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ABSTRACT 

This paper presents a comparison of different fitters namely: 

Extended Kalman Filter (EKF), Particle Filter (PF) and a 

proposed Enhanced Particle / Kalman Filter (EPKF) used in 

robot localization. These filters are implemented in matlab 

environment and their performances are evaluated in terms of 

computational time and error from ground truth and the 

results are reported. The considered robot localizer uses radio 

beacons that provide the ability to measure range only. Since 

EKF and its variants are not capable to efficiently solve the 

global localization problem, we propose the Enhanced Particle 

/ Kalman Filter (EPKF) which provide the required initial 

location to address this drawback of EKF. We propose using 

PF as Initialization phase to coarsely predict the initial 

location and numerous sets of data are experimented to get 

robust conclusion. The results showed that the proposed 

localization approach which adopts the particle filter as 

initialization step to EKF achieves higher accuracy 

localization while, the computational cost is kept almost as 

EKF alone.  

General Terms 
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1. INTRODUCTION 

The problem of robot localization is known as answering the 

question Where am I or determining the place of the robot. 

This means that the robot is trying to locate it in comparison 

to the surrounding environment. When we research for 

location, pose, or position we mean the x and y coordinates 

and heading direction of a robot in a global coordinate system. 

The mobile robot localization problem comes in many 

multiple flavors. Position tracking is the simplest localization 

problem where the initial robot pose is known and the 

problem is to compensate incremental errors in a robot’s 

odometry. Global localization problem [1] is another 

challenging one, where a robot is not told its initial pose but 

instead has to determine it from scratch. 

Several methods to support the robot localization problem 

showed in [2.3]. The Kalman filter applied often to the 

problem of localization of the robot. It works frequently, and 

it does not require a history of previous states of the robot. 

This results in a simplified algorithm that can run on the 

online in real-time systems. Unfortunately, the absolute rang 

measurements is a set of nonlinear (as in our case), which 

require the use of the Kalman Filter Extended (EKF), which 

must be linearized the measurements around the current state 

estimate. These results in a weakness common to all linear 

methods which means that the kalman filter will not converge 

when the initial state is not sufficiently accurate [4] 

Recently Particle Filter (PF) becomes public approach used 

for treatment of this problem. This is due to its ability to deal 

with the problem of non-linear non-Gaussian problem, typical 

features of the problem of localization [5.6] this. Several 

applications of PF in [7-9].In this paper, the particle filter is 

introduced to initialize kalman filter to overcome the initial 

state problem of original kalman filter. Different filters 

namely Kalman filter (KF), Particle Filter (PF) and a proposed 

Enhanced Particle/Kalman Filter (EPKF) implemented in 

Matlab environment and their performance are evaluated in 

terms of computational complexity and amount of error from 

ground truth .The obtained results are reported and compared. 

This paper is organized as follows: section 2 presents 

overview of an Enhanced Particle/Kalman filter and their 

implementation algorithms, section 3 studied the effect in 

Robot Localization by using different filters, section 4 shows 

the discussion of the obtained results, and finally section 5 is 

devoted to conclusion.  

2. OVERVIEW OF AN ENHANCED 

PARTICLE / KALMAN FILTER 
The used absolute range measurements are non-linear, 

requiring the use of an Extended Kalman Filter (EKF), The 

kalman filter there is modified to filter known as extended 

kalman filter. 

2.1 Extended Kalman Filter (EKF) for 

Localization  
 

[1] The motion model [10] 

If the robot pose (position and heading) at time k is 

represented by the state vector  Tkkkk yxq ,,  then the 

motion model of the wheeled robot used in this experiment 

are completely-modeled by the following non-linear 

equations:  
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Where: vk is a noise vector. Here, ΔDk point at the center of 

the robot’s front axle, obtained by averaging the distances 

measured by the left and right wheel encoders. The 

incremental orientation change Δθk is obtained by the 

onboard gyro. These dead reckoning measurements forming 

the control input vector  Tkkk Du  ,  

The system matrix A (k) is represented by the Jacobian:  
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The input gain matrix B(k) is was built similarly: 
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[2]  The measurement model [10]: 

At time k+1 the range from a beacon located at (xb, yb) to the 

robot with state vector q k+1 can be written as: 

      21

2

1,,1 bkbk

T

bbk yyxxyxqh    (4) 

[3] Time Propagation [11] 

 When a new control input vector    kkDku  ,  is 

received, the robot’s state is updated according to the process 

model equation. Using the standard equations of kalman 

filtering, the covariance matrix maintaining our uncertainty 

about the current state is propagated in time: 

         kQkBkBkApkAp
TT

kk  





1  
(5) 

So, the state maintained during the time propagation step 

indicates the pose of the robot at the robot reference point. 

