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1. INTRODUCTION

The concept of computability in the theory of computation is
introduced to the students through many models like Turing
machines, Partial Recursive Functions, λ-calculus, Post machines,
and Register machines. When dealing with practical computing
problems, the same students need to learn a programming language
and study how to express algorithms in that language. Thus there
is a disconnect between theory and practice.

In addition to the problem mentioned above, there are issues like
analysis and design of programs which require a study on the prin-
ciples involved in it. David Gries in his book [4] pointed out that

“Programming began as an art, and even to day most
people learn only by watching others perform (e.g. a
lecturer, a friend) and through habit, with little direc-
tion as to the principles involved. ... we are reaching
the point where we can begin to teach the principles
so that they can be consciously applied”.

In a series of articles [9, 10, 11, 12, 13] and a book [14] a theory
called ‘mapcode formalism’ has been presented as an alternative
approach so that a student can learn both the theoretical and
practical issues in terms of a single framework. In the article [7]
a class of maps called primal maps using mapcode theory was
introduced and it was proved that the class of primal maps coincide
with the class of partial recursive maps.

In continuation of the work, in the article [8] a mathematical
framework was proposed that systematically helps in analyzing
programs, particularly when dealing with ideas as in [2]. The
present article addresses some of the issues related to design of
programs. Certain structures are identified in designing a program

and certain classes of primal maps are identified based on the
programing structure for computing them. It is proposed that the
identified classes of maps act as building blocks in designing a
program for computing a primal map. This is verified with some
of the standard examples discussed in [5] which are used to train
students in the discipline of programming. However, it is not
claimed that the classification is complete. But this kind of study
helps in understanding design of algorithms and ensuring safety
and termination simultaneously. This article presents a class of
primal maps called maps admitting variations and a program
structure which works for any map in the class.

Let N and P denote the set of all non-negative integers and the set
of all positive integers respectively. Maps under consideration are
those maps which are defined on subsets of Np into Nr for p, r ∈ P.
A function is a map from a subset of Np into N. A map f with
domain D ⊆ Np and codomain Nr is called a partial map. It will
be denoted by either f : Np → Nr or f : D ⊆ Np → Nr . The
domain D of f can also be written as Df or dom(f) when it is
necessary to indicate the dependence of D on f . If Df = Np, f is
said to be total. The symbol .= may be read as ‘is defined as’. The
symbols S,X, T are used for specific purposes. They are subsets
of Nn possibly for different values of n.

2. MAPCODE FORMALISM
The definition of algorithm and other concepts given below are par-
ticular cases of a more general setup presented in [14]. This article
is confined to the subsets of Nq for some q ∈ P.

DEFINITION 1. A map F : D ⊆ Nq → Nq is called a Program
Map on Nq . Let F be a program map on Nq .

(1) x ∈ D is called a fixed point of F if F (x) = x. The set of
all fixed points of F is denoted by fix (F ). It is called the fixed
point set of F .

(2) If x ∈ D and F (x) ∈ D, then F 2(x)
.
= F (F (x)). More gen-

erally, if x, F (x), · · · , Fn(x) are all in D then Fn+1(x)
.
=

F (Fn(x)). By convention, F 0(x) = x for any x, and
F 1(x) = F (x).

(3) con(F )
.
= {x ∈ D | Fn(x) ∈ fix (F ) for some n ≥ 0} is

called the convergent set of F , and elements of con(F ) are
called convergent points of F .

(4) For any x ∈ con(F ), let N(x) be the least n ≥ 0 such that
Fn(x) ∈ fix (F ). N(x) is called the runtime of F at x.

(5) The map F∞ : con(F ) → fix (F ) defined by F∞(x) =
FN(x)(x) is called the limit map of F . 2
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REMARK 2. If F = Id : Nq → Nq is the identity map then
con(F ) = fix (F ) = Nq and F∞ = Id. Further, the runtime
N(x) = 0 for every x ∈ Nq . 2

One can think of F as defining a computation. Knuth [6] says the
same thing when he observes that a mathematical theory of algo-
rithms can be built by modeling an algorithm as a map F . Given
a state x ∈ Nq the computation proceeds by evaluating in turn
F (x), F 2(x), · · ·. If x ∈ con(F ) then there comes a stage when
Fn(x) ∈ fix(F ). The computation is then considered to termi-
nate.

