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ABSTRACT                                                                                                                                                                                                     

This paper considers two stochastic models with static and 

fatigue failures under various situations of availability and 

slackness of manpower and business. An operating system is 

exposed to a shock process which causes static or fatigue 

failures. The static failures are repaired and fatigue failures call 

for replacement of the entire system when they occur.  

Considering a continuous time Markov chain approach, the 

backlog level probabilities of the occurred static failures, 

steady state fatigue failure and various other measures are 

obtained for Model (A) and Model (B) under the assumption 

that the backlog accumulates to any arbitrarily large level in 

the first model and in the second model the operating system is 

replaced when the backlog exceeds a limit.                                                                                             

General Terms                                                                                                                                                                                                

Manpower, Business, Availability and Slackness, Markov 

Chain   

 Keywords                                                                                                                                                                                                            

Static and Fatigue failures, Stationary probability, infinitesimal 

generator and Matrix approach   

1. INTRODUCTION                                                                                                                                                                                                       
The causes of failure of an operating system may be due to 

factors such as complex stress cycles, engineering design, 

manufacturing defects, defects inadvertently introduced in 

various stages of production line and so on. These types of 

static and dynamic (fatigue) failures may result in the break 

down or collapse of entire operation. For an analysis of static 

and fatigue failure, one may refer Aher and Sonawane [1], 

Akano and Fakinlede [2] and Murer and Leguilion [3] where 

several research models in various situations are studied and it 

has been pointed out that the repeated loading of the 

mechanism cause fluctuating stresses and cause fatigue failure. 

Bhaumik, Sujata and Venkateswamy [4] have studied Fatigue 

failure of aircraft components. Dutton, Clarke and Bonnet [5] 

have presented models of static and fatigue failure in wind 

turbine blades Fatigue failure can occur at stress level that is 

significantly lower than those that cause static failure. In fact a 

small unseen crack may be sufficient for a major or sudden 

failure and total collapse of an operating system. Unlike static 

failures, fatigue failures are difficult to predict and repair. 

Static failures can be attended and repaired during the system 

operation without stopping any primary system and the 

interconnected systems. Also fatigue failure may cause the 

replacement of the operating system whereas static failures 

permit engineers/technicians to attend them locally without 

affecting the production or operation. Premature or unexpected 

failure of a system reduces customer confidence in the finished 

products. It is also noticed that whenever a shock occurs to an 

operating system, immediate fatigue failure or a static failure 

occurs. Parzen [6] has listed various models for the probability 

of fatigue of a structure and failure distributions. Since failures 

queue up for repair, there is a close connection with queueing 

systems. For matrix- geometric solutions in stochastic models 

and queueing systems, one may refer Neuts, [7].  Chakravarthy 

and Neuts [8] have discussed in depth a multi-server queueing 

model.  Aissani.A and Artalejo.J.R [9] and Ayyappan, 

Subramanian and Gopal Sekar [10] have analyzed retrial 

queueing system. In this paper static and fatigue probabilistic 

failure models are studied under various assumptions of 

seasonal availability of manpower and business. A study on 

such models are very relevant and much required because the 

failure of an operating system may reduce profitability of the 

operations and at times may motivate manpower and experts 

available to depart causing unnecessary hardship to 

organizations. A static and fatigue failures model with 

stochastic assumptions of failure and repairs or replacement 

have not been treated as a continuous Markov chain at any 

depth so far. Two models with static and fatigue failures are 

presented here where both failures are probabilistic in nature 

and the fatigue failure causes replacement of the operating 

system. In Model A, the static failures are repaired and in 

Model B, the static failure calls for replacement of the system 

at a finite number of accumulated failure level. Using matrix 

partitioning method of the infinitesimal generator introduced 

by Neuts [7], results obtained and numerical results are 

presented in support of the same. Section II and section III 

treat the Model A and the Model B. Section IV considers 

examples.

