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ABSTRACT 

In the course of this paper, the Optimal Homotopy 

Asymptotic Method (OHAM) introduced by Marica is applied 

to solve linear and nonlinear boundary value problems both 

for fourth-order integro-differential equations. The following 

analysis is accompanied by numerical examples whose results 

show that the Optimal Homotopy Asymptotic Method is 

highly accurate, convenient and relatively efficient for solving 

fourth order integro-differential equations.   
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1. INTRODUCTION 
The Integro-differential equation (IDE) is one that takes into 

account both integrals and derivatives of an unknown 

function. Mathematical modeling of real-life problems usually 

results in functional equations, like ordinary or partial 

differential equations, integral and integro-differential 

equations, and stochastic equations. Many mathematical 

formulations of physical phenomena contain Integro-

differential equations; these equations pop up in many fields, 

namely physics, astronomy, potential theory, fluid dynamics, 

biological models, and chemical kinetics. Integro-differential 

equations; are usually difficult to solve analytically; it is, 

therefore, required to obtain an efficient approximate solution 

[1-3]. Recently, several numerical methods to solve IDEs 

have been proposed such as the Wavelet-Galerkin method [4], 

Lagrange interpolation method[5], Variational Iteration 

Method[6,7], Homotopy Perturbation Method [8,9], Tau 

method [10], Adomian’s decomposition method [11,12], 

Taylor polynomials [13],Spline Function Expansion[14,15] 

and Collocation Method [16-19]. 

The work in question is motivated by the desire to obtain 

analytical and numerical solutions to boundary value 

problems for fourth-order integro-differential equations. In 

recent years, Optimal Homotopy Asymptotic Method 

(OHAM), which was introduced by Marica et al [20], has 

been used in obtaining approximate solutions of a wide class 

of differential, integral and the elusive Integro-differential 

equations. The method provides the solution in a rapidly 

convergent series with components that are elegantly 

computed. The main advantage of the method is that it can be 

used directly without using assumptions or transformations. 

In this work, we aim to implement this reliable technique to 

Integro-differential equations with two-point boundary value 

problems (BVPs) for the fourth-order Integro-differential 

equations 
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where  fo t,tt  and F  is a real non-linear continuous 

function oo ,,,  1  and 1  are real constants, and g,f and 

h  are given and can be approximated by Taylor 

polynomials.The conditions for existence and uniqueness of 

solutions of (1) are given in [1]. The boundary conditions will 

be imposed on various approximants of the obtained series 

solution to complete the determination of the remaining 

constants. Several numerical methods to solve the fourth-

order Integro-differential equations have been given such as 

the Variational Iteration Method [7], Chebyshev Cardinal 

Functions [21], Pseudospectral Method [22], Homotopy 

Perturbation Method [23], Spectral Method [24], Adomian 

decomposition method [11] , Reproducing kernel theory [25] 

and a number of others that work but are somehow inferior to 

the new method under our belts.  

The rest of this paper is organized as follows. In Section 2, we 

review the Optimal Homotopy Asymptotic Method (OHAM). 

In Section 3, illustrative examples are provided for the 

confirmation of the effectiveness of the presented method. 

Section 4 contains conclusive notes and notations about future 

work.  

2. REVIEW OF OHAM 
We review the fundamental ideas of Optimal Homotopy 

Asymptotic Method, as discussed in [20], for solving 

nonlinear differential equation. Consider the following 

differential equation 

     0 hvA ;     (2) 

where  is problem domain. The operator A usually consists 

of two parts 

     vNvLvA      (3) 

where  vL is the linear part of the operator and  vN is 

nonlinear part of the operator.  v  is unknown function and 

 h is known function. Now, we construct an optimal 

homotopy equation as follows: 

                01  hq,AqHhq,Lq   (4) 
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where q is an embedding parameter ranges from zero to one. 

 qH is an auxiliary function on which convergence of Eq.(4) 

depends. It can be given as 

  t
t

s

t

cqqH 
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This function also adjusts the convergences domain as well as 

convergence region. The following approximate solution has 

been obtained if we expand  jc,q;  in a Taylor’s series 

about q  

      321
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The convergence of Equation (6) depends upon jc  . If it is 

convergent, then we get 

   jk

s

k
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1

   (7) 

By substituting Eq.(7) in Eq.(24), the following residual has 

been achieved 

         jjj c;vNhc;vLc,R    (8) 

By minimizing the residual, we will get the approximate 

solution. If   0 jc,R , then v~ will be the exact solution. In 

general, such case will not arise for nonlinear problem. For 

determining the value of jc , different methods such as least 

square method or Galarkin’s method can be used. After 

substituting the values of jc in Eq.(7), one can obtained the 

corresponding approximate solution. 