DEFINITION 3. (1) Let ρ : S ⊆ Np → Nq , F : X ⊆ Nq →
Nq , and π : H ⊆ Nq → Nr be partial maps. Then the ordered
triple M = (ρ, F, π) is called a mapcode machine (over N).
The maps ρ, F, and π are called the coding map, program map,
and decoding map of the machine respectively.

(2) The set Ω
.
= {s ∈ S | ρ(s) ∈ con(F ), F∞(ρ(s)) ∈ H} is

called the halting set of the mapcode machine M .
(3) The map φ = π ◦ F∞ ◦ ρ : Ω ⊆ Np → Nr is called the

semantic map of the mapcode machine M .
(4) Let f : Np → Nr be a partial map with its domain Df , and let

M = (ρ, F, π) be a mapcode machine. M computes f or M
is an algorithm for computing f , if Df = Ω, the halting set of
M and f(s) = φ(s) for every s ∈ Df . 2

The terminology of ‘halting set’ and the notations for halt-
ing set and semantic map are borrowed from [1]. However, this
terminology in the mapcode theory [14] is more general than theirs.

The components of a mapcode machine, namely the maps ρ, F , and
π, constitute its syntax. The semantic map φ gives the semantics of
the machine.

3. SAFETY AND PROGRESS THEOREMS
Given a mapcode machine (ρ, F, π), to prove that a state x is con-
vergent and the output is the specified one, there is a need to have
some way of showing safety and progress. The concept of invariant
principle ensures safety and the concept of a bound function [14] is
useful for verifying the progress.

DEFINITION 4. Let f : Df ⊆ Np → Nr be a partial map and
M = (ρ, F, π) be a mapcode machine with ρ : S ⊆ Np → Nq ,
F : X ⊆ Nq → Nq , and π : H ⊆ Nq → Nr . Suppose that
Df ⊆ S.

(1) A nonempty subset V ⊆ X is said to be invariant under F if
F (V ) ⊆ V .

(2) A subset V ⊆ X is called an invariant principle for f at s ∈
Df , if V is invariant under F , ρ(s) ∈ V , V ∩fix (F ) ⊆ H and
π(V ∩ fix (F )) = {f(s)}.

(3) A map λ : X → N is called a bound function for F if for every
x ∈ X with F (x) ∈ X either x ∈ fix (F ) or λ(F (x)) < λ(x).

(4) For any s ∈ S define Vs = {Fn(ρ(s)) | n ≥ 0}. 2

REMARK 5. (1) If ρ(s) /∈ X then F is not defined on ρ(s).
Then Vs = {ρ(s)} and Vs is not invariant under F . If ρ(s) ∈
X , but F (ρ(s)) /∈ X then F is not defined on F (ρ(s)). Then
Vs = {ρ(s), F (ρ(s))} and Vs is not invariant under F . Con-
tinuing the argument inductively, Vs is invariant under F if and
only if Fn(ρ(s)) ∈ X for every n ≥ 0.

(2) Let x ∈ X and let λ(x) = 0. Then either x ∈ fix (F ) or
F (x) /∈ X . 2

THEOREM 6. Let f : Df ⊆ Np → Nr be a partial map, M =
(ρ, F, π) a mapcode machine andDf ⊆ S. If λ is a bound function
for F and if Vs is an invariant principle for f at every s ∈ Df

then Df ⊆ Ω and φ(s) = f(s) for every s ∈ Df . Further, if
‘F (Vs) ⊆ Vs ⇒ s ∈ Df ’ holds, then M is an algorithm for f .