2. MODEL (A) REPLACEMENT FOR 

FATIGUE FAILURE                                                          

2.1  Assumptions 

i. Shocks occur to an operating system with exponential inter 

occurrence time distribution whose parameter is c.  

ii. Manpower is available (in level 1) for a random time whose 

distribution is exponential with parameter λ and after which it 

becomes unavailable (level 0) for a random time whose 

distribution is exponential with parameter μ. It is thus available 

and unavailable states (level 1 and level 0) alternately.   

iii. The operating system generates business (demand) for its 

operation. Business alternates between peak-level (available 

level or level 1) and sluggish-level (unavailable level or level 

0). The holding time distributions of them are exponential with 

parameters a, b respectively.   

iv. The occurrence of a shock causes static failure with 

probability 𝛼𝑖 ,and fatigue failure with probability𝛽𝑖 , 𝛼𝑖 + 𝛽𝑖 =
1,for i = 1, 2, 3, 4 according as (i) both the manpower and the 

business are in unavailable state or (ii) the manpower is 

unavailable but the business is in peak level or (iii) the 

manpower is available but the business is in sluggish level or 
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(iv) both the manpower and the machine are available and 

peak levels respectively in that order. 

v. The operating system fails when fatigue failure occurs. The 

replacement time distribution of the operating system is 

exponential with parameter δ.  

vi. When a static failure occurs it is repaired while the system 

is in operation. The repair time distribution of static failure has 

exponential distribution with parameter di, for i = 1, 2, 3, 4 in 

various levels as stated above for failure probabilities. At each 

repair time, N number of static failures are repaired with 

probability P (N=i) =pi, for 1≤ I ≤ m where  𝑝𝑖
𝑚
1   =1 where m 

is the maximum number of repairs at a time. When n static 

failures (n < m) are to be repaired, then P (N=i) =𝑝𝑖 , for 1≤ i ≤ 

n-1 and n static failures are repaired with probability 𝑝𝑖
𝑚
𝑛 , 

(since the existing static failure size is n). When the failure of 

the operating system occurs due to a fatigue failure, all static 

failures are given up.    

 It is natural to assume different probability values for fatigue 

failures depending on whether both manpower and business 

levels are (1, 1), (0, 1), (1, 0) and (0, 0). When the manpower 

is not available and the business is in peak level, the stress 

effect to cause fatigue failure may be naturally more compared 

to the case when manpower is available and business is 

sluggish.   

2.2.  Analysis  

For studying the above model, the various states of the 

continuous time Markov chain X (t) are defined as follows.                                                                                                                                                                                                        

X (t) = {(R, i, j): i = 0, 1; j = 0, 1}∪{(n, i, j): 0 ≤ n < ∞; for i = 

0, 1; for j = 0, 1}.                                                                    (1)                                                                                             

The two co-ordinates of a state, the second and the third of (X, 

i, j) represent respectively the level of the manpower system is 

i and the level of the business is j for i, j =0, 1 where 0 

indicates the unavailable state and the level 1 indicates the 

available state of the manpower and business as explained 

earlier. The first co-ordinate X= R when the operating system 

is under replacement and X =n, when n static failures are to be 

repaired for n=0, 1, 2, 3…… Let the probability generating 

function of N, the number of static failures repaired in a repair 

time be given by 

φ (r) =  𝑝𝑖 
𝑚
𝑖=1 𝑟𝑖                                                                     (2) 

                                                                                                                                                                                                                                                                                                 

Consider the survivor probability 

P (N > i) = 𝑃𝑖  =1-   𝑝𝑗
 𝑖
𝑗=1   for i=1, 2..., m-1                         (3)                                                                                                                           

Its generating function Ø(r) is 

Ø(r) = 𝑃𝑖
𝑚−1
𝑖=1 𝑟𝑖                                                                     (4)                                                                                                                                                                                                                       

The relation between them is                                                       

Ø(r) = (r/1-r) φ(r)                                                                    (5)                                                                                           

The continuous time Markov chain describing model has the 

infinitesimal generator Q of infinite order which can be 

presented in block partitioned form with each block is of order 

4. The infinitesimal generator of the model is given below in 

equation (6). The states of the matrices are listed 

lexicographically as 

𝑅, 0, 1, 2, 3,… .𝑛,…. where                                                                        

𝑋  = ((X,0,0),  (X, 0, 1),  (X,1, 0),  (X, 1, 1) ), where X is R or 

n, for n =1,2,…. The block matrices are all of order 4. The 

matrices 𝐶1,𝐵1 and  𝐴1 have negative diagonal elements and 

their off diagonal elements are non- negative. The matrices 

𝐴0,𝐴2,𝐴3,… ,𝐴𝑚+1,𝐵2,𝐵3 ,… . ,𝐵𝑚+2 ,𝐶0𝑎𝑛𝑑 𝐶2 have                

non-negative elements and are diagonal matrices. They are 

given below.                                                                                                                         