[4]  The measurement update: [12] 

When a measurement is obtained, using the method of the 

update step is broken up as follows: 

* Shift the robot reference point’s coordinates to get the 

coordinates of the current antenna, (xa, ya)). 

*Expecting  the current measurement onto the xy plane of the 

robot. 

* Using (xa, ya) and the known beacon location (xb, yb), 

compute Hk. 

* Find the variance k R and the mean k y associated with the 

current measurement from its previous stored PDF. 

* Using the measurement model, compute the expected range 

rk to the beacon. Let υ (k) = y − r be the innovation. 

* Compute k

T

kkkk RHpHS  
 

* Compute the Kalman gain 
kk

T

kkk SHpK 1  

* Compute the normalized innovation squared and tests the 

measurement against the chi square  

* If the measurement passes the gating test, update the state 

by letting  kvKqq kkk   ˆˆ  and update the covariance 

matrix by letting
T

kkkkk KSKpp  
. 

* Now, employ this updated estimate of the pose at the 

antenna which reported the current measurement, shift back in 

x and y to get the updated pose estimate at the robot reference 

point. 

2.2 Particle Filter Algorithm 
The PFs are formulated on the concepts of the Bayesian 

theory and the sequential importance-sampling which are very 

effective in dealing with non-Gaussian and non-linear 

problems [13-16]  

The PF approximates recursively the posterior distribution 

using a finite set of weighted samples. The idea is to represent 

the required posterior density function by a set of random 

samples with associated weights and to compute estimates 

based on these samples and weights. PF uses the probabilistic 

system transition model p (Xt|Xt-1), (which describes the 

transition for state vector Xt) to predict the posterior at time t 

as: 

 dX ) Z|p(X )X |p(X) Z|p(X 1-t1-t:11-t1-tt1-t:1t   (6) 

 Where Z1: t-1 = {Z1, Z2,.... Zt-1} are available 

observations at times 1, 2, …., t-1,    p(Xt|Xt-1) expresses the 

motion model,  p(Xt-1|Z1: t-1) is posterior probability density 

function at time t-1 and p(Xt|Z1: t-1) is the prior Probability 

Density Function (PDF) at time t. At time t, the observation Zt 

is available, then the state can be updated using Bayes's rule 

as: 
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Where p(Zt|Xt) is described by the observation equation. The 

posterior PDF p(Xt-1|Zt-1) is approximated recursively as a set 

of N weighted samples N
1s
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 . Using a Monte Carlo 

approximation of the integral, we get: 
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Then it is weighted by the likelihood. 

)(s

tW = p (Zt|
)s(

tX )                                                     (10) 

This produces a weighted particle approximation 
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 for the posterior PDF p (Xt|Z t) at time t.  

3. IMPLEMENTATION AND RESULTS 

OF ROBOT LOCALIZATION 

ALGORITHM USING STUDIED 

FILTERS  
We studied a localization system which uses radio beacons 

that provide the ability to measure range only [18]. Obtaining 

range from radio beacons has the advantage that line of sight 

between the beacons and the transponder is not required, and 

the data association problem can be completely avoided. In 

this work from 7-10 radio beacons are distributed over the 

areas of robot movement. Robot is programmed to move in a 
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repeating path. All studied filters approaches are used to fuse 

range data with dead reckoning data collected from a real 

system which integrates proprioceptive measurements from 

wheel encoders, gyros, and accelerometers to localize the 

robot. Mat lab environment is used for experimenting with 

localization process. 

 
Fig [1] shows the dead reckoning path, ground truth path and 

tag locations for all paths dataset [A1, A2, E1, E2, E4, B1, 

and B2] from reference [18].Therefore different filters 

approaches [17-19] are introduced to improve this 

performance. 

