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ABSTRACT 

Hyperspectral sensors are devices that acquire images with 

narrow bands (less than 20nm) with continuous measurement. 

It extracts spectral signatures of objects or materials to be 

observed. Hyperspectral have more than 200 bands. 

Hyperspectral remote sensing has been used over a wide 

range of applications, such as agriculture, forestry, geology, 

ecological monitoring, atmospheric compositions and disaster 

monitoring. This review details concept of hyperspectral 

remote sensing; processing of hyperspectral data. It also 

focuses on the application of hyperspectral imagery in 

agricultural development. For example, hyperspectral image 

processing is used in the monitoring of plant diseases, insect 

pests and invasive plant species; the estimation of crop yield; 

and the fine classification of crop distributions. 
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1. INTRODUCTION 
Due to the successful launch and deployment of various 

satellites, satellite systems have been used for various 

applications. The various applications include surveillance 

systems, navigation, communication, remote sensing and 

earth observation systems. Further, the various applications 

related to remote sensing are meteorology, agriculture, 

mining, geology, mapping, city planning, ecological 

monitoring and disaster monitoring. The applications in 

remote sensing can also be increased with the development of 

various sensors. In order to improve the resolution in remote 

sensing various sensors such as electro-optical visible sensor, 

thermal imagers, SAR, LIDAR have proposed in the 

literature. However, due to the improvement number of bands 

for sensing, hyperspectral imagers have attracted the attention 

of various researchers. In hyperspectral remote sensing many 

narrow, contiguous spectral bands have been acquired 

simultaneously [1].Relatively broad wavelength band images 

are produced by Multispectral remote sensors such as the 

Landsat Thematic Mapper and SPOT XS [2]. However 

Hyperspectral remote sensors, collect image data 

simultaneously in dozens or hundreds of narrow, adjacent 

spectral bands. Due to which a continuous spectrum for each 

image cell is derived. Atmospheric correction, sensor 

adjustment and terrain effects are applied to the raw image. 

These image spectra can be compared with field or laboratory 

reflectance spectra in order to recognize and map surface 

materials such as particular types of vegetation or diagnostic 

minerals associated with ore deposits [3]. 

Typically, hyperspectral sensors capture light in the range of 

400 nm – 2500 nm. It covers the visible, NIR and SWIR 

frequency bands. However multispectral data is acquired over 

a relatively small number (<10) of broad spectral bands (≈ 

100 nm band width), hyperspectral imagers acquire data over 

the range tens to hundreds narrow (< 20 nm) spectral bands. 

Spaceborne systems tend to have a lower spatial resolution 

(30-150 m) in comparison to their airborne counterparts (35 

cm – 4 m) [4].As many applications of hyperspectal imaging 

are available, however precision agriculture is the one of the 

important application. Precision agriculture can be broadly 

defined as the use of observations to optimize the use of 

resources and management of farming practices [5] [6]. 

Satellite data acquired with the combination of a GPS and GIS 

is used to monitor the crops, manage the use of resources, and 

make decisions on farming practices. The soil characteristics, 

such as texture, structure, physical character, humidity, and 

nutrient level can be determined by using this technique. This 

paper gives the overview of hyperspectral sensors, it also 

extend the significance of hyperspectral imagers for precision 

agricultural. 

2. HYPERSPECTRAL SENSORS AND 

IMAGE PROCESSING 
Hyperspectral images are produced by instruments called 

imaging spectrometers. Combination of two related but 

distinct technologies: spectroscopy and the remote imaging of 

Earth and planetary surfaces have been involved in these 

imagers. Spectrometer is device (or spectroradiometers) 

which is measures the light reflected from a test material. An 

optical dispersing element such as a grating or prism in the 

spectrometer splits this light into many narrow, adjacent 

wavelength bands and the energy in each band is measured by 

a separate detector [1]. 