PROOF. Take any s ∈ Df . Since Vs is invariant under F by the
remark [5], Fn(ρ(s)) ∈ X for every n ∈ N. Let λ(ρ(s)) = n. If
Fn(ρ(s)) /∈ fix (F ) then by the remark [5], λ(Fn(ρ(s))) > 0. But
on the other hand,

λ(F (ρ(s))) < λ(ρ(s)) = n ⇒ λ(F (ρ(s))) ≤ n− 1,

λ(F 2(ρ(s))) < λ(F (ρ(s))) ⇒ λ(F 2(ρ(s))) ≤ n− 2,

. . . . . .

and finally λ(Fn(ρ(s))) ≤ 0, which is a contradiction.

It follows that Fn(ρ(s)) ∈ fix (F ). Since Vs is an invariant prin-
ciple, Fn(ρ(s)) ∈ fix (F ) ∩ Vs ⊆ H and π(Fn(ρ(s))) = f(s).
Then s ∈ Ω and φ(s) = f(s). This proves that Df ⊆ Ω and
φ(s) = f(s) for s ∈ Df .

Further suppose that ‘F (Vs) ⊆ Vs ⇒ s ∈ Df ’. Take any s ∈ Ω.
Then F k(ρ(s)) ∈ fix (F ) for some k, so that Fn(ρ(s)) is defined
for all n. Then F (Vs) ⊆ Vs. By hypothesis, s ∈ Df . This proves
that Ω ⊆ Df . Hence Df = Ω and M is an algorithm for f .

REMARK 7. The concept of a bound function can be general-
ized to a map λ : X → P where P is a partial order set. Let
P be a partial order set such that there is no sequence {an} in P
with an > an+1 for every n. A map λ : X → P is called a
bound function for F if for every x ∈ X with F (x) ∈ X either
x ∈ fix (F ) or λ(F (x)) < λ(x). With this concept, if λ is a bound
function and if Vs is an invariant principle for f at every s ∈ Df

then Df ⊆ Ω and f(s) = φ(s) for every s ∈ Df . Further, if
‘F (Vs) ⊆ Vs ⇒ s ∈ Df ’ then M is an algorithm for f . 2

4. PRIMAL MAPS
In this section, a collection of maps called primal maps is intro-
duced. It is a sub collection of the set of all maps from Np to Nr ,
with p and r varying in P.

DEFINITION 8. (1) Let f : Df ⊆ Np → Nq and g : Dg ⊆
Nq → Nr . Define D = {x ∈ Df | f(x) ∈ Dg}. Then the
composition g ◦ f : D ⊆ Np → Nr is given by (g ◦ f)(x) =
g(f(x)).

(2) If f : Df ⊆ Np → Nq and g : Dg ⊆ Np → Nr are two maps
then their juxtaposition (f, g) : Df ∩ Dg ⊆ Np → Nq+r is
defined by (f, g)(x) = (f(x), g(x)).

(3) Let fi : Dfi ⊆ Np → Nq , gi : Dgi ⊆ Np → Nr for i = 1, 2.
The conditional map (f1, f2)|(g1, g2) is defined by

(f1, f2)|(g1, g2)(x) =

{
f1(x) if g1(x) = g2(x);
f2(x) if g1(x) 6= g2(x).

The sets

Dg1=g2

.
= {x ∈ Dg1 ∩Dg2 | g1(x) = g2(x)}, and

Dg1 6=g2

.
= {x ∈ Dg1 ∩Dg2 | g1(x) 6= g2(x)}

are called guards of the conditional map and the maps f1
and f2 are called command maps. The maps f1, f2, g1 and
g2 are called components of the conditional map. The map
(f1, f2)|(g1, g2) is said to be obtained by conditioning (f1, f2)
with respect to (g1, g2). The domain of the conditional map is
the set (Df1 ∩Dg1=g2) ∪ (Df2 ∩Dg1 6=g2).
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(4) (a) zero : N→ N is defined by zero(x) = 0 for all x ∈ N.
(b) succ : N → N is defined by succ(x) = x + 1 for all

x ∈ N.
(c) For 0 ≤ i < m the projection map Pm

i : Nm →
N is defined by Pm

i (x) = x[i − 1] for all x =
(x[0], x[1], . . . , x[m− 1]) ∈ Nm.

The functions zero, succ, and Pm
i are called initial functions.

