
International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 1, December 2014

7

Understanding Change Prone Classes in Object

Oriented Software

Deepa Godara
Research Scholar

Computer Science Engineering
Uttarakhand Technical University

Dehradun, India

R.K. Singh
Professor,

Electronics and Communication Engineering
Uttarakhand Technical University

Dehradun, India

ABSTRACT

Classes in Object Oriented Systems are continuously

subjected to changes and defect prone. Predicting such classes

is a key research area in the field of software engineering. It is

important to identify such change prone classes and defect

prone classes. Identifying change prone classes can help

developers to build quality software on time. Considering all

the above issues, this paper covers the following key issues:

1) identification of change prone classes using various

approaches 2) How changes in one class affects multiple

classes associated with it. 3) Study Dependency between

classes and their effects.

Keywords

Change prone, class dependency, UML2.0 sequence diagram,

UML2.0 class diagrams

1. INTRODUCTION
Software systems are continuously subjected to changes.

Handling change is one of those fundamental problems in

software engineering. Evolutionary development has been

proposed as an efficient way to deal with risks such as new

technology and imprecise or changing requirements [15].

Changes are made to add new features, to adapt to a new

environment, to fix bugs or to re-factor the source code [4].

When adapting a system to new usage patterns or

technologies, it is necessary to foresee what such adaptations

of architectural design imply in terms of system quality [1].

Changes can be due to a variety of reasons such as

enhancements, adaptation, perfective maintenance or fixing

defects. Some parts of the software may be more prone to

changes than others. Knowing which classes are change-prone

can be very helpful; change-proneness may indicate specific

underlying quality issues [3]. If a maintenance process can

identify what parts of the software are change-prone then

specific remedial actions can be taken. Thus, knowing where

most changes are made over time can identify key change-

prone classes, key change-prone interactions, and the

evolution process can focus attention on them [3].

There are many reasons of project failures, some of them are:

inaccurate understanding of end-user needs; inability to deal

with changing requirements; software that is not easy to

maintain or extend or late discovery of serious project flaws;

overwhelming complexity; design and implementation;

uncontrolled change propagation or insufficient testing [2].

Even a minor change can have considerable and unexpected

effects on the system [11]. Classes that are more change prone

in software require particular attention because they require

effort and increase development and maintenance costs.

Identifying and characterizing those classes can enable

developers to focus preventive actions such as, peer-reviews,

testing, inspections, and restructuring efforts on the classes

with the similar characteristics in the future. As a result,

developers can use their resources more efficiently and deliver

higher quality products in a timely manner [9]. If faulty

classes can be detected early in the development project’s life

cycle, mitigating actions can be taken, such as focused

inspections Prediction models using design metrics can be

used to identify faulty classes early on [13]. The accuracy of

the predicted impact determines the accuracy of cost

estimation and quality of project planning [14].

We believe that most of the software metrics evaluate the

degree of object-orientation or measure static characteristics

of the design, which are not always helpful in answering the

question whether a specific design is good or not. When

trying to answer such a question, an expert would assess the

conformance of the design to well established rules of thumb,

heuristics, and principles [10]. Behavioral Dependency

Analysis (BDA) determines the extent to which the

functionality of one system entity is dependent on other

entities. Based on the source of information used to perform a

BDA, we can divide the BDA techniques into three groups:

code-based, execution-trace-based, and model-based. To

derive behavioral dependency measures between two

distributed objects, we perform a systematic analysis of

messages exchanged between them in a set of sequence

diagrams (SDs) For example, when an object sends a

synchronous message to another object and waits for a reply,

we define the former object to be behaviorally dependent on

the latter [7].

