-types identified manually and 

by the algorithm. 

 

Web site 

# of new set-types 

Manual Algorithm 

YAHP 0 0 

CDPL 2 1 

BUSINESS 1 0 

TELEVISION 4 3 

FOR5 0 1 

THRV 1 2 

USPA 2 1 

USTX 0 0 

VGAR 1 2 

CESP 2 3 

ALTA 2 1 

EXPE 0 1 

LYCO 2 1 

META 3 4 

NEWS 1 2 

WEBC 1 0 

QUESTION 2 3 

NUMERICAL 3 4 

COMPSKILL 5 2 

JOBS 1 0 

ART 2 1 

COMPONLINE 0 0 
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COMPHARDWARE 0 1 

NOKIA 2 3 

BIOLOGICAL 2 4 

OSHISTORY 1 2 

PHOTOS 1 0 

ENGENIRING 0 0 

ANIMAL 1 1 

ENERGY 2 3 

FINANCE 3 1 

HUMAN 1 2 

INDUSTRY 2 0 

INTERNET 1 2 

MATHEMATICAL 1 0 

MUSIC 2 4 

PHYSIC 2 1 

SCIENCE 3 2 

SHOP 0 0 

ECONOMY 3 4 

 

Table 5: The performance of the consecutive non-set 

filtration algorithm. 

Web site Recall Precision 

YAHP 1.00 1.00 

CDPL 0.50 1.00 

BUSINESS 0.00 0.00 

TELEVISION 0.50 0.67 

FOR5 0.00 0.00 

THRV 1.00 0.50 

USPA 0.50 1.00 

USTX 1.00 1.00 

VGAR 1.00 0.50 

CESP 1.00 0.67 

ALTA 0.50 1.00 

EXPE 0.00 0.00 

LYCO 0.50 1.00 

META 0.67 0.50 

NEWS 1.00 0.50 

WEBC 0.00 0.00 

QUESTION 0.50 0.33 

NUMERICAL 0.67 0.50 

COMPSKILL 0.20 0.50 

JOBS 0.00 0.00 

ART 0.50 1.00 

COMPONLINE 1.00 1.00 

COMPHARDWARE 0.00 0.00 

NOKIA 1.00 0.67 

BIOLOGICAL 1.00 0.50 

OSHISTORY 1.00 0.50 

PHOTOS 0.00 0.00 

ENGENIRING 1.00 1.00 

ANIMAL 1.00 1.00 

ENERGY 0.50 0.33 

FINANCE 0.33 1.00 

HUMAN 1.00 0.50 

INDUSTRY 0.00 0.00 

INTERNET 1.00 0.50 

MATHEMATICAL 0.00 0.00 

MUSIC 1.00 0.50 

PHYSIC 0.50 1.00 

SCIENCE 0.33 0.50 

SHOP 1.00 1.00 

ECONOMY 0.67 0.50 

Average 0.58 0.55 
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