
International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.7, November 2014

1

Compressed Chatting Over Internet

Swapnil Sonawane
Student, University of Mumbai
M.E.Information Technology

VIT, Mumbai, India

Dilip Motwani
Associate Professor

Department of Computer Engineering
VIT, Mumbai, India

ABSTRACT
In all smart phones there are various applications (apps) which

can be used for chatting, sharing images, audios, videos and

communicate with each other. But the main disadvantage of

these applications is they cannot be used to send and receive

text file. Also we cannot able to send compressed images

while chatting over the internet to save the bandwidth. Using

“Compressed chatting over internet” it is possible to send text

files rather compressed text files as well as compressed

images while chatting over the internet to save the bandwidth.

General Terms
Huffman Encoding, LZW Encoding

Keywords
ISP, LZW encoding, Huffman encoding, WhatsApp, WeChat,

Lossless Compression
1. INTRODUCTION
The Android is a growing technology which has started to

fulfil various needs with lots of application to make things

easier and convenient to end users. Many android phone can

support various chatting applications like WhatsApp, WeChat

etc. WhatsApp is supported on most Android, BlackBerry,

iPhone, Windows, and Nokia smartphones. WhatsApp has

already over 450 million monthly active users and around 27

billion messages transferred in a single day. Using the

chatting applications like WhatsApp we can transfer images,

audios and videos and we can send and receive text [6].

In this paper we create a text and image chat application with

text and image compression using Huffman and LZW coding

in the android smartphones. Though wireless communication

is more expensive in nature, we create a chat application with

cost efficient communication over the wireless network. By

using the compression technique we reduce the data size of

the message and images to transfer over the internet using the

IP address.

2. PROBLEM DEFINITION
In May 2011, a security problem was reported which left

WhatsApp user accounts open for session hijacking and

packet analysis. WhatsApp messages were neither encrypted

nor compressed and data was sent and received in plaintext,

which means messages could easily be read if packet traces

were available. When using WhatsApp in a public WiFi

network, anybody was able to sniff incoming and outgoing

messages (including file transfers) [9].

The company claims that the latest version of the software

will encrypt messages without giving any details about

cryptographic methods they are using. So we can say the

encryption and security problem has been handled by the

company, but still they did not handle compression issue [8].

Using WhatsApp we can share images, photos, videos, audios,

location and phonebook contacts with other WhatsApp users

or in a WhatsApp users group.

Fig 1: Different operations on WhatsApp

It is observed that we cannot share or transfer text file ie text,

word or pdf file using WhatsApp, also the image file we

transfer, it will get transferred in its original size, which may

consume lots of network bandwidth if the image is of high

definition. A normal active user daily spend around 20MB on

WhatsApp for sharing text, audio files, video files, contact

sharing, and location sharing [5]. Sometimes this data usage

find very high, especially if a user is having a limited data

usage plan from a particular ISP. One more problem is, if the

internet speed is not appropriately fast, it takes lots of time to

download the high definition images and videos. So the main

demand among different WhatsApp and other chatting

application users is for the availability of text file sharing and

compressed image sharing.

3. COMPRESSION TECHNIQUES
Compression is mainly used because it helps to reduce the

consumption of expensive resources, like bandwidth of

transmission. On other side, compressed data should be

decompressed and this extra processing may disturb other

applications running in parallel. The design of data

compression schemes hence involves trade-offs between

different factors, including the compression degree, amount of

distortion, in case of lossy compression, and the

computational resources which are used to compress and

decompress the data [2].

We studied various encoding techniques and select the

Huffman and LZW encoding techniques for compression.

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.7, November 2014

2

3.1 Huffman Encoding
Huffman coding is an entropy encoding algorithm used for

lossless data compression in information theory. The term

refers to the use of a variable-length code table for encoding a

source symbol, where the variable-length code table has been

derived in a particular way based on the estimated probability

of occurrence or frequency for each possible value of the

source symbol [4].

In Huffman coding the characters in a data file are converted

to a binary code, where the most common characters in the

file have the shortest binary codes, and the least common

characters have the longest binary codes.

Huffman encoding uses a strictly binary tree where each non

leaf node has two children. The Huffman algorithm works as

follows [4]

3.1.1 Creating the tree
1. Start with as many leaves as there are symbols.

2. Enqueue all leaf nodes into the first queue (by probability

in increasing order so that the least likely item is in the head

of the queue).

3. While there is more than one node in the queues:

 3.1. Dequeue the two nodes with the lowest weight.

 3.2. Create a new internal node, with the two just removed

 nodes as children (either node can be either child) and

 the sum of their weights as the new weight.

 3.3. Enqueue the new node into the rear of the second

 queue.

4. The remaining node is the root node; the tree has

 now been generated.

