
International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.17, November 2014

24

Review of Implicit Security Mechanisms for Cloud

Computing

Makhan Singh
University Institute of

Engineering & Technology,
Panjab University, Chandigarh,

India

Sarbjeet Singh

University Institute of
Engineering & Technology,

Panjab University, Chandigarh,
India

ABSTRACT

Cloud systems refer to the collection of interconnected servers

that are provisioned dynamically on demand, for execution of

applications, to the customer like electricity grid. Cloud

computing has been drawing the interest from industry but

there are still many issues that are in their primitive stage

which are hampering the growth of cloud. One of these issues

is security of data stored in the servers of datacenters of cloud

service providers. Many schemes have been developed till

date for ensuring security of data in distributed systems. In

this paper implicit security using information dispersal and

secret sharing algorithms have been reviewed which provides

data security, reliability and availability of information.

Keywords

Cloud Computing, Data Security, Information Dispersal,

Secret Sharing, Explicit Security, Implicit Security

1. CLOUD COMPUTING
Cloud Computing is the latest distributed computing standard

which is drawing the interests of many researchers both in the

academia and the industry. The term cloud denotes the

infrastructure having large pool of dynamically reconfigurable

virtualized resources, which are easy to use and accessible

from anywhere in the world on demand over internet and uses

the pay-per-use model. Cloud computing, a young and

potential standard, is providing IT services as computing

utilities. But several issues need to be looked after to make

cloud computing acceptable to everyone. Security of data

stored at different servers is important among them.

There are several definitions of cloud available in the

literature. Ian Foster et al. in [1] have defined cloud as “a

large-scale distributed computing paradigm that is driven by

economies of scale, in which a pool of abstracted, virtualized,

dynamically-scalable, managed computing power, storage,

platforms, and services are delivered on demand to external

customers over the Internet [1]”. Michael Armbrust et al. in

[2] have defined cloud computing as “a term that refers to

both the applications delivered as services over the Internet

and the hardware and systems software in the datacenters that

provide those services”. Rajkumar Buyya et. Al. in [3] have

defined cloud as “a type of parallel and distributed system

consisting of a collection of interconnected and virtualized

computers that are dynamically provisioned and presented as

one or more unified computing resources based on service-

level agreements established through negotiation between the

service provider and consumers”. The NIST (National

Institute of Standards and Technology) [4] has described the

term cloud in an even way and this definition highlights

several important characteristics of cloud available and hence

has been followed.

The NIST Definition of Cloud Computing: “Cloud

computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider

interaction [4].”

Cloud Computing is perceived as a new technology, but it is

not. It is actually a new working model that combines together

a set of existing technology to run a business in a different

way. In fact, most technologies like virtualization and utility-

based pricing that is used by cloud computing are old

concepts. Cloud computing influences these existing

technologies to satisfy the technical and economic necessities

of today’s information technology.

2. CLOUD STORAGE CONCEPT
Data storage is one of the fundamental and basic

implementation of cloud Computing. Rather than storing data

on dedicated servers, as it is used in existing networked data

storage, in cloud data storage, it is stored on many third-party

servers. When saving data, the user sees a virtual server that is

the data is getting stored at a particular location with a

specific address. But in actual, no such place exists. It’s just

an alias indicating to certain virtual space cut out of the cloud.

But actually, the user’s data is stored on any one or more of

the computers that are used to build the cloud environment.

The actual storage location in cloud may change from time to

time as cloud manages available storage space dynamically

[5]. The user sees a “static” memory location for his saved

data and can manage the storage space as if it is connected to

his own computer, even though the location is virtual in

nature. Cloud storage is both economical and secure in nature.

In terms of cost, the virtual resources in the cloud

environment are more economical than any other dedicated

physical resources connected to a computer system or

network. As per the security requirements the data stored in

the cloud environment is more secure from accidental erasure

or hardware crashes, as data is replicated across multiple

dedicated machines. Since many copies of the data exist in the

cloud, even if one or more computer goes offline, the cloud

system continues to work as normal [5]. If one machine goes

offline due to hardware crashes, the data is available on other

machines in the cloud. Hence, these are copy based systems

which provides reliability by mirroring data on ‘n’ individual

storage servers and hence ‘n-1’ storage servers can crash

without any data loss.