Q = 

 
 
 
 
 
 
 
 
 
 
𝐶1 𝐶0 0 0 . . . . . ⋯
𝐶2 𝐵1 𝐴0 0 . . . . . ⋯
𝐶2 𝐵2 𝐴1 𝐴0 0 . . . . ⋯
𝐶2 𝐵3 𝐴2 𝐴1 𝐴0 . . . . ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮⋮⋮
𝐶2 𝐵𝑚 𝐴𝑚−1 𝐴𝑚−2 . 0 . . . ⋯
𝐶2 𝐵𝑚+1 𝐴𝑚 𝐴𝑚−1 . 𝐴0 0 . . ⋯
𝐶2 0 𝐴𝑚+1 𝐴𝑚 . 𝐴1 𝐴0 0 . ⋯
𝐶2 0 0 𝐴𝑚+1 . 𝐴2 𝐴1 𝐴0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱  

 
 
 
 
 
 
 
 
 

 (6) 

Consider a matrix Q’ of order 4, 

𝑄′ =

 
 
 
 
− 𝜇 + 𝑏 𝑏 𝜇 0

𝑎 − 𝜇 + 𝑎 0 𝜇

𝜆 0 − 𝜆 + 𝑏 𝑏
0 𝜆 𝑎 − 𝜆 + 𝑎  

 
 
 
                     (7) 

                                                                             Then 𝐶1 = Q’- 

diag (δ, δ, δ, δ ); 𝐵1 = Q’ – diag (c, c, c, c) and                                                                                                                

𝐴1 = Q’ – diag ((c +𝑑1), (c +𝑑2), (c +𝑑3), (c +𝑑4));                             

𝐶0 = diag (δ, δ, δ, δ); 𝐶2 = diag (c𝛽1, c𝛽2, c𝛽3, c𝛽4); 

𝐵2= diag (𝑑1 ,𝑑2 ,𝑑3 ,𝑑4); 𝐵𝑗 = diag 

[𝑑1𝑃𝑗−2,𝑑2𝑃𝑗−2 ,𝑑3𝑃𝑗−2 ,𝑑4𝑃𝑗−2] , for 3 ≤ j≤ m+1                                                                                                                                                         

𝐴0= diag (c𝛼1, c𝛼2, c𝛼3, c𝛼4) and 𝐴𝑗= diag 

[𝑑1𝑝𝑗−1,𝑑2𝑝𝑗−1,𝑑3𝑝𝑗−1 ,𝑑4𝑝𝑗−1] , for 2 ≤ j≤ m+1.               (8)                                                                                                                                  

The basic system generator given in (7)                                          

Q’ =  𝐴𝑖
𝑚+1
𝑖=0  +  𝐶2 . Its probability vector w satisfies  𝑤𝑄′  =0; 

w.e =1 and w = 
1

(𝑎+𝑏)(𝜆+𝜇 )
 (a λ, b λ, a μ, b μ).                        (9)   

                                                                                                                                                                              

The stability condition for the existence of a stationary 

distribution for continuous time Markov chain given by Q in 

(6) is, (see Neuts [9])   

𝑤𝐴0e < w [ (𝑗 − 1)𝐴𝑗
𝑚+1
𝑗=2 ]e                                               (10)                                                                                                                                     

This gives, c w. 𝛼  < E (N) 𝑤.𝑑                                           (11)  

                                                                                                                                                           

where  𝛼 = (𝛼1,𝛼2 ,𝛼3,𝛼4)𝑡  ,   𝑑 = (𝑑1 ,𝑑2 ,𝑑3 ,𝑑4)𝑡  and E (N) 

is the expected number of static failures repaired during a 

repair time. Using the generator Q’ of (7) and (9), the expected 

or effective static failure probability is E (α) =w.𝛼 . The 

expected or effective fatigue failure probability is, E (β) = w. 𝛽  

and E (α) + E (β) = 1. The expected parameter of static repair 

time distribution is E (d) = 𝑤.𝑑. This gives the stability 

condition (11) as, c E (α) < E (N) E (d).  When the inequality 

given by (11) is satisfied, the stationary distribution exists, 

Neuts [7].                                                                                                                                                                                                                      