(5) For any set A define a function χA by χA(x) = 1 if x ∈ A
and χA(x) = 0 if x /∈ A. The function χA is called indicator
function of A. 2

DEFINITION 9. The class of primal maps is the smallest class
of maps that contains the initial functions and is closed under jux-
taposition, conditional maps and semantic maps of mapcode ma-
chines (ρ, F, π).
A set is said to be primal if its indicator function is primal. 2

REMARK 10. The term ‘closed under an operation’ needs
some explanation. It is explained in the case of semantic maps, and
argument is similar for the other cases. A class C is closed under
semantic maps of mapcode machines if φ = π ◦F∞ ◦ ρ ∈ C when-
ever ρ, F, π ∈ C. 2

It is proved in [7] that the class of primal maps is the class of
partial recursive maps from the classical theory of computation
[3]. This shows that the set of operations involved in generating
partial recursive maps from initial maps can be replaced by the set
of operations involved in generating primal maps.

A class of maps called “maps admitting variations” is introduced in
the next section and a design for computing such maps is proposed.

5. MAPS ADMITTING VARIATIONS
For any x = (x[0], x[1], . . . , x[k − 1]) ∈ Nk and y ∈ N,
the juxtaposition of x, y is denoted by (x, y) so that (x, y) =
(x[0], x[1], . . . , x[k − 1], x[k]) ∈ Nk+1 with x[k] = y.

DEFINITION 11. (1) Let f1 : D1 ⊆ Nk → Nr and f2 : D2 ⊆
Nk+1 → Nr . The map f1 is called a variation of f2 if there
exists a map L : D3 ⊆ Nk+1 × Nr → Nr as a nontrivial
solution of the equation f2(x, y) = L(x, y, f1(x)), for any
(x, y) ∈ D1. The map L is called lifting of f1 to f2 ( or
simply a lift map). The equation f2(x, y) = L(x, y, f1(x)) is
referred as lift equation.

(2) Let p < n, and let fk : Dk ⊆ Nk → Nr for p ≤ k ≤ n be
given. If fk is a variation of fk+1 for p ≤ k ≤ n − 1 then the
maps fp, fp+1, . . . , fn−1 are called variations of fn. 2

REMARK 12. (1) The map L(x, y, t) = f2(x, y) for every t,
is always a solution for the lift equation and it is called a trivial
solution.

(2) Suppose that fp, fp+1, . . . , fn−1 are variations of fn. Then
(x1, x2, . . . , xn) ∈ dom(fn) ⇔ (x1, x2, . . . , xk) ∈
dom(fk) for p ≤ k ≤ n.

(3) More general concept of variations of a map f is given as a col-
lection of maps fi indexed by elements i of a partial order set
P . In this case, fi is a variation of fj whenever j is a successor
of i in P . 2

EXAMPLE 1. Finding maximum (or minimum) of n integers
and sum of n integers are simple examples to understand the idea
behind the definition of variations of a map.

(1) Maximum Problem: For any 1 ≤ k ≤ n, and
any x = (x[0], x[1], . . . , x[k − 1]) ∈ Nk, define
fk(x) = Max{x[0], x[1], . . . , x[k − 1]}. Then fk : Nk →
N. It is easy to see that Max{x[0], x[1], . . . , x[k]} =
Max{x[k],Max{x[0], x[1], . . . , x[k − 1]} } or fk+1(x, y) =
Max{y, fk(x)}, for x ∈ Nk, y ∈ N.
More precisely, if Lk+1 : Nk+1 × N → N is defined by
Lk+1(x, y, t) = Max{y, t} for any x ∈ Nk, y, t ∈ N, then
fk+1(x, y) = Lk+1(x, y, fk(x)). The map Lk+1 is lifting
of fk to fk+1. The maps f1, f2, . . . , fn−1 are variations of
f = fn.

