
International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.3, November 2014

27

A Comparative Study on Snapshot Protocols for Mobile

Distributed Systems

Vijaya Kapoor
Shri Venkateshwara University

Gajraula, UP (INDIA)

 Parveen Kumar
Amity University

Gurgaon, Haryana (INDIA)

ABSTRACT

In MDS (Mobile Distributed Systems) , we come across some

issues like: low bandwidth of wireless channels , mobility,

and lack of stable storage on mobile nodes, limited battery

power ,disconnections and high failure rate of mobile nodes.

Fault Tolerance Techniques enable systems to perform tasks

in the presence of faults. In case of a fault in DS, snapshot

enables the execution of a program to be resumed from a

previous consistent Global State rather than resuming the

execution from the beginning. Thus, a lot of useful processing

amount is lost because of the fault is significantly condensed.

Coordinated global Snapshot is an effective FTT (Fault

Tolerant Technique) in DS(Distributed Systems), as it avoids

the domino effect and require minimum storage requirement.

In this paper, we will study the accessible snapshot

compilation schemes for DS & MDS. Then, a comparative

analysis of the different schemes will be performed.

Keywords

Fault tolerance, Coordinated snapshot, Message logging and

Mobile Distributed Systems

1. INTRODUCTION

1.1 Definitions
Snapshot: It is a designated place in a program at which

normal process is interrupted specifically to preserve the

status information necessary to allow recommencement of

processing at a later time. A snapshot is a local state of a

process saved on stable storage. By periodically invoking the

snapshot process, one can save the status of a program at

expected intervals.

Rollback Recovery: In case of failure one may restart

computation from the last snapshot thereby avoiding repeating

computation from the starting. The process of recommencing

computation by rolling back to a saved state is called rollback

recovery. Besides its use to recover from failures, snapshot is

also used in debugging distributed programs and migrating

processes in multiprocessor system. In debugging distributed

programs, state changes of a process during execution are

monitored at various time instances. Snapshots assist in such

monitoring. In Distributed System the load of the processors

is balanced by moving processes from heavily loaded

processors to lightly loaded ones. Snapshot a process

periodically provides the information necessary to move it

from one processor to another [16]. With snapshot, an

arbitrary temporal section of a program’s runtime can be

extracted for exhaustive analysis without the need to restart

the program from beginning.

Global State: In MDS, since the processes do not have shared

memory, a Global State of the system is defined as a set of

local states, one from each process. The state of channels

resulting to a global state is the set of messages sent but not

yet received.

Orphan Message: A message whose send event is lost but

received event is recorded.

Consistent Global State: A global state is said to be

“Consistent” if it contains no orphan message. To recover

from a failure, the system restarts its implementation from a

previous consistent global state saved on the stable storage

during fault-free execution.

In DS, snapshot can be Independent, Coordinated [3], [8],

[11] or Quasi-Synchronous [2], [9]. Message Logging is also

used for fault tolerance in DS [14].

Under the Asynchronous approach, snapshots at each process

are taken autonomously without any synchronization among

the processes. Because of absence of synchronization, there is

no guarantee that a set of local snapshots taken will be a

consistent set of snapshots. It may require cascaded rollbacks

that may lead to the initial state due to domino-effect [5].

Domino-effect, may lead to loss of a large amount of valuable

work. A process may record unproductive snapshots that will

never be part of a consistent GS. Ineffective snapshots are

unwanted. They consume the limited resources of the MDS

and do not progress the recovery line.

Independent snapshot compilation forces each process to store

many snapshots. It requires periodically garbage collection

process to destroy the snapshots that are no longer needed. In

order to determine a consistent global snapshot during

recovery, the processes store the dependencies among their

snapshots during regular operations. Hence, independent

snapshot compilation protocols are not appropriate for MDS.

Communication-induced snapshot compilation does not lead

to the domino effect. It requires processes to record some of

their snapshots independently. However, process

independence is forced to guarantee the eventual progress of

the recovery line and therefore processes may be enforced to

record additional snapshots. The snapshots that a process

records independently are called local snapshots, while those

that a process is forced to record are called forced snapshots.

Communication-induced snapshot compilation piggybacks

protocol related information on each application message [6].

In message-logging based snapshot compilation schemes,

when a process fails, a new process is generated in its place.

The newly created process is given the suitable recorded LS

(local state) and then the logged communications are replayed

in the correct order. These schemes require that once a

stopped process recovers, its state is required to be consistent

with the states of the other processes [6].