2.1 Plant Spectra 
The various plant attributes are extracted with the help of 

spectral reflectance as shown in figure 1. In the visible portion 

of the spectrum, the curve shape gives more absorption 

effects. The absorption effects extracts chlorophyll and other 

leaf pigments. Chlorophyll absorbs visible light very 

effectively but absorbs blue and red wavelengths more 

strongly as compared to green which produces a characteristic 

small reflectance peak within the green wavelength range. As 

a consequence, healthy plants appear to us as green in color 

[8]. Thus species type, plant stress, and canopy state all can 

affect near infrared reflectance measurements. Hyperspectral 

imagers are generally used on either ground based (stationary 

or hand-held), airborne or space-based platforms. Ground 

based system are typically used to make measurements 

requiring extremely high spectral resolution, such as 

measurements of spectral signature or BRDF. Airborne 

hyperspectral remote sensing has a nearly 30 years history, 

beginning with NASA’s AIS, the first airborne hyperspectral 

platform to fly in 1982[9] [10].Since then, numerous airborne 

hyperspectral imagers have been developed. Different types of 

Hyperspectral sensors and data providers are given in the 

table 1  
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Figure 1.Plant Spectral curve [32] 

3. DATA PROCESSING AND 

ANALYZING METHOD 
Data processing and analysis method of hyperspectral is 

different than the Multispectral because these two 

technologies have different features which is shown in Figure 

2 [11]. Steps for the hyperspectral data processing are as 

given below: 

3.1 Radiometric Correction 
Hyper spectral remote sensing information may be influenced 

by external factors such as remote sensor aging, bidirectional 

reflectance distribution and terrain factors. In the complex 

urban terrain in natural disaster zones, will weaken the 

sensitivity of distinguishing terrain by hyper spectral remote 

sensing data. Therefore, like ordinary RS, hyper spectral 

remote sensing information needs for radiometric correction 

to eliminate the influence of these factors. The atmospheric 

correction can be done using the software such as “ACORN” 

[33] [34]. 

3.2 Image Enhancement 
Image enhancement technique improves the overall quality of 

image. Spectral image enhancement technology can enhance 

the differences between pixels and spectrum. The main 

purposes of image enhancement are to change the gray scale 

of images, to improve image contrast, to eliminate the edge 

and noise, highlight the changes in crop conditions. 

3.3 Spectral Reduction and Dimension 

Reduction 
Hyperspectral has more no. of band; these bands are highly 

correlated to each others. They captures the redundant data, it 

increases the data size. General dimension reduction methods 

are to get low spectral resolution data by convolution 

operation. The narrow band information of hyper spectral 

remote sensing images is transformed into the broadband 

information of conventional remote sensing images by 

convolution operation to make comparative analysis. Spectral 

compression, noise suppression, and dimensionality reduction 

can be done using the MNF transformation [12] [13].  

 

 

 

 

Table 1. Current and Recent Hyperspectral Sensors and 

Data    Providers 

Satellite 

Sensors 

Manufact-urer Number 

of Bands 

Spectral 

Range in 

µm 

FTHSI on 

MightySat 

II 

Air force 

Research Lab  

256 0.35 to 

1.05  

Hyperion 

on EO-1 

 

NASA Goddard 

Space Flight 

Center 

220 0.4 to 2.5  

Airborne 

Sensors 

Manufact-urer Number 

of Bands 

Spectral 

Range 

AVIRIS NASA Jet 

Propulsion Lab 

224 0.4 to 2.4 

HYDICE 

 

Naval Research 

Lab 

210 0.4 to 2.5 

PROBE-1 Earth Search 

Sciences 

Inc. 

128 0.4 to 2.5 

CASI 

 

ITRES Research 

Limited 

228 0.4 to 1.0 

HyMap 00 

to 200 

Visible to 

thermal 

Infrared 

Integrated 

Spectronics 

 

100 to 

200 

Visible to 

thermal 

infrared 

AISA 

 

 

Spectral Imaging Up to 

288 

0.43 to 1.0 

um 

3.4 Determination of End Members 
End members are detected using the PPI. Based on MNF 

higher order bands are selected for further processing.PPI 

locates the most spectrally extreme (unique or pure) pixels 

[13].A PPI image is created in which the digital number of 

each pixel corresponds to the number of times that pixel was 

recorded as extreme. A histogram of these images shows the 

distribution of “hits” by the PPI. An adaptive threshold is 

selected using the histogram which selects only the purest 

pixels. This method will reduce the number of pixels to be 

analyzed. These pixels are used as input to an interactive 

visualization procedure for separation of specific end 

members. 