Let π (X, i, j), for X=R or n, for n = 0, 1, 2, 3 ….; i =0,1; j = 

0,1 be the stationary probability of the states listed in (1) and 

let 𝜋𝑋  be the vector of type 1 x 4 given by                                                                                                                                                           

𝜋𝑋= ( 𝜋(X,0,0),  𝜋(X,0,1),  𝜋(X,1,0), 𝜋(X,1,1) ), for X = R, or 

n , where n = 1,2,……                                                          (12)                                                                                                                                                             

The stationary probability vector 𝜋 = (𝜋𝑅 ,𝜋0 ,𝜋1 ,𝜋2 …… . ). 
satisfies the equations. 𝜋Q = 0, and 𝜋e = 1                          (13)                                                                                                                                                                                                  

From (13), the following are seen                                                                                                                                                          

𝜋𝑅𝐶1+  𝜋𝑖
∞
𝑖=0 𝐶2 = 0                                                            (14)                                                                                                                                                                                                                                  
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𝜋𝑅𝐶0+  𝜋𝑖
𝑚
𝑖=0 𝐵𝑖+1 = 0                                                        (15)                                                                                             

𝜋𝑛−1𝐴0+𝜋𝑛𝐴1+𝜋𝑛+1𝐴2+𝜋𝑛+2𝐴3+…..+𝜋𝑛+𝑚𝐴𝑚+1 = 0,                     

for n ≥ 1                                                                                (16)                      

Introducing the rate matrix R as the minimal non-negative 

solution of the non-linear matrix equation                                                   

𝐴0+R 𝐴1+𝑅2𝐴2+ 𝑅3𝐴3 +………+ 𝑅𝑚+1𝐴𝑚+1 = 0,            (17)                                                                                                                                                   

it can be proved that (Neuts [9]) that 𝜋𝑛   satisfies for n =1, 2, 

3……, the equation.   𝜋𝑛  = 𝜋0 𝑅
𝑛     for n ≥ 1.                      (18)                                                                                                                                                                 

From (18) and (14),   𝜋𝑖
∞
0 = 𝜋0(𝐼 − 𝑅)−1                                                                      

  𝜋𝑅 = 𝜋0(𝐼 − 𝑅)−1𝐶2(−𝐶1)−1                                           (19)                                                          

Substituting 𝜋𝑅 in (15), it can be seen                                                           

𝜋0 ((𝐼 − 𝑅)−1𝐶2(−𝐶1)−1𝐶0 +   𝑅𝑗𝑚
𝐽=0 𝐵𝑗+1 ) = 0               (20) 

The equation (20) gives 𝜋0 up to a multiplicative constant 

since the coefficient matrix of 𝜋0 in (20) is a generator whose 

row sum is zero. This can be seen as follows by taking a 

common factor (I-R)−1 , 

 ((𝐼 − 𝑅)−1𝐶2(−𝐶1)−1𝐶0𝑒 +  𝑅𝑗𝑚
𝐽=0 𝐵𝑗+1)𝑒                                                                                                                                                     

= (𝐼 − 𝑅)−1[𝐶2  −𝐶1)−1𝐶0𝑒 +   𝑅𝑗𝑚
𝐽=0 𝐵𝑗+1 −

 𝑅𝑗+1𝑚
𝐽=0 𝐵𝑗+1  𝑒]                                                                                                              

=(I-R)−1[𝐶2 −𝐶1)−1𝐶0𝑒 + 𝐵1𝑒 +   𝑅𝑗 (𝑚
𝑗=1 𝐵𝑗+1 − 𝐵𝑗  𝑒 −

𝑅𝑚+1𝐵𝑚+1𝑒                                                                                             

=(I-R)−1[𝐶2 −𝐶1)−1𝐶0𝑒 + 𝐵1𝑒 +   𝑅𝑗 (𝑚
𝑗=1 −𝐴𝑗  𝑒 −

𝑅𝑚+1𝐴𝑚+1𝑒  by (8). Using (17) we get this as                                                   

= (I-R)−1[𝐶2 −𝐶1)−1𝐶0𝑒 + 𝐵1𝑒 + 𝐴0𝑒 ]                                              
= (I-R)−1[𝐶2 −𝐶1)−1𝐶0𝑒 − 𝐶2𝑒  ]                                                                                           
= (I-R)−1𝐶2(−𝐶1)−1 𝐶0𝑒 + 𝐶1𝑒 = 0                                  (21)   