In coordinated or synchronous snapshot compilation,

processes record their snapshots in coordination with each

other. In such schemes, recorded GS is forever consistent.

Generally it is based on two-stage commit arrangement. In the

first stage, processes record tentative snapshots and in the

second stage, these are made permanent. The major benefit is

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.3, November 2014

28

that only one permanent snapshot and at most one tentative

snapshot is necessary to be stored. In case of error, the system

rollbacks to last steady snapshot state. A permanent snapshot

cannot be undone. It makes sure that the working required to

achieve the snapshot state will not be repeated. A tentative

snapshot can be destroyed or committed. The coordinated

snapshot compilation procedures can be divided into two

categories: intrusive and non-intrusive. In intrusive

procedures, some intrusion of processes takes place during

snapshot compilation. In non-intrusive algorithms, no

intrusion of processes is compulsory during snapshot

compilation [2, 3, 4]. The coordinated snapshot compilation

algorithms can also be classified into following two

categories: selective-process and all process protocols. In all-

process coordinated snapshot compilation algorithms, it is

mandatory for every process to record its snapshot in a

snapshot commencement. In selective-process algorithms,

only least interacting processes are forced to record their

snapshots in a commencement.

The occurrence of mobile nodes in a DCS (Distributed

Computing System) invites new challenges that need

appropriate treatment while designing a snapshot compilation

algorithm for such systems. These challenges are mobility,

disconnections, deficient in stable storage, inadequate power

source, susceptible to physical spoil[1].

Selective-process coordinated snapshot compilation is

considered salient approach to introduce fault tolerance in

MDS transparently. This scheme is domino-free. It maintains

at most two snapshots of a process on stable storage. It

requires least number of processes to participate in snapshot

compilation. But, it leads to extra synchronization

communications, intrusion of the underlying working or

taking some ineffective snapshots. A good snapshot

compilation procedure for MDS should have small memory

expenses on MHs (Mobile Hosts), low outlay on wireless

channels and should keep away from awakening of an MH in

doze mode operation. The disconnection of an MH should not

lead to never-ending wait state. The procedure should force

least number of processes to record their local snapshots [20].

In selective-process synchronous snapshot compilation, the

originator process asks all communicating processes to record

their tentative snapshots. In this scheme, if a solitary process

fails to record its snapshot; all the snapshot compilation

effort goes waste, because, each process has to terminate its

tentative snapshot. In order to record the tentative snapshot,

an MH is required to transmit big snapshot data to its local

MSS over wireless channels. Due to repeated aborts, total

snapshot compilation effort may be exceedingly high, which

may be disagreeable in MDS due to inadequate possession of

resources. Repeated aborts may happen in MDS due to tired

battery, sudden disconnection or bad wireless connectivity

[6].

2. Summary of Related Works
Cao and Singhal [3] designed selective-process intrusion-

based procedure for snapshot compilation in MDS. In this

procedure, intrusion time is considerably abridged with

respect to [9]. Direct dependencies of every process is

retained in a bit array of length n for n processes. Originator

process catches the direct dependency vectors of all processes

and finds out minimum set. Then, the snapshot appeal is sent

along with the minimum set to all processes. During the

period, a process sends its dependency vector to the originator

process and captures the minimum set, it continues to be in

the intrusion period. A process records its snapshot if it is in

the minimum set.

Neves et al. [10] designed a loosely synchronized snapshot

compilation procedure that eliminates the operating cost of

synchronization. In this approach it is assumed that the clocks

at the processes are loosely synchronized. Loosely

synchronized clocks can activate the local snapshots at all the

processes approximately at the same time without a controller.

After recording a snapshot, a process waits for a period, which

is total of greatest time to perceive a failure of other process in

the system and the highest divergence between clocks. It is

understood that all snapshots concerning to a specific

coordination session have been considered without the need of

sharing any communication. If a failure encountered, it is

detected within the particular time and the procedure is

abandoned.

The Chandy-Lamport [5] procedure is one of the earliest non-

intrusive all-process coordinated snapshot compilation

procedure for static nodes. In this protocol, markers are

transferred along all paths in the network which reaches to a

message complexity of O(N2) and requires paths to be FIFO.