3.5 Extraction of end member Spectra 
End members are extracted using n-dimensional scatter plots 

[14]. The coordinates of the points in n-space consist of “n” 

values which gives the spectral reflectance values in each 

band for a given pixel. The distribution of these points in n-

space can be used to estimate the number of spectral end 

members and their pure spectral signatures. It provides an 

intuitive means to understand the spectral characteristics of 

materials. 

3.6 Identification of end member spectra 
End member spectra are identified using visual inspection, 

automated identification, and spectral library comparisons 

[15] [16][17].Spectra are visually examined to identify key 

spectral features locations, depths, and shapes, and these are 

compared against application-specific spectral libraries. 

Automated methods that compare overall spectral shape and 

specific features are also applied to determine candidate 

materials and to produce mathematical comparisons. 
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3.7 Spectral Information Matching and 

Classifications 
The SAM produces maps of the spectrally predominant 

minerals and plants for each pixel by comparing the angle 

between the image spectra and reference spectra in n-

dimensional vector space [15]. MTMF is basically a partial 

linear spectral unmixing procedure [14]. MF based on well-

known signal processing methodologies, maximizes the 

response of a known end member and suppresses the response 

of the composite unknown background [18][19][20]. 

 

Figure 2.  Hyperspectral Analysis Scheme 

4. AGRICULTURAL MANAGEMENT 
Hyperspectral remote sensing provides information across 

numerous contiguous spectral bands; however, most 

applications typically require data from only a select set of 

frequencies determined according to the absorption and 

reflection properties of the matter being observed. The 

spectral absorption characteristics of matter are influenced by 

a variety of factors relating to structure. The spectral 

signatures of vegetation in general exhibits several 

characteristic features, namely, the green peak, the 

chlorophyll well, the red-edge, the NIR plateau, and water 

absorption features [7]. Hyperspectral remote sensing has also 

helped enhance more detailed analysis of crop classification. 

performed rigorous analysis of hyperspectral sensors (from 

400 to 2500 nm) for crop classification based on data mining 

techniques consisting of PCA , lambda–lambda models, 

stepwise Discriminate Analysis and derivative greenness 

vegetation indices. Through these analyses they established 22 

optimal bands that best characterize the agricultural crops.  

Agricultural applications also benefit from the definition of 

such indices, which can be used to assess a variety of 

information about the health of crops or estimation of crop 

yield. For example, NDVI and SAVI are used for estimation 

of green LAI using hyperspectral data [8].Precision 

agriculture is a technique which can highly benefit from 

hyperspectral remote sensing. In the next sections, the use of 

hyperspectral imaging in key precision agriculture 

requirements, such as the monitoring of plants and pests, the 

estimation of crop yield, and crop classification is discussed. 

4.1 Monitoring Plant Diseases, Insect Pests 

and Invasive Plant Species 
Early detection of plant diseases and insect infestation is 

crucial for farmers and agricultural managers who want to 

reduce economic loss due to these threats. For instance, to 

detect tree stress caused by the Douglas-fir beetle, Lawrence 

and Labus [6] examined methods that performed well on 

multispectral and hyperspectral imagery; namely, stepwise 

discriminate analysis, classification and regression tree 

analysis. The Probe-1 sensor was flown aboard a helicopter 

and data over 128 continuous spectral bands between 0.4 μm 

and 2.5 μm with a 1 m spatial resolution was collected. 