                                                                                                                            

The normalizing constant can be found using (13). Using (19)   

 𝜋0(𝐼 − 𝑅)−1𝐶2(−𝐶1)−1𝑒 + 𝜋0(𝐼 − 𝑅)−1𝑒 = 1                    (22)   

                                                                                                                        

From the equations (22), (20), (19) and (18) 

𝜋𝑅 ,𝜋0  𝑎𝑛𝑑 𝜋𝑖 , 𝑓𝑜𝑟 𝑖 ≥ 1 . The matrix R is computed by 

substitutions in the recurrence relation starting with R (0) = 0 

and using, R (n+ 1) = - 𝐴0𝐴1
−1 –  𝑅𝑗𝑚+1

𝑗=2 (n)𝐴𝑗𝐴1
−1, n ≥0. The 

iteration may be terminated to get a solution of R, at an 

approximate level when ‖ R (n+1)-R (n) ‖< ε, where ε is a 

given small number.                                                              (23)  

                                                                                                                                                               

The generating function of the probabilities can be given by                                                                                                                                                                     

Φ(s) = 𝜋𝑅𝑒 +  𝜋𝑖
∞
0 𝑠𝑖𝑅𝑖𝑒 = 𝜋𝑅𝑒 + 𝜋0(𝐼 − 𝑠𝑅)−1𝑒            (24)                                                                                                                    

and the expected number of static failures is E (S) =       

𝜋0(𝐼 − 𝑅)−2𝑅𝑒 . The probability of operating system is in 

failed state =𝜋𝑅 . The probability of no static failure for repair 

is = 𝜋0 . 

3. MODEL. (B) SYSTEM REPLACEMENT 

FOR FATIGUE AND STATIC FAILURES 
In this model only a finite number of static failures that can 

wait for repair at a time instead of any arbitrarily long length is 

permitted. This is also the case when more than certain 

numbers of static failures are waiting for repair; the 

management may go for condemning the operating system and 

may opt for replacement of the same instead of repairing for 

economic considerations. Such policy decisions are very 

common when repair cost is more compared to replacement 

cost. The significance of this model can also be seen in another 

angle. In the Model (A), the fatigue failure is considered 

purely as random in nature and the fatigue causes system 

failure immediately on the occurrence of a shock with some 

probability. When the system failure does not occur due to a 

shock, then it has been assumed that the shock gives a 

repairable damage (static failure). But accumulation aspect of 

such damages for causing a system failure has not been 

considered there. Here the critical level is M for the static 

damages beyond which any static damage also causes a system 

failure. Model (B) has all the assumptions of Model A and has 

one additional assumption. 

3.1 Assumption                                                                                                                                                                    
vii. When M or more, static failures are waiting for repair, the 

management orders for replacement of the operating system. 

The replacement time distribution of the operation system is 

same as in Model (A) with independent exponential with 

parameter δ.                                                                                                                                                 

3.2. Analysis                                                                                                                                                                                               

The various states of the continuous time Markov chain X (t) 

are defined as follows with 4(M+2) states for this model. X (t) 

= {(R, i, j): i = 0, 1; j = 0, 1}∪{(n, i, j): 0 ≤ M; for i = 0, 1; for j 

= 0, 1}.                                                         (25)                                                      

Using the same definition given for Model A for the various 

co- ordinates of the states of the system, the continuous time 

Markov chain describing model has the infinitesimal generator 

Q” of finite order 4(M+2) which can be presented in block 

partitioned form with each block is of order 4. The 

infinitesimal generator Q” of the model is given below in (29). 

The matrices given below are its blocks namely 

𝐴0,𝐴1,𝐴2,𝐴3,… ,𝐴𝑚+1,𝐵1𝐵2,𝐵3,… . ,𝐵𝑚+2,𝐶0,𝐶1 𝑎𝑛𝑑𝐶2. 

they are same as presented for model A in equation (8) 

The matrices 𝐶3 𝑎𝑛𝑑 𝐷1 are of order 4.                                                                                                                                                              

They are  𝐶3  = diag (c, c, c, c) and 𝐷1 = 𝐶1 − 𝐶3.    (26)                                                                                                                                 