To relax the FIFO hypothesis, Lai and Yang proposed an

algorithm [6]. In this algorithm, when a process records a

snapshot, it piggybacks a flag to the communication it sends

out from each channel. The recipient considers the

piggybacked flag to see if there is a requirement to record a

snapshot before processing the communication. If so, it

records a snapshot before processing the communication to

avoid an inconsistency. Each process maintains the entire

communication history on each channel as part of the local

snapshot to record the channel information. It requires all

processes to record snapshots. Elnozahy [7] et al. proposed an

all-process non-intrusion synchronous snapshot compilation

procedure with a message complexity of O(N). They use

snapshot sequence numbers to identify orphan messages, thus

avoiding the need for processes to be blocked during snapshot

compilation. However, this approach requires the initiator to

communicate with all processes in the computation.

In the procedure proposed by Silva and Silva [18], the

processes which did not communicate with others during the

previous snapshot compilation interval do not need to record

new snapshots. The above discussed protocols aim to decrease

the operating cost connected with synchronized snapshot

compilation. Studies are performed in order to decrease the

synchronization communications, reduce the number of

processes to snapshot and to make the protocols non-intrusive.

The above mentioned algorithms are either selective-process

or non-intrusive. Prakash and Singhal [13] were first to give

selective-process non-intrusive coordinated snapshot

compilation protocol for MDS. But their procedure may lead

to inconsistencies [3]. In [3], it was proved that there does not

exist a selective-process non-intrusive coordinated snapshot

compilation algorithm. Hence in selective-process

coordinated snapshot compilation algorithms, some intrusion

of the processes records place [3], or some useless snapshots

are taken [4].

Koo-Toueg [9] designed a selective-process synchronous

snapshot compilation protocol which relaxes the idea that all

communications are atomic. It reduces the number of

synchronization messages and number of snapshots. The

algorithm consists of two phases. During the first phase, the

snapshot maker identity all processes with which it has

communicated since the last snapshot and sends them a

request. Upon receiving the request, each process in turn

identifies all process it has communicated with since the last

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.3, November 2014

29

snapshot and sends them a request, and so on, until no more

processes can be identified. During the second phase, all

processes identified in the first phase take a snapshot. The

result is a consistent snapshot that involves only the

participate processes In this protocol, when second phase

terminates successfully then only a process can send a

message, although, receiving messages after the snapshot is

allowable.

Garg and Kumar[23] proposed a non-blocking coordinated

snapshot algorithm for mobile computing systems, which

requires only a minimum number of processes to take

permanent snapshots. They reduce the message complexity as

compared to the Cao-Singhal algorithm[4], while keeping the

number of useless snapshots unchanged. They also address

the related issues like: failures during snapshot process,

disconnections, concurrent initiations of the algorithm and

maintaining exact dependencies among processes. Finally,

they presented an optimization technique, which significantly

reduces the number of useless snapshots at the cost of minor

increase in the message complexity. In coordinated snapshot,

if a single process fails to take its tentative snapshot; all the

snapshot efforts were aborted. They try to reduce this effort

by taking soft snapshots in the first phase at Mobile Hosts.

They have proposed a non blocking coordinated snapshot

protocol for MDS, where only minimum number of processes

takes permanent snapshots. They have reduced the message

complexity as compared to Cao & Singhal algorithm, while

keeping the number of useless snapshots unchanged. The

proposed algorithm was designed to impose low memory and

computation overheads on MHs and low communication

overheads on wireless channels. An MH can remain

disconnected for an arbitrary period of time without affecting

snapshot activity. They also try to minimize the loss of

snapshot effort if some process fails to take its snapshot in the

first phase but it will increase the synchronization overhead.

Kumar and Kumar[24] proposed a minimum set coordinated

snapshot algorithm for mobile Distributed systems, which

keeps track of direct dependencies of processes. Initiator MSS

collects the direct dependency vectors of all processes,

computes the tentative minimum set (minimum set or its

subset), and sends the snapshot request along with the

tentative minimum set to all MSSs. This step is taken to

reduce the time to collect the coordinated snapshot. It will

also reduce the number of useless snapshots and the blocking

of the processes. Suppose, during the execution of the

checkpointing algorithm, Pi takes its snapshot and sends m to

Pj. Pj receives m such that it has not taken its snapshot for the

current initiation and it does not know whether it will get the

snapshot request. If Pj takes its snapshot after processing m, m

will become orphan. In order to avoid such orphan messages,

they propose the following technique. If Pj has sent at least

one message to a process, say Pk and Pk is in the tentative

minimum set, there is a good probability that Pj will get the

snapshot request. Therefore, Pj takes its induced snapshot

before processing m. An induced snapshot is similar to the

mutable snapshot [4]. In this case, most probably, Pj will get

the snapshot request and its induced snapshot will be

converted into permanent one. There is a less probability that

Pj will not get the snapshot request and its induced snapshot

will be discarded. Alternatively, if there is not a good

probability that Pj will get the snapshot request, Pj buffers m

till it takes its snapshot or receives the commit message. They

have tried to minimize the number of useless snapshots and

blocking of the process by using the probabilistic approach

and buffering selective messages at the receiver end. Exact

dependencies among processes are maintained. It abolishes

the useless snapshot requests and reduces the number of

duplicate snapshot requests as compared to [4].