(2) Summation Problem: For any 1 ≤ k ≤ n, and any x =
(x[0], x[1], . . . , x[k−1]) ∈ Nk, define fk(x) = x[0] +x[1] +
. . . + x[k − 1]. Then fk : Nk → N. It is easy to see that
x[0]+x[1]+ . . .+x[k] = x[k]+(x[0]+x[1]+ . . .+x[k−1])
or fk+1(x, y) = y + fk(x), for x ∈ Nk, y ∈ N.
If Lk+1 : Nk+1 × N → N is defined by Lk+1(x, y, t) =
y + t, for any x ∈ Nk, y, t ∈ N, then fk+1(x, y) =
Lk+1(x, y, fk(x)). Then the maps f1, f2, . . . , fn−1 are vari-
ations of f = fn. 2

Two more standard examples in the discipline of programming are
given to fix the idea of variation in mind.

EXAMPLE 2. Checking Equality Problem: Choose and fix an
element x′ = (x′[0], x′[1], . . . , x′[p − 1]) in Np. For k ∈ P with
1 ≤ k ≤ p, and x = (x[0], . . . , x[k − 1]) ∈ Nk, define

fk(x) = 1, if (x[0], . . . , x[k − 1]) = (x′[0], . . . , x′[k − 1])

= 0, if (x[0], . . . , x[k − 1]) 6= (x′[0], . . . , x′[k − 1]).

The maps {f1, f2, . . . , fp−1} are variations of f = fp. If Lk+1 :
Nk+1 × N→ N is defined by

Lk+1(x, y, t) = t, if y = s′[k], and
Lk+1(x, y, t) = 0, y 6= s′[k],

then fk+1(x, y) = Lk+1(x, y, fk(x)). The map Lk+1 is lifting of
fk to fk+1. 2

EXAMPLE 3. Pattern Matching Problem: The question is :
how many times the pattern s′ = (s′[0], s′[1], . . . s′[p−1]) occur
in the sequence s = (s[0], s[1], . . . s[n− 1]), assuming that n is
many times larger than p.

Consider the notation and terminology used in the example [2].
For any k ∈ P with p ≤ k ≤ n, define fk : Nk → N by
fk(x) - the number of times the pattern x′ occurs in x. The maps
{fp, fp+1, . . . , fn−1} are variations of fn.

To find Lk+1 − lifting of fk to fk+1, the map ψk which picks up
the last p entries of the array (s[0], s[1], . . . , s[k − 1]) is needed.
For any p ≤ k ≤ n, define the map ψk : Nk → Np by
ψk(x[0], x[1], . . . , x[k−1]) = (x[k−p], x[k−p+1], . . . , x[k−1]).
Then for any x = (x[0], x[1], . . . , x[k]) ∈ Nk+1,

fk+1(x) = fk(x[0], x[1], . . . , x[k − 1]) + 1, if ψk+1(x) = x′,
fk+1(x) = fk(x[0], x[1], . . . , x[k − 1]), if ψk+1(x) 6= x′.

So, fk+1(x) = fk(x[0], x[1], . . . , x[k − 1]) + fp(ψk+1(x)).
It is now easy to understand that the map Lk+1(x, y, t) defined by
Lk+1(x, y, t) = t+ fp ◦ ψk+1(x, y) is lifting of fk to fk+1. 2

The purpose of considering variations of f is to split the compu-
tation of f into finite number of simple segments. The following
theorem helps reaching this goal.
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THEOREM 13. suppose that {fp, fp+1, . . . , fn−1} are varia-
tions of f = fn. Let Lk+1 be a lifting of fk to fk+1. If fp and the
map Lk are primal maps then f is a primal map.

PROOF. Suppose that fk : Nk → Nr for p ≤ k ≤ n. Given
that fk+1(x, y) = Lk+1(x, y, fk(x)) for p ≤ k ≤ n − 1. Let
ηk : Nn → Nk be defined by ηk(x) = (x[0], x[1], . . . , x[k − 1])
for x = (x[0], x[1], . . . , x[n − 1]) ∈ Nn. Then the maps ηk are
primal maps.

With s = (s[0], s[1], . . . , s[n − 1]) ∈ Nn, k ∈ N and t ∈ Nr ,
let x = (s, k, t) be a general element of Nn × N × Nr . Consider
the partial maps ρ : Nn → Nn × N × Nr , F : Nn × N × Nr →
Nn × N× Nr and π : Nn × N× Nr → Nr given by

ρ(s) = (s, p, fp(ηp(s))),

F (s, k, t) =

{
(s, k + 1, Lk+1(ηk+1(s), t) ), if k < n,
(s, k, t), otherwise

and π(s, k, t) = t.