Furthermore, remote sensing techniques have the potential to 

monitor and detect invasive plant species as well as weeds in 

agriculture and forest ecosystems. Studies show that invasive 

plants represent a severe threat to the forest environment and 

other plant species [21] [22]. For instance, Tamarix (salt 

cedar) is one of the most threatening invasive species in 

U.S.A because it increases soil salinity by absorbing limited 

sources of moisture and water. A multi-resolution and multi-

source approach was successfully applied by Wang [22], who 

used five mosaicked AISA images of 1 m spatial resolution, 

Quick Bird and Landsat TM data to estimate and classify 

images according to the abundance of tamarix. However, in 

work by [21], hyperspectral remote sensing was shown to be a 

powerful and economical option for learning the spatial 

distribution tamarisk and other invasive species. More 

specifically, six Landsat8 ETM+ satellite images collected at 

differing times during the growing season were used to 

compute a variety of vegetation indices, whose values 

changed over time, which were then used in conjunction with 

the Maximum Entropy Model to detect and map the tamarisk 

distribution. 

4.2 Estimation of Crop Yield 
Crop yield estimation is one of the most significant issues for 

agricultural management, and one of the areas that precision 

farming techniques can offer the greatest benefit. Remote 

sensing technologies, together with the use of GPS receivers 

and GIS, have been shown to be effective in monitoring crop 

yield, improving land management, and facilitating the 

implementation of precision farming techniques [22]. In 

particular, crop yield is strongly related with the electrical 

conductivity of soil, which determines the soil texture and soil 

salinity characteristics [23].  

Soil nutrient content, Nitrogen (N) concentration, soil 

properties, water and existence insect pests are some of the 

key parameters that affect crop yield directly. The total yield 

of a field can be estimated by building a crop yield estimation 

model, using information such as weather related factors, soil 

parameters, diseases, pest insect infestation, and crop 

properties. With the help of GPS and GIS, this model can map 

the distribution of different plants.  

Therefore, variations in the growth of crops across a field and 

final crop yield predictions can be estimated. These estimates 

can then be used to determine the appropriate farming 

management techniques that should be applied to the field to 

improve yield. According to [25], in an ideal precision 

agriculture application, remote sensing should maximize the 

utility of data acquired from the air or space-borne sensor, and 

minimize requirements for laborious supplemental ground 

measurements. By using AVIRIS (20m spatial resolution) and 
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the Shafter Airborne Multispectral Remote Sensing System, a 

yield map was produced from yield monitor data to identify 

those areas of low and high yields. Both sensors showed that 

1) remote sensing techniques are powerful tools to predict 

sugar beet fields, and 2) temporal variations within the fields, 

such as growth of a crop, could be monitored. The sufficiently 

frequent acquisition of hyperspectral data is critical for 

determining the temporal relationship between remote sensing 

estimates and the actual crop yield. The spectral reflectance of 

plants indicates the speed of the growing process, and thus 

aids scientists and farmers in estimating the yield prior to 

harvesting. Yang [26] evaluated airborne hyperspectral 

imagery to assess crop variability within a field. Both airborne 

multispectral and hyperspectral images can be used to 

determine the spatial patterns in plant growth and yield before 

harvest. Satellite imagers have a coarser spatial resolution that 

is sufficient for estimating crop yields over large fields; 

however, airborne imagers are better for evaluating in-field 

yield variability due to their finer spatial resolution. 

4.3 Classification of Agricultural Crops 
Traditionally, mapping the vegetation of an entire field 

requires time intensive field surveys; however, with remotely 

sensed data, especially hyperspectral data, the classification 

and mapping of vegetation can be accomplished with in a 

more cost-effective manner with more detail in less time [24]. 

Several studies [30], [27] show that the classification 

accuracies of agricultural crops acquired from narrowband 

hyperspectral data are considerably higher than that achieved 

with multispectral data [4]. To observe changes within the 

field, data should be gathered before seeding, during planting 

and harvesting. Data acquisition prior to seeding provides 

information relating to soil productivity, soil fertility, soil 

physical properties-texture, density, mechanical strength, 

moisture content, soil chemical properties organic matter, 

salinity, soil plant-available water-holding capacity [31].  