P. Kumar [25] proposed a hybrid snapshot algorithm for

mobile distributed systems. In minimum-process snapshot,

some processes, having low communication activity, may not

be included in the minimum set for several snapshot

initiations and thus may not advance their recovery line for a

long time. In the case of a recovery after a fault, this may lead

to their rollback to far earlier snapshot state and the loss of

computation at such processes may be exceedingly high. In

all-process snapshot, recovery line is advanced for each

process after every global snapshot but the snapshot overhead

may be exceedingly high, especially in mobile environments

due to frequent snapshots. MHs utilize the stable storage at

the MSSs to store snapshots of the MHs . Thus, to balance the

snapshot overhead and the loss of computation on recovery, a

hybrid snapshot algorithm for mobile distributed systems is

proposed, where an all-process snapshot is taken after certain

number of minimum-process snapshots.

A strategy is proposed to optimize the size of the csn. In order

to address different checkpointing intervals, the integer csn is

replaced with k-bit CI(checkpointing interval). Integer csn is

monotonically increasing, each time a process takes its

checkpoint, it increments its csn by 1. k-bit CI is used to

serve the purpose of integer csn. The value of k can be fine-

tuned.

The minimum-process snapshot algorithm is based on keeping

track of direct dependencies of processes. Initiator process

collects the direct dependency vectors of all processes,

computes minimum set, and sends the checkpoint request

along with the minimum set to all processes. In this way,

blocking time has been significantly reduced as compared to

[9].

During the period, when a process sends its dependency set to

the initiator and receives the minimum set, may receive some

messages, which may alter its dependency set, and may add

new members to the already computed minimum set. In order

to keep the computed minimum set intact and to avoid useless

checkpoints, processes are blocked during this period.

3. CONCLUSION
MDS (Mobile Distributed Systems) pose new challenging

problems in designing fault tolerant systems because of the

dynamics of limited bandwidth and mobility available on

wireless links. Traditional fault tolerance techniques cannot be

applied to these systems. As the snapshot scheme saves the

status of system at some transitional points (Snapshots) and a

rollback to the latest saved state is done at the occurrence of a

failure. Therefore, it reduces the rollback portion through at

the cost of additional overheads for snapshots. In this paper

we have provided the fundamental concepts of snapshot

algorithms. Most of the Coordinated snapshot protocols able

to reduce the useless snapshots and blocking of processes at

very low cost for maintaining and collecting direct

dependencies and piggybacking checkpoint sequence numbers

onto normal messages .Coordinated snapshots generally

simplifies garbage collection and recovery, provide good

performance in practice. Therefore we have compared and

reviewed Selective Intrusive , Selective Non Intrusive, All

process Intrusive, All process Non Intrusive & Hybrid

approaches of Coordinated snapshot protocols to rollback

recovery for MDS.

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.3, November 2014

30

More general approaches showing the effect of the snapshot

protocols on MDS may also be considered for further study.

4. REFERENCES
[1] Acharya A. and Badrinath B. R., “Checkpointing

Distributed Applications on Mobile Computers,”

Proceedings of the 3rd International Conference on

Parallel and Distributed Information Systems, pp. 73-80,

September 1994.

[2] Cao G. and Singhal M., “On coordinated checkpointing

in Distributed Systems”, IEEE Transactions on Parallel

and Distributed Systems, vol. 9, no.12, pp. 1213-1225,

Dec 1998.

[3] Cao G. and Singhal M., “On the Impossibility of Min-

process Non-blocking Checkpointing and an Efficient

Checkpointing Algorithm for Mobile Computing

Systems,” Proceedings of International Conference on

Parallel Processing, pp. 37-44, August 1998.

[4] Cao G. and Singhal M., “Mutable Checkpoints: A New

Checkpointing Approach for Mobile Computing

systems,” IEEE Transaction On Parallel and Distributed

Systems, vol. 12, no. 2, pp. 157-172, February 2001.

[5] Chandy K. M. and Lamport L., “Distributed Snapshots:

Determining Global State of Distributed Systems,” ACM

Transaction on Computing Systems, vol. 3, no. 1, pp. 63-

75, February 1985.