3.1.2 Code generation of each symbol
1. Start from the root node. For each down left traversal, add a

'0' to the code and a '1' for each down right, add a '1'.

2. When you reach a leaf node, the current code is the code for

that character.

3. When travelling to the parent of a node, delete the last

added bit from the code.[1]

Let’s consider an example

Message to be encoded:

“dad ade fade bead ace dead cab bad fad cafe face”

Fig 2: Huffman code tree

From the above figure 3-1 we can generate the following

Huffman codes:

Table 1: Huffman code generation

Element Frequency Huffman

Code

A 11 10

B 03 000

C 04 001

D 09 01

E 07 111

F 04 110

Encoded Message:

01 10 01 10 01 111 110 10 01 111 000 111 10 01 10 001 111

01 111 10 01 001 10 000 000 10 01 110 10 01 001 10 110 111

110 10 001 111

The Huffman encoding of the message is 94 bits long. The

Huffman encoding saves 20 bits. The compression ratio is

1.21 to 1. The compression rate is 17.5% [7].

3.2 LZW Encoding
LZW performs the compression by constructing a word

“Dictionary” from a message and then using that dictionary

compress a string of symbols. The LZW algorithm stores

strings in a "dictionary" with entries for 4,096 variable length

strings. The first 255 entries are used to contain the values for

individual bytes, so the actual first string index is 256. As the

string is compressed, the dictionary is built up to contain

every possible string combination that can be obtained from

the message, starting with two characters, then three

characters, and so on [2].

The LZW algorithm works as follows:

1. Extract the smallest substring that cannot be found in the

remaining uncompressed string

2. Save the substring in the dictionary as a new entry and

assign it an index value

3. Substring is replaced with the index found in the dictionary

4. Insert the index and the last character of the substring into

the compressed string.

Let’s consider an example

Message to be encoded:

“The_rain_in_spain_”

We scan through the message to build up dictionary entries as

follows:

Table 2: Dictionary generation for LZW

Index Dictionary Entry

256 Th

257 he

258 e_

259 _r

260 ra

261 ai

262 in

http://www.ccs.neu.edu/home/jnl22/oldsite/cshonor/index6.htm#bit
http://www.ccs.neu.edu/home/jnl22/oldsite/cshonor/index6.htm#bit

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.7, November 2014

3

263 n_

264 _i

265 in_

266 _s

267 sp

268 pa

269 ain

The LZW coder simply uses it as a tool to generate a

compressed output. It does not output the dictionary to the

compressed output file. The decoder does not require it. While

the coder is building up the dictionary, it sends characters to

the compressed data output until it hits a string that's in the

dictionary. It outputs an index into the dictionary for that

string, and then continues output of characters until it hits

another string in the dictionary, causing it to output another

index, and so on. That means that the compressed output for

our example message looks like this:

The_rain_<262>_sp<261><263>

The decoder simply constructs the dictionary as it reads and

uncompressed the compressed data, building up the dictionary

entries from the uncompressed characters and dictionary

entries it has already established. One thing about LZW is

why the first 255 entries are initialized to single character

strings. There would be no point in setting index to single

characters, as the index would be longer than the characters,

and in practice that's not done [2].

So we selected these two lossless compression algorithms to

compress both text as well as images, as the aim of our system

is to improve best case compressions without affecting the

quality of the original message and image [2][3].

In our proposed method we create a chat application with data

compression over the network connection. We implement the

Huffman and LZW coding for the data compression and send

the text chat message over the internet. We use the IP address

of the mobile to establish the connection between the two

mobile devices and transferred the compressed message using

the internet. Following are the various activities used in

Compressed chatting over internet:

1. User enters a text message

In this, the user of the system enters a simple text message on

his/her mobile phone, which he/she wants to compress and

send it to the receiver.

2. Text passes through compression algorithm

In this, the entered text message will go under the

compression algorithm and the encoded code will get

generated by the algorithm

3. Text sent after compression to receiver

After compression of the text, the generated encoded code

will get sent to the recipient of the message

4. Text passes through decompression

At recipient end, the encoded text will undergo decompression

process to produce the original plain text message

5. Text displayed at receiver end

After decompression the original plain text will get displayed

at the recipient mobile terminal.

Fig 3: Process diagram of application

Following are the different modules which can be used while

creating this application:

1. Application Design

This module is used to provide the design of the application,

User interface is the major factor for an application to get an

successful attention among all possible application .It should

be user friendly to cover the attention.

2. Pairing Device

In this module we pair the two android devices connected

over the internet using the specific IP address and create a

communication link over the internet. Once the mobile device

is connected then the text message is transferred over the

connection.