Let π (X, i, j), for X=R or n, for n = 0, 1, 2, 3 …M; i =0,1; j = 

0,1 be the stationary probability of the states listed in (25) and 

let 𝜋𝑋  be the vector of type 1 x 4 given by                                                                                                                                                     

𝜋𝑋= ( 𝜋(X,0,0),  𝜋(X,0,1),  𝜋(X,1,0), 𝜋(X,1,1) ), for X = R, or 

n , where n = 1,2,……M                                          (27)                                                                                                                                                                              

The stationary probability vector 𝜋 = (𝜋𝑅 ,𝜋0 ,𝜋1 ,𝜋2 …… .. 𝜋𝑀) 

satisfies the equations  𝜋Q” = 0, and 𝜋e = 1.      (28)   

                                                                                                                                                                                                                                                                                                                                                        

Q”=    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐶1 𝐶0 0 ⋯ . . . . .
𝐶2 𝐵1 𝐴0 ⋯ . . . . . .
𝐶2 𝐵2 𝐴1 ⋯ . . . . .
𝐶2 𝐵3 𝐴2 ⋯ . . . . .
𝐶2 𝐵4 𝐴3 ⋯ . . . . .
⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮
𝐶2 𝐵𝑚 𝐴𝑚−1 ⋯ 0 . . . .
𝐶2 𝐵𝑚+1 𝐴𝑚 ⋯ 𝐴0 0 . . .
𝐶2 0 𝐴𝑚+1 ⋯ 𝐴1 𝐴0 0 . .
𝐶2 0 0 ⋯ 𝐴2 𝐴1 𝐴0 0 .
𝐶2 0 0 ⋯ 𝐴3 𝐴2 𝐴1 𝐴0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱
𝐶2 0 0 ⋯ 𝐴𝑚+1 ⋯ 𝐴2 𝐴1 𝐴0

𝐶3 𝐶0 0 ⋯ 0 ⋯ 0 0 𝐷1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          (29)                                                                          

This being a finite system, it can be solved using matrix 

inverse method. From (28),  𝜋𝑅𝑒 +  𝜋𝑖
𝑁
𝑖=0 𝑒 = 1. Let the 

matrix obtained by replacing the first column of Q” by vector e 

be Ψ. Then since πΨ= (1, 0, 0,…..,0)                                                                                                                                                                                  

and π= (1,0,0,…0)𝛹−1                                                         (30)                                                                                                                                                                                                                              

Then the probability of the operating system is in failed state     
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 𝜋𝑅  = π x (1 ,0, 0, 0 ,… . . 0)′;                                                                          
the probability of zero static damages waiting for repair is                 

𝜋0= π x (0 ,1, 0, 0 ,… . . 0)′   

 and the expected number of static failures waiting to be 

repaired   E (S) = π x (0 ,0, 1, 2 ,… . .𝑀)′                           (31)   

4. NUMERICAL EXAMPLES FOR 

MODELS                                                   
Six numerical examples three each for Models A and B are 

presented. The same set of parameter values are used for both 

the models so that the effect of stopping at backlog level of 

static failures can be seen to understand the impact of stopping.                                                                                                                             

4.1 Model (A):                                                                           

The fatigue failure probabilities are allowed to vary here and 

other parameters are fixed. The expected number of static 

failures waiting for repair E (S), the probabilities of number of 

static failures waiting for repairs and probability of operating 

system is in fatigue failed state, 𝜋𝑖  𝑎𝑛𝑑 𝜋𝑅 for i = 0, 1, 2, 3,and 

𝜋∗=  𝜋𝑘
∞
𝑘=3  are calculated. The manpower status parameters 

namely λ and μ, business status parameters namely a and b, the 

occurrence parameter of the shock process c, the repair time 

parameters of static failure namely vector 𝑑𝑖  for i = 1, 2,3, 4, in 

various manpower and business states, the probabilities P (N= 

i) =𝑝𝑖of i static failures repaired in a repair time for i =1, 2, 

3…. , and the parameter δ of replacement of operating system 

in down state are fixed as follows; λ = .1, μ = 1; a = .2, b = 2; c 

= 20;𝑑1 = 7,𝑑2 = 8,𝑑3 = 9,𝑑4 = 10; 𝑝1 = .5,𝑝2. 25,𝑝3 =
.15,𝑝4 = .1, 𝑝𝑖 = 0, 𝑓𝑜𝑟 𝑖 > 4; and δ = 30. The steady state 

probability vector of the matrix Q’ of order four is seen as w = 

(𝑤1 ,𝑤2,𝑤3,𝑤4) = (0.008264463, 0.082644628, 0.082644628, 

0.826446281), with   E (N) = 1.85 and the effective static 

repair rate of inequality (11), E (N) 𝑤.𝑑 = 17.995455. Three 

examples are studied fixing the fatigue probabilities, 𝛽1 =
.1,𝛽2 = .1,𝛽4 = .15 𝑎𝑛𝑑 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝛽3= .05, .1 and .15. 