UML is now widely accepted in the software engineering

community as a common notational standard. It supports

object-oriented designs which in turn encourage component

reuse. It can be used to provide multiple views of the system

under design [6]. The UML based design enabled us to apply

formal verification and validation techniques [5]. The unified

modeling language (UML) is a graphical language for

visualizing, specifying, constructing, and documenting

software-intensive systems. UML provides a standard way of

writing system's blueprints, covering conceptual things,

classes written in a specific programming language, database

schemes and reusable software components [2]. UML has

emerged as the software industry’s dominant language and is

already an Object Management Group (OMG) standard. It

represents a collection of best engineering practices that have

been proved successful in the modeling of large and complex

systems. OMG is proposing the UML specification for

international standardization for information technology [8].

As the use of object-oriented design and programming

matures in industry, we observe that inheritance and

polymorphism are used more frequently to improve internal

reuse in a system and facilitate maintenance [12].

The remaining of the paper is categorized as follows: a short

analysis of some of the literature works in the change

proneness prediction methods is offered in Section 2. The

inspiration for this study is specified in Section 3. Section 4

enlightens the short notes for the proposed change proneness

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 1, December 2014

8

prediction methodology and the structure for the suggested

methodology. The experimental results and presentation study

discussions are given in Section 5. At last, the conclusions are

summed up in Section 6.

2. RELATED WORK
In the course of the growth and preservation of object-

oriented (OO) software, the data on the classes which are

more prone to change is highly advantageous. Developers and

maintainers are able to create further adaptable software by

changing the segment of classes which are susceptible to

modifications. Conventionally, nearly all change-proneness

forecast has been investigated according to source codes.

Nevertheless, change-proneness forecast in the initial stage of

software growth can offer an easier method for evolving

durable software by changing the existing plan or selecting

substitute plans prior to execution. To tackle this requirement,

Ah-Rim Han et al. [16] have offered an innovative and a

systematic method for estimating the class dependency

measure (BDM) which enables proper forecast of change-

proneness in UML 2.0 brand. Ali R. Sharafat and Ladan

Tahvildari [17] have come out with a novel method to forecast

modifications in an object-oriented software mechanism. The

key dilemma in software growth procedure is to evolve

inaccuracy recognition to initial stages of the software life

span. With this end in view, the Verification and Validation

(V&V) of UML diagrams undertake a very significant

function in identifying defects at the plan stage itself. It has a

discrete relevance for software safety, where it is highly

essential to spot safety faults before they can be subjugated.

V. Lima et al. [18] have played a vital role in this regard by

offering a formal V&V method for one of the most admired

UML diagrams viz. sequence diagrams. A lion’s share of

research works has concentrated their attention on assessing

the location of the utmost change-prone entities and the way

of dissemination of the modification through a system. Mehdi

Amoui et al. [19] have established that an awareness of

probable time of occurrence of modifications will motivate

managers and developers to design their preservation

functions with superior proficiency. Premature detection of

error prone and alteration prone classes enables the developers

and experts to utilize their precious time and resources on

these zones of software. Malan V. Gaikwad et al. [20] have

the credit of introducing a novel a method of employing class

hierarchy technique which is easily comprehend-able and

executable. Recognizing the change-prone and inaccuracy

prone classes earlier can help concentrating interest on these

classes. Malan V. Gaikwad et al. [21] have intelligent focused

on locating reliance of software that may be obtained by

assessing the proneness of Object Oriented Software. Two

major kinds of proneness were linked with OO software

namely Fault Proneness and Change Proneness. Recognizing

change-prone classes enables developers to devote further

interest to classes with parallel traits in the future and thus

investigation resources and time can be utilized more

efficiently. Xiaoyan Zhu et al. [22] have gathered a group of

static metrics and modification data at class level from an

open-source software product, Datacrow. Moreover, Emanuel

Giger et al. [24] have presented a paper for capturing the fine-

grained Source Code Changes (SCC) and their semantics and

also Ali R. Sharafat and Ladan Tahvildari [25] have proposed

a novel method for the prediction of changes in object

oriented software system, in which the quality aspects were

qualified by the probability of change in each class.

3. CHANGE PRONE CLASSES
In this section we attempt to answer following questions:

What is change proneness? What are the advantages of finding

change prone classes?