[6] Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B.,

“A Survey of Rollback-Recovery Protocols in Message-

Passing Systems,” ACM Computing Surveys, vol. 34,

no. 3, pp. 375-408, 2002.

[7] Elnozahy E.N., Johnson D.B. and Zwaenepoel W., “The

Performance of Consistent Checkpointing,” Proceedings

of the 11th Symposium on Reliable Distributed Systems,

pp. 39-47, October 1992.

[8] Higaki H. and Takizawa M., “Checkpoint-recovery

Protocol for Reliable Mobile Systems,” Trans. of

Information processing Japan, vol. 40, no.1, pp. 236-244,

Jan. 1999.

[9] Koo R. and Toueg S., “Checkpointing and Roll-Back

Recovery for Distributed Systems,” IEEE Trans. on

Software Engineering, vol. 13, no. 1, pp. 23-31, January

1987.

[10] Neves N. and Fuchs W. K., “Adaptive Recovery for

Mobile Environments, ” Communications of the ACM,

vol. 40, no. 1, pp. 68-74, January 1997.

[11] Parveen Kumar and Poonam Gahlan, “A Low-overhead

Minimum Process Coordinated Checkpointing Algorithm

for Mobile Distributed Systems”, International Journal of

Computer Applications, vol. 10, no. 6, pp 30-36 June

2010.

[12] Parveen Kumar and Ruchi Tuli, “Analysis of Recent

checkpointing Techniques for Mobile Computing

Systems”, International Journal of Computer Science &

Engineering, vol. 2, no. 3, August 2011.

[13] Prakash R. and Singhal M., “Low-Cost Checkpointing

and Failure Recovery in Mobile Computing Systems,”

IEEE Transaction On Parallel and Distributed Systems,

vol. 7, no. 10, pp. 1035-1048, October1996.

[14] Ssu K.F., Yao B., Fuchs W.K. and Neves N. F.,

“Adaptive Checkpointing with Storage Management for

Mobile Environments,” IEEE Transactions on

Reliability, vol. 48, no. 4, pp. 315-324, December 1999.

[15] T. Park and J.L. Kim, “An efficient Protocol for

checkpointing Recovery in Distributed Systems,” IEEE

Trans. Parallel and Distributed Systems, pp. 955-960,

Aug. 1993.

[16] L. Kumar, M. Misra, R.C. Joshi, “Low overhead optimal

checkpointing for mobile distributed systems”

Proceedings. 19th IEEE International Conference on

Data Engineering, pp 686 – 88, 2003.

[17] L. Lamport, “Time, clocks and ordering of events in a

distributed system” Comm. ACM, vol.21, no.7, pp. 558-

565, July 1978.

[18] Silva, L.M. and J.G. Silva, “Global checkpointing for

distributed programs”, Proc. 11th
 symp. Reliable

Distributed Systems, pp. 155-62, Oct. 1992.

[19] Mukesh Singhal, Niranjan G Shivaratri, Advanced

Concepts in Operating Systems, vol 18, pp. 71, 2008.

[20] Kumar Parveen, Gupta Sunil Kumar, Chauhan R.K.,

“Backward Error Recovery Protocols in Distributed

Mobile Systems: A Survey”, Journal of Theoretical

and Applied Information Technology, pp. 337-347, 2008.

[21] Murthy and Manoj, “Ad hoc Wireless Networks

Architectures and Protocols”, Pearson Education, 2004.

[22] Ruchi Tuli and Parveen Kumar, “Minimum Process

Coordinated Checkpointing Scheme for Ad Hoc

Networks”, International Journal on AdHoc Networking

Systems, vol. 1, no. 2, October 2011.

[23] Garg., R and Kumar, P., ”A Nonblocking Coordinated

Checkpointing Algorithm for Mobile Computing

Systems, International Journal of Computer Science

Issues, Vol. 7, Issue 3, No 3, May 2010

[24] Lalit Kumar, Parveen Kumar “A Synchronous

Checkpointing Protocol for Mobile Distributed Systems:

A Probabilistic Approach”, International Journal of

Information and Computer Security [], pp 298-314, Vol.

3 No. 1, 2007.

[25] Parveen Kumar, “A Low-Cost Hybrid Coordinated

Checkpointing Protocol for Mobile Distributed

Systems”, Mobile Information Systems [An International

Journal from IOS Press, Netherlands] pp 13-32, Vol. 4,

No. 1, 2007.

IJCATM : www.ijcaonline.org