 

Fig .1: The ground truth path, tag locations and dead 

reckoning of B2 datastet. 

We notice from these figures that the dead reckoning tends to 

move away from the true path with the passage of time. This 

is due to increasing errors in odometry. This can be a good 

localization method for a short distance, but it provides no 

means of recovering from error that accumulates in nature. 

3.1 The Results Of The Different 

Approaches  
In this paper we have used numerous carefully-collected 

datasets and processed them with an extended kalman filter, a 

particle filter, and enhanced particle / kalman filter. Our 

implementation of particle filter in matlab environment 

requires no initial estimate of the robot’s position.  In all 

experiments, the robot’s travel is clipped from results plot, 

giving the filter time to converge. Figs (2-4) show the results 

of studied filters. Table [1-7] summarizes the results of these 

figures concerning the error in the estimates of the studied 

filters. 
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Fig.2: Particle filters localization performance on all 

datasets 

 

 

 

 

 

 

  

Fig.3: Extended kalman filter localization performance on 

all datasets
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Fig. 4: Enhanced particle / kalman filter localization 

performance on all data sets 

Table 1: Results of Error Calculation Using Different 

Filters in the Dataset (A1) 

Error/in meter PF EKF EPKF 

XTE_abs_avg 3.5883 0.8787 0.8841 

XTE_abs_max 23.4162 2.5697 2.5673 

XTE_abs_std 3.622 0.5946 0.5983 

ATE_abs_avg 5.3397 1.1241 1.1386 

ATE_abs_max 32.7119 3.5205 3.5204 

ATE_abs_std 5.0402 0.792 0.7908 

Cartesian_abs_avg 7.0857 1.5502 1.5697 

Cartesian_abs_max 33.3154 3.5315 3.5314 

Cartesian_abs_std 5.4501 0.7748 0.7662 

Table 2: Results of Error Calculation Using Different 

Filters in the Dataset (A2) 

Error/in meter PF EKF EPKF 

XTE_abs_avg 7.2004 0.6052 
0.6119 

XTE_abs_max 36.9777 1.8401 1.7059 

 XTE_abs_std 7.3529 0.3987 0.3952 

ATE_abs_avg 8.768 0.5405 0.5368 

ATE_abs_max 37.3803 1.6589 1.7392 

 ATE_abs_std 8.3345 0.3644 0.3603 

Cartesian_abs_avg 12.5861 0.8862 0.8882 

Cartesian_abs_max 40.9376 1.8673 1.8283 

Cartesian_abs_std 9.6871 0.402 0.3996 

Table3: Results of Error Calculation Using Different 

Filters in the Dataset (E1) 

Error/in meter PF EKF EPKF 

XTE_abs_avg 3.6754 1.326 1.2913 

XTE_abs_max 16.68 4.4408 4.4397 

XTE_abs_std 3.4236 1.0372 1.0291 

ATE_abs_avg 4.0507 1.2324 1.2153 

ATE_abs_max 19.5827 5.0258 5.0247 

ATE_abs_std 3.5535 1.0471 1.0429 

cartesian_abs_avg 6.0728 2.0735 2.0494 

cartesian_abs_max 19.7418 5.0439 11.7332 

cartesian_abs_std 4.1693 1.061 1.0886 
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Table 4: Results of Error Calculation Using Different 

Filters in the Dataset (E2) 

 Error/in meter PF EKF EPKF 

XTE_abs_avg 1.9758 1.2717 1.0347 

XTE_abs_max 5.7412 3.3569 3.3434 

XTE_abs_std 1.2317 0.7432 0.6941 

ATE_abs_avg 2.4837 1.4564 1.2113 

ATE_abs_max 6.6696 3.74 3.7284 

 ATE_abs_std 1.735 0.958 0.8559 

Cartesian_abs_avg 3.4695 2.1113 1.7586 

Cartesian_abs_max 7.0373 3.7708 6.4165 

Cartesian_abs_std 1.6 0.8338 0.8315 

Table 5: Results of Error Calculation Using Different 

Filters in the Dataset (E3) 