Then the maps ρ, F and π are all primal maps. Let the domains of
the maps be S,X and H respectively. Then

S = {s ∈ Np | ηp(s) ∈ dom(fp)},
X = {(s, k, t) | (ηk+1(s), t) ∈ dom(Lk+1), p ≤ k ≤ n− 1},
H = Nn × N× Nr.

Clearly the map λ(s, k, t) = n− k is a bound function. Further,

s ∈ Ω ⇔ ρ(s) ∈ X,F k(ρ(s)) ∈ fix (F ), for some k

⇔


(s, p, tp) ∈ X, with tp = fp ◦ ηp(s)
(s, p+ 1, tp+1) ∈ X, with tp+1 = fp+1 ◦ ηp+1(s)
. . .
(s, n, tn) ∈ X, with tn = fn ◦ ηn(s)

⇔


ηp(s) ∈ dom(fp),
ηp+1(s) ∈ dom(fp+1)
. . .
ηn(s) ∈ dom(fn)

⇔ s ∈ dom(fn), from remark[12].

This proves that Dfn = Ω. For any s ∈ Dfn , Vs is an invariant set
under F , and Vs can also be seen as

Vs = {(s, k, t) | s ∈ Dfn , 1 ≤ k ≤ n, t = fk(ηk(s))}

so that Vs ∩ fix (F ) = {(s, n, fn(s))}, for s ∈ Dfn . This proves
that Vs is an invariant principle for fn and (ρ, F, π) is an algorithm
for computing the map fn. Hence the map fn is a primal map.

6. DOCUMENTATION
This section deals with a method of documentation for the mapcode
computation. At the outset, the mapcode machine

ρ(s) = (s, p, fp ◦ ηp(s))

F (s, k, t) =

{
(s, k + 1, Lk+1(ηk+1(s), t) ), if k < n,
(s, k, t), otherwise

and π(s, k, t) = t.

itself is a documentation for computing f . But tabular form may
be a better option. a← b stands for “a is replaced by b”.

Mapcode Documentation
Variables s[0], s[1], . . . s[n− 1],
required k, t[0], t[1], . . . , t[r − 1]

Initialisation
0 ≤ i ≤ n− 1 input for s[i]

t = fp(s[0], . . . , s[p− 1])
k = p

Program
Guard Command
k < n t← Lk+1(ηk+1(s), t),

k ← k + 1

Output t

7. APPLICATION
The proposed computation model will be used in the case of exam-
ples discussed earlier. The advantage of this theory is that the safety
and termination are ensured by the theorem and there is no need to
verify for each example.

(1) Maximum Problem: With the notation and terminology given
in the example 1,
(a) the map f1 is identity map on N, so that it is a primal map.
(b) The lift map Lk(x, y, t) = Max{y, t} is a primal map.
Then the maximum function f is a primal map and the map-
code machine computing f is given by

ρ(s) = (s, 1, s[0])

F (s, k, t) =

{
(s, k + 1,Max{s[k], t}), if k < n,
(s, k, t), otherwise ,

and π(s, k, t) = t.

Documentation of the computation in tabular form is given by

Mapcode Documentation
Variables s[0], s[1], . . . s[n− 1],
required k, t

Initialisation
0 ≤ i ≤ n− 1 input for s[i]

t = s[0]
k = 1

Program
Guard Command
k < n t← Max{s[k], t},

k ← k + 1

Output t

(2) Checking Equality Problem: With the terminology and nota-
tion given in the example [2]
(a) s′ = (s′[0], s′[1], . . . , s′[p− 1]) ∈ Np is initially choosen

and fixed.
(b) The map f1 : N→ N is given by f1(x) = 1, if x = s′[0],

and f1(x) = 0, otherwise. It is a primal map.
(c) For any (s, y) ∈ Nk−1 × N = Nk and t ∈ N, the lift

map Lk is given by Lk(s, y, t) = t, if y = s′[k], and
Lk(s, y, t) = 0, otherwise. Then Lk is also a primal map.