(𝛼𝑖 = 1 − 𝛽𝑖 , 𝑖 = 1,2,3,𝑎𝑛𝑑 4). The iteration for the rate 

matrix R is stopped at the iteration 12 when the difference-

norm is of order E-05. Using the rate matrix R, various 

measures are calculated and tabulated below.                                 

Table 1 Calculated values for Model (A)                                                                                                                                                                                                                                                                                   

 

Example1 

 𝛽3 = .05 

Example 2 

 𝛽3 = .1 

Example 3 

 𝛽3 = .15  

 

E(β) 0.137190083 0.141322314 0.145454545 

πR 0.083493316 0.085970876 0.08832241 

π0 0.262431771 0.267741243 0.272121332 

π1 0.185431338 0.18828718 0.190140201 

π2 0.131541078 0.13270953 0.133059445 

π3 0.093683976 0.093746837 0.093262246 

π* 0.24341852 0.231544335 0.223094366 

E(S) 2.36556159 2.248039318 2.174626564 

4.2. Model (B)  

Here the above three examples are studied. The same values of 

the parameters of Examples 1, 2, 3  are considered for 

Examples 4,5, 6 with the stopping level for static damages M = 

10 respectively in that order so that the effect of stopping at a 

level can be seen. The results obtained are listed below in a 

table.                                                                                                  

Table 2 Calculated values for Model (B) 

 

Example 4       

𝛽2 = .05 

Example 5     

𝛽2 = .1 

Example 6        

𝛽2 = .15 

 E(β) 0.137190083 0.141322314 0.145454545 

πR 0.085206113 0.087522741 0.08976062 

π0 0.277089768 0.280772065 0.284180347 

π1 0.19583635 0.197358833 0.198457795 

π2 0.13877192 0.138878017 0.138660071 

π3 0.098486623 0.097735979 0.096842883 

π* 0.204609226 0.197732363 0.192098283 

E(S) 1.901214905 1.85724019 1.820659673 

4.3. Combined Chart for Models (A) and (B)  

The following figures give the values of various quantities 

calculated. They give the variations seen in changing the 

fatigue probabilities. The increase in fatigue effective value    

E (β) decreases the various measures. For set of the parameter 

values under consideration 𝜋∗ and E(S) are more for Model 

(A), compared to Model (B) indicating the advantage of 

stopping at a level. The numerical method may be used when 

the parameter values and M are known to find whether Model 

A or Model B is advantageous The figures 1 and 2 show the 

lower level probabilities are more and E(S) values are less for 

Model (B) compared to Model (A) indicating the stopping 

level plays a role. The combined chart of all measures and all 

probabilities also show significant variations as the expected 

fatigue level increases and the stopping level plays a role in 

increasing lower level probabilities and decreasing the 

expected static damage levels. The selection of M, the stopping 

level, also has relation with future cost of maintenance of the 

entire system and fixing the same may have to be optimal in 

line with budget estimates in addition to probabilistic    

consideration.  

 

Figure 1 Probabilities of static damages less than 3 for 

Models (A) and (B) in the examples 1 to 6 
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Figure 2 Expected Static damages E(S) for Models (A) and 

(B) 

  

Figure 3 Combined chart for measure of Models (A) and 

(B) 

 

Figure 4 Probabilities of static damage levels for Models 

 

 

 

 

5. CONCLUSION. 
Considering a continuous time Markov chain approach, the 

backlog level probabilities of occurred static failures, fatigue 

failures and various other measures are obtained. From this 

numerical studies, it is found that the replacement of the 

system at a suitable static failure level (Model B) is 

advantageous because the probabilities of lower level static 

damages are more and E(S) values are less when compared to 

not replacing the system for periodic static failures (Model A).   

Cost of replacement and cost of repair of static failures if 

introduced in some form for fixing the optimal stopping level 

M is another area of vital interest for future studies in this 

field. 
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