 Error/in meter PF EKF EPKF 

 XTE_abs_avg 2.185 0.996 0.951 

 XTE_abs_max 7.3308 2.8536 2.6634 

 XTE_abs_std 1.7212 0.6584 0.6414 

ATE_abs_avg 2.4189 1.2685 1.1976 

ATE_abs_max 8.321 3.6665 3.6664 

ATE_abs_std 1.7934 0.8606 0.8544 

Cartesian_abs_avg 3.7085 1.7548 1.6702 

Cartesian_abs_max 8.3238 3.6802 9.632 

Cartesian_abs_std 1.7466 0.82 0.8409 

Table 6: Results of Error Calculation Using Different 

Filters in the Sixth Path Data (B1) 

Error/in meter PF EKF EPKF 

XTE_abs_avg 3.2344 1.4218 1.8224 

XTE_abs_max 8.7061 6.8547 5.0735 

XTE_abs_std 2.5025 1.3133 1.2318 

ATE_abs_avg 4.6406 2.0149 2.375 

ATE_abs_max 8.7007 6.9627 5.4277 

 ATE_abs_std 2.4882 1.5216 1.222 

Cartesian_abs_avg 6.3948 2.7671 3.3788 

Cartesian_abs_max 9.405 7.0529 5.4761 

Cartesian_abs_std 1.8826 1.5554 0.7362 

Table 7: Results of Error Calculation Using Different 

Filters in the Seventh Path Data (B2) 

Error/in meter PF EKF EPKF 

XTE_abs_avg 2.6273 2.2597 1.9056 

XTE_abs_max 7.4856 6.4665 4.6961 

XTE_abs_std 1.7841 1.5033 1.2534 

ATE_abs_avg 2.1962 1.9174 1.6403 

ATE_abs_max 8.2077 6.8337 4.888 

 ATE_abs_std 1.4938 1.4273 1.134 

Cartesian_abs_avg 3.8918 3.3646 2.8993 

Cartesian_abs_max 8.4053 6.845 4.9148 

Cartesian_abs_std 1.4112 1.3065 0.8582 

 

 

XTE:Cross Track Error, How far left or right of the true 

position our estimation  is, Orthogonal to the true heading, 

ATE: Along Track Error, Tangential component of the 

position error ,Cartesian error: Total Euclidean distance error  

4. DISCUSSION OF RESULTS  
The results are summarized graphically using bar chart in Fig 

[4]. Chiefly, we consider the cross-track error (abbreviated 

XTE), which gives the component of position error that is 

orthogonal to the robot’s path. We also present the along-track 

error (abbreviated ATE), which measures the tangential 

component of position error.  
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Fig.5: The EKF, the Enhanced EPKF and PF along-track 

error, the cross-track error and Cartesian errors 

 

 

From Table [1-7] and fig [5] comparable results  we notice the 

slight difference in calculated error among extended kalman 

filter and the proposed enhanced particle / kalman filter while 

the particle filter posses excessive error. 

Considering computational complexity and time consumed in 

a Matlab run, Fig [6] shows the time consumed by each filter 

in the same environmental Conditions. There is a slight 

increase in time for the propose EPKF compared with EKF 

while the PF consumes higher time. Therefore, the proposed 

filter achieves the same results of EKF while keeping the 

computational cost reasonable and in the same time solving 

the problem inherent of all Kalman filters which require a 

defined initial state. 

Table.8 Summarizes the Average Time each Algorithm 

Requires to Incorporate an Incoming Range Measurement 

into the Robot Position Estimate 

Running Times seconds per 

measurement update 

Particle Filter 0.142494 

EKF 0.007988 

EPKF: PF estimate an 

initial state which to 

seed the EKF. 

0.014385 

 

 

Fig.6:  Comparing the time required to update the robot 

pose estimate after a range measurement is taken. 

5. CONCLUSION 
This paper presents a study for the effect of several filter 

approaches in the behavior of robot localizer using radio 

beacons that provide the ability to measure range only. 

Different filters namely Extended Kalman Filter (EKF), 

Particle Filter (PF) and a proposed Enhanced Particle/Kalman 

Filter (EPKF) are implemented in Matlab environment and 

their behavior are evaluated. The Enhanced Particle/ Kalman 

Filter (EPKF) provide the required initial location   while 

there is no significant change in the computational cost 

compared with Extended Kalman Filter (EKF). Moreover in 

some data sets, the performance of the proposed filter 

approach is superior in terms of localization errors. 
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