Change proneness is the probability that a particular part of

the software would undergo change in future. Software

changes can be due to: a) Addition of new features. b) To

adapt to a new environment. c) To fix bugs. d) Refactor the

source code. e) Due to enhancements, adaptation, perfective

maintenance or fixing defects. Some parts of software are

more prone changes than others.

Fig. 1: Advantages of change prediction model

Finding such classes can be very useful: 1) Developers can

focus preventive actions such as peer reviews, testing,

inspection and restructuring efforts on the classes. 2)

Resources can be more efficiently utilized for timely

completion of project. 3) Developers can concentrate more on

such classes to produce a high quality product. 4) A change

prediction tool can improve maintenance and evolution

tasks.5) If changes can be predicted at the earlier stages of

software development when design models become available

it becomes relatively easy and inexpensive to modify the

current design. 6) Developers and Maintainers can make more

flexible software by identifying change prone classes. 7) If

change-prone classes can be predicted at the earlier phase in

the software development life cycle, when the design models

become available, quality problems related to design can be

detected before implementing codes; current design can be

modified or alternative designs can be chosen easily on design

models.

Thus knowing where most changes are made over time can

identify key change prone classes, key change prone

interactions and evolution process can focus attention on them

[3].

4. CHANGE PREDICTION ANALYSIS
Change prone classes can be analyzed by finding behavioral

dependency using UML2.0 class diagrams such as class

diagrams, sequence diagrams and interaction overview

diagram. This section describes an overview of UML2.0 and

its diagrams. UML 2.0 is totally a different dimension in the

world of Unified Modeling Language. It is more complex and

extensive in nature. UML is a modeling language used by

system developers to specify, visualize, construct and

document system.UML has become standard modeling

language and it has expanded quite a bit since its inception

and is applied to many different domains.UML has become

Identifying change

proneness classes

Designers can design a more flexible

software

Modification of current design

becomes inexpensive and easy

Resources can be more efficiently

utilized to produce a high quality

product

Developers can focus on preventive

actions such as peer reviews, testing ,

inspection and restructuring efforts

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 1, December 2014

9

the de-facto standard for modeling software

applications.UML2.0 is by far the largest UML specification,

cleanest and most compact. It can be used for designing

software, communicating software or business processes,

capturing details about a system for requirements or

analysis.UML attempts to bridge the gap between original

idea for a piece of software and its implementation. One of the

major motivations for the move from UML1.5 to UML2.0

was to add the ability for the modelers to capture more system

behavior and increase tool automation. A relatively new

technique called Model Driven Architecture (MDA) offers the

potential to develop executable models that tools can link

together and to raise the level of abstraction above traditional

programming language. UML was designed to accommodate

automated design tools, but it was not intended only for tools.

UML 2.0 is distributed as four specifications: 1) Diagram

Interchange Specification: It provides a way to share UML

models between different modeling tools. 2) UML

Infrastructure: It defines the fundamental low level, core,

bottom concepts of UML. 3) UML Superstructure: It is the

formal definition of elements of UML. 4) OCL Specification:

It defines a simple language for writing constraints and

expressions for elements in a UML model.

We will be using UML as a graphical language for

visualizing, specifying, constructing and documenting

software intensive systems. UML2.0 offers 13 diagrams.

1)Sequence diagram is a time dependent view of the

interaction between objects to accomplish a behavioral goal of

the system. The time sequence is similar to the earlier version

of sequence diagram. An interaction may be designed at any

level of abstraction within the system design, from subsystem

interactions to instance level. It depicts the software in terms

of a specific sequence of messages between objects. Here alt,

opt and loop combined fragments enable modelling of

complex control structures. 2) Communication diagram is a

new name added in UML2.0. A Communication diagram is a

structural view of the messaging between objects, taken from

the Collaboration diagram concept of UML 1.4 and earlier

versions. This can be defined as a modified version of

collaboration diagram.3) Interaction Overview diagram is also

a new addition in UML2.0. An Interaction Overview diagram

describes a high-level view of a group of interactions

combined into a logic sequence, including flow-control logic

to navigate between the interactions.4) Timing diagram is also

added in UML2.0. It is an optional diagram designed to

specify the time constraints on messages sent and received in

the course of an interaction.5) Class diagram provides

structural information of classes and relationships between

those classes.