  

3. NUMERICAL EXAMPLES 
Example 1: 

We first consider the linear boundary value problem for the 

integro-differential equation  
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  ; 10  x  (9)    (12) 

subject to the boundary conditions 

  10 y  ;    10 y  ,    ey 11   ,    ey 21   

The exact Solution of this problem is xxe)x(y 1  (10) 

The Optimal homotopy asymptotic method formulation of 

equation (9) is 

     xyq,xyL iv    (11) 

       dttyxyq,xyN

x
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which satisfies 
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By equating the coefficients of the same power of q , one 

obtain 

     xxiv
o eexxy:q 310    (15) 
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By solving the above equations, we can easily obtain  xyo , 

 11 c,xy and  212 c,c,xy  which are as follows:- 
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where 
40001046139494

1
A  

The solution of equation (9) can be obtained approximately in 

the form 

       2121121
2 c,c,xyc,xyxyc,c,xy o   (21) 

where  21
2 c,c,xy  is the second order approximate solution. 

Substituting equation (21) into (9), the residual has been 

obtained 
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By using least square method, the values of constant is 

obtained as 

392054000673885411 .c  ,  

763215001347825812 .c   

Comparison of results with exact solution is presented in 

Table 1, which contains percentage error of the approximate 

solution obtained by Optimal Homotopy Asymptotic Method. 

Table 1:  Percentage error of Example 1 

x  
Numerical 

Solution 

Exact 

Solution 
% Error 

0.0 1.00000000000 1.00000000000 0.00000000000 

0.1 1.11051709180 1.11051709180 0.00000000000 

0.2 1.24428055161 1.24428055163 0.00000000001 

0.3 1.40495764226 1.40495764227 0.00000000000 

0.4 1.59672987908 1.59672987905 0.00000000001 

0.5 1.82436063541 1.82436063535 0.00000000003 

0.6 2.09327128033 2.09327128023 0.00000000004 

0.7 2.40962689533 2.40962689522 0.00000000004 

0.8 2.78043274286 2.78043274279 0.00000000002 

0.9 3.21364280006 3.21364280004 0.00000000000 

1.0 3.718281828459 3.71828182845 0.00000000000 

% Mean Error 0.00000000001 

 

Table 1 clearly shows accuracy of the Optimal Homotopy 

Asymptotic Method with mean percentage error 

0.000000000018. Fig 1 shows the accuracy of the 

approximate solution. It’s obvious that good accuracy is 

achieved with a minimum amount of computation. 

 

Figure 1: Comparison of Numerical and Exact solution of 

Example 1 
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Example 2: 

Consider the fourth order BVP  

    dttyexy t

x

iv 2

0

1 

   ; 10  x   (23) 

With boundary condition 

  10 y  ;    10 y  ,    ey 1   ,    ey  1  

 

By Optimal Homotopy Asymptotic technique, one can 

construct  

     xyq,xL iv ;     dttyeq,xN t
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which satisfies 

 

 
 
 

 
 
 

 





















































































































































 dttye

xu

xu

xu

qc

qc

xu

xu

xu

q

t

x

o

o

2

0

2

1

2
2

1

2

1
111 (25) 

Equating the coefficients of the same power of q gives: 
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By solving equations (26-28), we can easily obtain  xyo , 

 11 c,xy and  212 c,c,xy  which are as follows:- 
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Calculate second order approximate solution by putting the 

values of  xyo  11 c,xy  and  212 c,c,xy in (23). The 

Residual has been achieved as  

     dttyec,c,xyc,c,xR t

x

2

0

21
2

21 1 

  (32) 

Using method of least square, one may easily get values of 

21 c&c  as  

866732318703640201 .c  , 611505363810549202 .c   

Comparison of the numerical results with exact solution  xy  

and the percentage error of Example 2 is given in Table 2. 

The algorithm produces results which are of excellent 

accuracy 

 

Figure 2: Comparison of Numerical and Exact solution of 

Example 2 

Table 2:  Percentage error of Example 2 

x  
Numerical 

Solution 

Exact 

Solution 
% Error 

0.00 1.000000000 1.000000000 0.000000000 

0.10 1.105170945 1.105170918 0.000000024 

0.20 1.221402835 1.221402758 0.000000063 

0.30 1.349858920 1.349858808 0.000000083 

0.40 1.491824815 1.491824698 0.000000079 

0.50 1.648721366 1.648721271 0.000000058 

0.60 1.822118859 1.822118800 0.000000032 

0.70 2.013752734 2.013752707 0.000000013 

0.80 2.225540937 2.225540928 0.000000004 

0.90 2.459603113 2.459603111 0.000000001 

1.00 2.718281828 2.718281828 0.000000000 

% Mean Error 0.000000032 

Fig 2 shows the numerical result of exact solution and OHAM 

solution, it is clear that the results are in excellent agreement. 

4. DISCUSSION & CONCLUSION 
Integro-differential equations are typically cumbersome and 

hard to solve analytically; so, it is required to obtain the 

approximate solution. In this paper, we proposed the optimal 

Homotopy Asymptotic Method (OHAM) for solving fourth 

order Integro-differential equations. From our obtained 

results, we have been able to conclude that the proposed 

method gives solutions in excellent agreement with the exact 

solution and better than the other methods. Optimal 

Homotopy Asymptotic Method (OHAM) provides a simple 

and easy way to control and adjust the convergence region for 

strong nonlinearity and is also applicable to higher order 

Integro-differential equations. All computation has been 

conducted using MATHEMATICA 9.0. 
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