3. Data Compression

In this module we use the Huffman and LZW coding to

compress the text message. Huffman and LZW coding is used

for lossless data compression. The technique works by

creating a binary tree of nodes or building a dictionary.

 4. Data Streaming

In this module we stream the compressed data to the receiver

which is already paired with sender using the IP address over

the internet. The receiver device on receiving the compressed

data decompresses the data to its original message and shows

it to the user.

4. RESULTS ACHIEVED
To prepare the encoded file, we studied over different text

messages, text files, images, researches and technical papers.

Using these statistics, we observed that Huffman and LZW

coding are two best coding techniques to compress text files

and images to send compressed text files and images over

internet to save bandwidth of a network.

It is observed that using Huffman and LZW, we will get

around 50-60 precent compression ratio on text files and

around 80 precent compression ratio on images [2].

Table 3: Comparison between Huffman-LZW

File Name Input

File Size

(In bits)

Output

File Size

(Huffma

n)

Output

File

Size

(LZW)

Example1.doc 68096 29433 30580

Example2.doc 58880 23640 23814

Example3.doc 83968 46876 48984

Example4.doc 20480 4836 2530

Example5.doc 27648 10921 8222

Example6.doc 57856 27163 30993

Example7.doc 87552 47101 54229

Example8.doc 48128 20600 23631

Example9.doc 79360 32416 30363

Example10.doc 68096 29433 30581

Pict3.bmp 1440054 276506 192888

Pict4.bmp 1440054 282824 100338

Pict5.bmp 1440054 318178 461637

Pict6.bmp 1365318 366830 371601

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.7, November 2014

4

5. PROOF OF CONCEPT
Our fully functional demo application has been developed in

android under the development tool Eclipse Juno. We tested

the application for different text files and images and we get

the desired compression result.

The unique part of this application is that we not only send the

text files which may be in the form of word or PDF, but also

we can compress them, then send them in compressed form

and on recipient side we can decompress them to bring them

in original form

Fig 4: Selection window

Fig 5: Text file compression

Fig 6: Image file compression

6. APPLICATIONS
The most useful and common application of our research

extends to the field of mobile computing. An android

application can easily be developed which will prove

immensely popular to the end user since it saves network

bandwidth as well as time, because compressed text and

images can get transferred faster than the original text and

image respectively.

7. CONCLUSIONS
In today's world, many projects and applications are being

developed to overcome boundaries in text messages and

instant messaging. While incredible progress has been made

in the field of mobile communication, support for increasing

various end user demands remains a concern. Various

advanced techniques are necessary in order to meet the

challenges of business. “Compressed chatting over internet”

comes up with a new model which can revolutionize the way

chatting has been done between individuals as well as in a

group. It can help chatting become faster and economical and

thus can made a good boost in mobile industry.

8. ACKNOWLEDGEMENT
We are indebted to Professor Varsha Bhosale and Professor

Rinku Shah, of Vidyalankar Institute of Technology for their

guidance and encouragement to write this technical paper.

Their invaluable guidance and unconditional support

motivated us to work hard towards achieving our desired

goals.

9. REFERENCES
[1] D.R. Kalbande, Dr.G.T. Thampi, Manish P. Mathai and

Sumiran Shah “Zip it up SMS- A path breaking model in

the field of mobile messaging” in IEEE 978-1-4244-

5540-9/10 in 2010

[2] Mohammed Al-laham & Ibrahiem M. M. El Emary

“Comparative study between various algorithms of data

compression techniques” in Proceedings of the World

Congress on Engineering and Computer Science 2007,

WCECS 2007, October 24-26, 2007, San Francisco, USA

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.7, November 2014

5

[3] S.R. Kodituwakku and U. S. Amarasinghe “Comparison

of lossless data compression algorithms for text data” in

Indian Journal of Computer Science and Engineering,

Vol 1 No 4 416-425 ISSN : 0976-5166

[4] Mamta Sharma “Compression Using Huffman Coding”

in International Journal of Computer Science and

Network Security, VOL.10 No.5, May 2010

[5] http://mybroadband.co.za/vb/showthread.php/445031-

Whats-your-Whatsapp-Usage-stats/ Mybroadband

[6] http://www.tweetganic.com/a/36687

[7] http://fileperms.org/whatsapp-is-broken-really-broken

[8] http://en.wikipedia.org/wiki/WhatsApp

[9] http://www.ccs.neu.edu/home/jnl22/oldsite/cshonor/jeff.

html Data Compression Algorithms by Jeffrey N. Ladino.

IJCATM : www.ijcaonline.org

http://mybroadband.co.za/vb/showthread.php/445031-Whats-your-Whatsapp-Usage-stats/
http://mybroadband.co.za/vb/showthread.php/445031-Whats-your-Whatsapp-Usage-stats/