A class can have two type of changes: internal changes and

external changes.

Definition1: If a change is occurring due to modifications in a

class itself is known as internal changes. These changes can

be due to addition or deletion of attributes or any

changes/modifications made to method declarations

Definition2: If a change is occurring by the changes

propagated from other classes is referred to as external

changes.

Internal changes can be predicted using source lines of code,

number of parameters and number of fields whereas external

changes can be determined by examining dependencies

between pair of classes or objects in the system. Dependencies

can be derived from UML2.0 diagrams such as sequence

diagrams and Interaction overview diagram. From UML2.0

diagrams we can derive both structural and behavioural

information, based on this we can derive behavioural

dependency measurement. A class can affect other classes

such that the other class get modified.

Fig 2 : Behavioral Dependency

If receiving class is modified it also causes the sending class

to be modified as because modifying an object’s class

receiving a message may affect the object’s class sending a

message.

Fig 3 : Example of Sequence Diagrams

In Fig.3, the first message is sync i.e. a synchronous message

(denoted by the solid arrowhead) complete with an implicit

return message; the second message is async i.e.

asynchronous (denoted by line arrowhead), and the third is the

asynchronous return message (denoted by the dashed line).

An object sending a message is behaviorally dependent on the

object receiving a message. There can be two types of

behavioral dependency: Explicit and Non explicit behavioral

dependency. We assume that a system consists of objects ob1,

ob2, ob3, …...obn.

Definition3: If an object ob1 needs to communicate with ob2

by sending a sync message to ob2 and receiving a reply from

ob2 , it is said to have explicit behavioral dependency.

Definition4: If an object ob1 needs to communicate with the

object obr such that ob1 needs some services of the object ob2

by sending a sync message to ob2 and ob2 communicates with

obr before replying to ob1. Subsequently obr communicates

with other objects before giving replying to ob2 .This kind of

dependency between objects ob1 and obr is said to have non

explicit behavioral dependency.

Fig 4 : Communication within Sequence Diagrams

In Fig4, object ob1 communicates with object ob2 by sending a

sync msg1 (synchronous message) to object ob2 and receives a

reply from it. Thus ob1 exhibits explicit behavioral

dependency with object ob2 .On the other hand, object ob1

communicates with object ob3, before the object ob1 receives

a reply for the message msg1 from object ob2, object ob2

communicates with ob3 by sending message msg2 .Since

Sending

class

Receiving

class

return

sync

ob1:c1 ob2:c2

SD

async

ob3:c3

msg4

msg5

msg2 msg3 msg1

ob1:c1 ob2:c2 ob3:c3 ob4:c4

SD

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 1, December 2014

10

object ob1 does not wait for a reply from ob2, object ob2 does

not exhibit any behavioral dependency.

5. CLASS DEPENDENCY

Class Dependency is one of the important features to predict

the change proneness. In a source code, if one class gets

changes, it also affects the other class. It can be found only

through the dependencies between the classes or objects. The

relationship between the sender object and receiver object is

an example of the class dependency, while sending a message

between two objects. The changes in the class of the receiver

object also affect the class of the sender object. The

inheritance and polymorphism are also taken into account,

during the measurement of class dependency. The higher

changes in class dependency indicate the possibility of more

changes to happen.

Two kinds of class dependencies are:

Direct Class Dependency: - Consider two objects 1O and

2O . If 1O wants services to be get from 2O , then a

synchronous message is sent to 2O and 1O waits

for a reply that received from 2O . This kind of dependency

is called as direct class dependency. This is denoted as,

21 OO  .

Indirect Class Dependency: - Consider n objects

nOOOO ...,,, 321 . Indirect dependency between the

objects 1O and nO is denoted as, nOO 1 , except

2n that represents direct class dependency 21 OO  .