Then by theorem 13, the function f = fp which checks equal-
ity is a primal map. The mapcode machine computing f is
given by

4
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ρ(s, s′) = (s, s′, 1, f1(s))

F (s, s′, k, t) = (s, s′, k + 1, Lk(s[k], t)), if k < p

= (s, s′, k, t), otherwise and
π(s, s′, k, t) = t.

In other words,

ρ(s, s′) =

{
(s, s′, 1, 1), if s[0] = s′[0]
(s, s′, 1, 0), if s[0] 6= s′[0]

F (s, s′, k, t) =

{
(s, s′, k + 1, t), if s[k] = s′[k], and k < p
(s, s′, k + 1, 0), if s[k] 6= s′[k], and k < p

= (s, s′, k, t), otherwise and
π(s, s′, k, t) = t.

However, a close observation of the machine will reveal that
the following machine will also compute the map f .

ρ(s, s′) = (s, s′, 0, 1)

F (s, s′, k, t) =

{
(s, s′, k + 1, t), if k < p, s[k] = s′[k]
(s, s′, n, 0), if k < p, s[k] 6= s′[k]

= (s, s′, k, t), otherwise;
π(s, s′, k, t) = t.

Mapcode Documentation
Variables s[0], . . . s[n− 1],
required s′[0], . . . s′[n− 1],

k, t
Initialisation

0 ≤ i ≤ n− 1 input for s[i]
0 ≤ i ≤ n− 1 input for s′[i]

k = 0, t = 1

Program
Guard Command

k < p, s[k] = s′[k] k ← k + 1
s[k] 6= s′[k] k ← n, t← 0

Output t

This mapcode machine is referred by M1.
(3) Pattern Matching Problem: This famous problem has been

tackled by many programmers. One can see how the proposed
method simplifies the problem of designing a program.
Assume the notation and terminology used in the example [3].

(a) Choose and fix any s′ = (s′[0], s′[1], . . . s′[p−1]) ∈ Np.
(b) The map fp in the example 3 is same as the map fp in the

example 2 and hence fp is a primal map.
(c) The lift map Lk given by Lk(s[0], s[1], . . . , s[k−1], t) =

t+fp(s[k−p], s[k−p+1], . . . , s[k−1]) is also a primal
map.

By theorem 13, the function f = fn is a primal map. The
mapcode machine (ρ, F, π) computing f is given by

ρ(s, s′) = (s, s′, p, fp(s[0], . . . , s[p− 1]) )

π(x) = t.

and for any x = (s, s′, k, t) ∈ X ,

F (x) = (s, s′, k + 1, t+ fp(s[k + 1− p], . . . , s[k]) ),

if k < n,
= (s, s′, k, t), otherwise

Mapcode Documentation
Variables s[0], . . . s[n− 1],
required s′[0], . . . s′[n− 1],

k, t
Initialisation

0 ≤ i ≤ n− 1 input for s[i]
0 ≤ i ≤ n− 1 input for s′[i]

t = fp(s[0], . . . , s[p− 1])
k = p

Program
Guard Command
k < n, k ← k + 1

t← t+ fp(s[k + 1− p], . . . , s[k]) )

Output t

This mapcode machine computing fn is referred by M2.

8. CONCLUSION
The mapcode machine M2 involves maps which are again
computable with the machine M1. Then one has to combine the
mapcode machines M1 and M2 so that relatively elementary
operations will be involved for carrying out the computation. This
is an essential part of writing a program.

As in the case of ‘maps admitting variations’, some other classes
of maps are identified and proposed a mapcode machine for each
class. Though the approach is successfully adopted for several
standard problems, some of them are even harder, it is not claimed
that these classes are exhaustive. These results and the techniques
involved in combining two mapcode machines will be published
subsequently.

In the present article, simple illustrations are chosen only for bet-
ter exposition of the content. Two standard examples are chosen
to show how the proposed method helps in the construction of an
algorithm. However, as quoted by David Gries [4],

One cannot learn to write large programs effectively
until one has learned to write small ones effectively.
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