Mid- season crop monitoring and classification allows farm 

producers to detect invasive plant species, diseases and insect 

infestations, which aides in making decisions on 

herbicide/pesticide application. To maximize the cost-benefit 

ratio, determining and applying the appropriate pesticide at 

the right time and right place is crucial for precision 

agriculture. Thus, hyperspectral remote sensing is a dynamic 

technique that can evaluate potential problems and provide 

effective management solutions [30]. Although the processing 

of hyperspectral data is particularly complex both from a 

theoretical and computational perspective, hyperspectral 

sensors are important and powerful instruments for 

classification problems. 

4.4 Estimation of Vegetation Water 

Content 
Assessment of vegetation water content  is critical for 

monitoring vegetation condition, detecting plant water stress, 

assessing the risk of forest fires and evaluating water status 

for irrigation(Yen-Ben Cheng et al.,2006).VWC was 

measured by calculating wet/dry weight difference per unit of 

ground area (g/m2) of each plant canopy (n = 95) [28]. 

Various mono- and multivariate statistical methods are 

available for estimating VWC from hyper-spectral data 

[30],[31].Different multivariate statistical methods available 

are partial least square regression, artificial neural network 

and principal component regression. Where monovariate 

technique includes narrow band RWI, NDWI, (SAVI2) and 

TSAVI. After estimation of both the methods based on cross 

validation procedure and statistical indicators such as   R2, 

RMSE and relative RMSE it is highly recommended for use 

with multi-collinear datasets. Principal component regression 

exhibited the lowest accuracy among the multivariate models. 

4.5 Quantifying Soil Property Variability 
Soil electrical conductivity (ECa) and soil fertility levels can 

be estimate by using hyperspectral imaging. Acquired data 

were converted to reflectance using chemically-treated 

reference tarps with eight known reflectance levels. 

Geometric distortions of the push broom sensor images were 

corrected with a rubber sheeting transformation. Statistical 

analyses, including simple correlation, multiple regressions, 

and PCA were used to relate HSI data and derived Landsat-

like bands to field-measured soil properties [29]. 

5.  CONCLUSION 
In this short survey, we have discussed about hyperspectral 

imaging background, imaging systems, applications in 

precision agriculture and techniques to process hyperspectral 

data. Hyperspectral imaging systems enables researchers to 

obtain information required to perform precision agriculture 

practices. The overall accuracy of Hyperspectrural imagery is 

better than the multispectral image processing. However the 

data the complexity and space complexity for the 

Hyperspectral image processing is more. Using hyperspectral 

imagery and GIS land management system the precision 

agriculture could be implemented in developing countries. As 

the population is increasing and resources such as water and 

agricultural land is being limited, hyperspectral precision 

agriculture becomes an important research area for the future 

development. This short survey will serve as a starting point 

for professionals in both agriculture and image processing to 

understand usage of hyperspectral image processing in 

agriculture. 
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7. ABBREVIATIONS 
ACRON Atmospheric Correction 

AIS Airborne Imaging Spectrometer 

AISA Airborne Imaging Spectrometer 

AISA Airborne Imaging Spectroradiometer for 

Applications 

AVIRIS Airborne Visible Infra red Imaging Spectrometer 

BLB Bacterial Leaf Bright 

BRDF Bidirectional Reflection Distribution Function 

CASI Compact Airborne Spectrographic Imager 

EPS Environmental Protection System 

GIS Geographical Information System 

GPS Ground Positioning System 

HSI Hyperspectral imaging 

HYDICE Hyperspectral Digital Imagery Collection   

Experiment 

LAI Leaf area index 
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LIDAR Light Detection and Ranging 

MF Matched filtering 

MNF Minimum Noise Fraction 

MTMF Mixture-Tuned- Matched Filtering 

MR Multiple Regression 

NDVI Normalized Difference Vegetation Index 

NDWI  Normalized Difference Water Index 

NIR Near Infrared 

PCA Principal Component Analysis 

PPI Pixel Purity Index 

RMSE Root Mean Square Error 

RWI Ratio Water Index 

SAR Synthetic Aperture Radar 

SAM Spectral Angle Mapper 

SAVI Soil Adjusted Vegetation Index 

SMLR Stepwise Multiple Linear Regressions 

SWIR Short Wave Infrared 

VWC Vegetation Water Content 
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