Because the indirect class dependency is represented as

     nn OOOOOO  13221 .

Here, “ ” indicates the External service request relation.

For example, if an object 1O needs a service from the object

3O through 2O , then it is indicated as

   3221 OOOO   .

A synchronous message has the dependency between the

sender and receiver objects, since the sender object depends

on receiver object by waiting for the reply from the receiver

object. It also indicates that the reply from the receiver object

affects the sender object. But an asynchronous message does

not have the dependency between the sender and receiver

objects, since the sender object does not wait for the reply

from the receiver object, its process continues. We have to

compute the class dependency as a feature for our work, so we

consider only the synchronous messages.

Fig. 5: General structure of Sequence Diagrams (a) SD-1

(b) SD-2

5.1 Measuring Class Dependency
Please use a 9-point Times Roman font, or other Roman font

with serifs, as close as possible in appearance to Times

Roman in which these guidelines have been set. The goal is to

have a 9-point text, as you see here. Please use sans-serif or

non-proportional fonts only for special purposes, such as

distinguishing source code text. If Times Roman is not

available, try the font named Computer Modern Roman. On a

Macintosh, use the font named Times. Right margins should

be justified, not ragged.

To measure the class dependency from the source code, we

generate a UML Sequence and Class diagram for the source

codes. From this, we then measure the class dependency by

using the following methods [16].

(i) Construct Dependency model of Object

(ii) Construct Dependency model of system

(iii) Form reachable path table

(iv) Calculate the weighted sum of reachable paths

(v) Calculate the Class Dependency

i) Dependency model of Object: messages are exchanged

between instances of classes. Each message is a combination

of three parts: reverse traceable message this is valid incase of

indirect dependency, probabilistic execution (The

probabilistic execution rate of a message is a probability of

execution rate of a message in an alt combined fragment of a

sequence diagram) and expected execution rate (probability of

the execution rate of a sequence diagram)

ii) Dependency model of system: We need to find the

dependency for the whole input application of source code.

For this purpose, all these separated dependencies are

combined together to build one big System Dependency

Model to find the class dependency feature.

iii) Reachable path table: The paths between each pair of

objects in the system dependency model are traversed from

the source object to destination object and the paths are

tabulated in a reachable path table. To find the reachable

paths, traversal starts from a message incoming to the

destination object to a message outgoing from the source

object in reverse. These messages that are found via traversal

are added in the reachable path table. If the source and

destination objects have direct dependency between them,

then the name of the incoming message to the destination

object and the name of the outgoing message from the source

object are equal. So, only one message name is included in

the reachable path table for the direct dependency objects.

But for the indirect dependency objects, the traversal from the

incoming message to the destination object is carried out by

iteratively substituting it with a backward navigable message

and then we can reach the outgoing messages from the source

object.

iv) weighted sum of reachable paths: Sum of reachable paths

can be calculated as:

EERPER FF
N

Sum 
1

where, N - Number of messages in the respective

reachable path

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 1, December 2014

11

 PERF - Probabilistic execution rate of first message in

the reachable path

 EERF - Expected execution rate of first message in the

reachable path

v) Class dependency: The Dependency feature for a particular

class iC , is calculated for getting the reachable path by

summing the pair of instance of the corresponding class

 
ji CC , , where, ,1, njC j  and n is the total

number of classes.

6. PROPOSED CHANGE PRONENESS

PREDICTION METHOD
Generally, the research on change-proneness prediction is

made on the basis of “what” the researchers trying to predict

and “how” they predict the changes. But most researchers are

missed to find, “when” the changes are likely to be occurred.

Most of the applications of object oriented software use

complex inheritance relationship and polymorphism. Due to

this reason, there has been less emphasis to capture the aspect

of dynamic behaviors by the development of metrics.

Fig 6 : Overview of efficient frequency based change

proneness prediction model

Many of the existing metrics are still not explained about the

substantial part of change prone classes to improve the

change-proneness prediction models. Therefore, more number

of information’s is important to make an accurate change-

proneness prediction model. In order to achieve maintenance,

the frequency of changes in individual classes should be

analyzed and also found the corresponding changes made in

multiple classes. A change in one class affects another class

also. It is needed to be analyzed the dependencies between the

classes. This is one of the main issues in the prediction of

change proneness. The existing methods concentrate only on

behavioral dependency not the other factor which affects the

change proneness. This leads to a complexity in predicting the

change proneness of the system. In order to overcome these

issues in our proposed model, we will use time, popularity,

responsibility and dependency and other factors to predict the

change proneness of the proposed system

7. CONCLUSION AND FUTURE WORK
In this paper, an overview of change proneness and the

advantages of finding change prone classes at earlier stages is

given. Then, we discussed behavioural dependencies, its types

and how it can be calculated using UML sequence diagrams.

Finally, we have given an overview of our approach. Some of

our future works include: (1) comparing our model with other

models and showing that our model is optimal. (2)

Implementing our model and visualizing results.

8. REFERENCES

[1] Aida Omerovic, Anette Andresen, Havard Grindheim,

Per Myrseth, Atle Refsdal, Ketil Stolen, and Jon Olnes

2010, "Idea: a feasibility study in model based prediction

of impact of changes on system quality", In Proceedings

of the Second international conference on Engineering

Secure Software and Systems, pp. 231-240.

[2] Mario Kušek, Saša Desic, and Darko Gvozdanović

2001 "UML Based Object-oriented Development:

Experience with Inexperienced Developers", In

Proceedings of 6th International Conference on

Telecommunications, pp. 55-60.

[3] James M. Bieman, Anneliese A. Andrews, and Helen J.

Yang 2003 "Understanding Change-proneness in OO

Software through Visualization", In Proceedings of the

International Workshop on Program Comprehension

[4] Daniele Romano and Martin Pinzger 2011, "Using

Source Code Metrics to Predict Change-Prone Java

Interfaces", In Proceedings of 27th IEEE International

Conference on Software Maintenance, pp. 303-312

[5] András Pataricza, István Majzik, Gábor Huszerl and

György Várnai 2003, "UML-based Design and Formal

Analysis of a Safety-Critical Railway Control Software

Module", In Proceedings of the Conference on Formal

Method for Railway Operations and Control Systems,

2003.

[6] Kathy Dang Nguyen, P.S. Thiagarajan, and Weng-Fai

Wong 2007 "A UML-Based Design Framework for

Time-Triggered Applications ", In Proceedings of 28th

IEEE International Symposium on Real-Time Systems,

pp. 39 - 48

[7] Vahid Garousi, Lionel C. Briand and Yvan Labiche,

2006 "Analysis and visualization of behavioral

dependencies among distributed objects based on UML

models", In Proceedings of the 9th international

conference on Model Driven Engineering Languages and

Systems, pp. 365-379

[8] Kleanthis C. Thramboulidis 2001 "Using UML for the

Development of Distributed Industrial Process

Measurement and Control Systems", In Proceedings of

IEEE Conference on Control Applications, pp. 1129-

1134

[9] A. Güneş Koru, and Hongfang Liu 2007 "Identifying and

characterizing change-prone classes in two large-scale

open-source products", Journal of Systems and Software,

Vol. 80, No. 1, pp. 63-73

[10] Nikolaos Tsantalis, Alexander Chatzigeorgiou, and

George Stephanides 2005 "Predicting the Probability of

Change in Object-Oriented Systems", IEEE Transactions

on Software Engineering, Vol. 31, No. 7, pp. 601-614

[11] M.K. Abdi, H. Lounis, H. Sahraoui 2009 “A probabilistic

Approach for Change Impact Prediction in Object-

Oriented Systems”, In proceedings of 2nd Artificial

Intelligence Methods in Software Engineering

Workshop, 2009.

 taken from

Responsibility

dependency graph and

UML diagrams

Requirements

Based on dependency

coverage values

Change proneness

predicted using decision

tree algorithm

Frequency of interfaces

and methods calculated

using optimal frequency

item set mining

algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 1, December 2014

12

[12] Erik Arisholm, Lionel C. Briand, and Audun Føyen 2004

"Dynamic Coupling Measurement for Object-Oriented

Software", IEEE Transactions on Software Engineering,

Vol. 30, No. 8, pp. 491-506

[13] Daniela Glasberg, Khaled El Emam, Walcelio Melo, and

Nazim Madhavji 2000 "Validating Object-Oriented

Design Metrics on a Commercial Java Application",

National Research Council, September 2000.

[14] Mikael Lindvall 1999 "Measurement of Change: Stable

and Change-Prone Constructs in a Commercial C++

System", In Proceedings of IEEE 6th International

Software Metrics Symposium, pp. 40-49, 1999.

[15] Erik Arisholm, Dag I.K. Sjøberg 2000 "Towards a

framework for empirical assessment of changeability

decay", The Journal of Systems and Software, Vol. 53,

No.1, pp. 3-14

[16] Ah-Rim Han, Sang-Uk Jeon, Doo-Hwan Bae, and Jang-

Eui Hong 2008 "Behavioral Dependency Measurement

for Change-Proneness Prediction in UML 2.0 Design

Models", In Proceedings of 32nd Annual IEEE

International Conference on Computer Software and

Applications, pp. 76-83

[17] Ali R. Sharafat and Ladan Tahvildari 2008 "Change

Prediction in Object-Oriented Software Systems: A

Probabilistic Approach", Journal of Software, Vol. 3, No.

5, pp. 26-40

[18] V.Lima, C. Talhi, D. Mouheb, M. Debbabi, L. Wang,

and Makan Pourzandi 2009 "Formal Verification and

Validation of UML 2.0 Sequence Diagrams using Source

and Destination of Messages", ELSEVIER Electronic

notes in Theoretical Computer Science, Vol. 254, pp.

143-160

[19] Mehdi Amoui, Mazeiar Salehie, and Ladan Tahvildari

2009 "Temporal Software Change Prediction Using

Neural Networks", International Journal of Software

Engineering and Knowledge Engineering, Vol. 19, No. 7,

pp. 995–1014

[20] Malan V. Gaikwad, Akhil Khare, and Aparna S. Nakil ,

2011 "Finding Proneness of S/W using Class Hierarchy

Method", International Journal of Computer

Applications, Vol. 22, No. 6, pp. 34-38

[21] Malan V.Gaikwad, Aparna S.Nakil, and Akhil Khare

2011 "Class hierarchy method to find Change-Proneness

", International Journal on Computer Science and

Engineering, Vol. 3 No. 1, pp. 21-27

[22] Xiaoyan Zhu, Qinbao Song, and Zhongbin Sun 2013

"Automated Identification of Change-Prone Classes in

Open Source Software Projects", Journal of Software,

Vol. 8, No. 2, pp. 361-366

[23] Nachiappan Nagappan, Andreas Zeller ,Thomas

Zimmermann, Kim Herzig and Brendan Murphy 2010

"Change Bursts as Defect Predictors", In proceedings of

IEEE 21st International Symposium on Software

Reliability Engineering, pp. 309-318

[24] Emanuel Giger, Martin Pinzger and Harald C. Gall 2012

"Can We Predict Types of Code Changes? An Empirical

Analysis", In Proceedings of 9th IEEE Working

Conference on Mining Software Repositories, pp. 217-

226

[25] Ali R. Sharafat and Ladan Tahvildari 2007 "A

Probabilistic Approach to Predict Changes in Object-

Oriented Software Systems", In Proceedings of IEEE

11th European Conference on Software Maintenance and

Reengineering, pp. 27-38.

IJCATM : www.ijcaonline.org