Cloud storage allows the users to save data on the cloud

without worrying how it is stored. Reliability and security are

the two main issues associated with cloud storage. Customers

generally do not trust sharing their data on third party servers

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.17, November 2014

25

unless assured that no one else would be able to access the

data and only they can access it whenever required [6].

Now, many cloud storage providers use encryption techniques

for securing customer data and the key management are

usually done by themselves only. This is the most

commodious way to access customer’s data from any place. It

also allows them to share their data with others. Since the

users have no control on the file encryption process hence

they also have no control over who may access to their data.

Seeing this type of situation, the customers have to put a high

level of trust on cloud storage providers. Due to the unsafe

encryption techniques and data leakage at storage provider’s

side have confirmed that the issue of secure off-site data

storage is still an important and not completely solved issue

and hence it draws the attention of academia and industry [7].

The use of encryption algorithms and firewalls for securing

customer data are the explicit security techniques which are

not efficient during natural and man-made disasters. Using

implicit security is another approach to provide data security,

dependability and availability of information. Here data to be

stored is divided into numerous different pieces and these

pieces are stored on individual servers in the cloud. Users

recreate the data by accessing individual servers through

password; downloading the different partitions that are then

combined to reconstruct the data. The data partition and

reconstruction algorithm does not involve any use of

encryption or decryption algorithms which eliminates the task

of key management. The reconstruction of data using data

partitions does not reveal any information about data until and

unless some predetermined number of pieces are accessed.

These predetermined numbers of pieces are known as

threshold number. Thus, in order to access the data at least a

threshold number of individual servers are to be

compromised. Consider data D which can be divided into n

pieces such that m pieces are required for reconstruction of

data. The attacker does not get any information about data if

the number of pieces compromised is less than m. The

information dispersal algorithms [8], [9], [10], [11] and secret

sharing schemes [12] are the example of implicit security and

they does not uses encryption algorithm. Usually, most

implicit security systems use a (l, m, n) data distribution

algorithm, where l, m, and n are integers and l ≤ m ≤ n. The

division of data is such that if less than l pieces are

compromised it does not reveal any information about the

actual data, if l or more than l but less than m pieces are lost,

it reveals some information about the data and m or more

pieces reveals complete data. So, if n > m in that case (n – m)

pieces are redundant. On one side, a (1, 1, n) data distribution

algorithm creates n duplicates of the original data, and on the

other side, a (1, n, n) algorithm splits the data into divisions of

1/nth the size of the actual data, without redundancy.

Likewise, a (n, n, n) algorithm division creates n pieces,

where each piece is of the same size as the original data and

all the pieces are required for reconstructing the data,

therefore there are no redundant pieces. (m, m, n) data

partitioning schemes are secret distribution schemes, here in

order to reconstruct the original data m is the required

threshold number of pieces of data and if the number of pieces

is less then m it do not reveal any information about data.

Information dispersal algorithms have (l, m, n) data

partitioning scheme where l < m. It creates partitions smaller

in size than the original data and hence reveals some

information once more than l shares have been accessed. But

they may provide adequate security [13], [14] and can be used

in survivability of data storage systems and protection of data

loss due to any disasters and intrusions.

3. IMPLICIT SECURITY ALGORITHMS
An information dispersal algorithm distribute the information

being stored, F, into n pieces among n active servers, in such a

way that the retrieval of F is possible even in the presence of

up to t failed (inactive) servers [11]. An information dispersal

algorithm enhances the confidentiality and availability of data

without requiring any additional storage space. In 1979 Adi

Shamir [12] proposed a scheme to share a secret among

several parties and in order to re-construct the contents of

secret some threshold number of parties hove to co-operate

each others. The information is fragmented in n parts and

stored across different servers. To re-construct the data, a

previously defined threshold number m (m<=n) of data pieces

are to needed need. No information will be re-constructed if

less than m fragments are available. Michael O. Rabin [11]

used this idea in 1989 and presented an initial scheme for

efficient and secure distributed storage of data called

“Information dispersal algorithm”. In this paper five implicit

security algorithms are reviewed.

3.1 Shamir’s Algorithm
According to this scheme [12] data is fragmented into ‘n’

pieces such that ‘t’ fragments are required to make data and

less than ‘t’ fragments does not construct any information

about data. This scheme is based on polynomial interpolation.

This scheme finds polynomial of degree‘t-1’ for given‘t’ data

points. The polynomial f(x) is given as

 here ai is set to the secret and coefficients a1 to at-1 given

random values. The value f(i) is assigned to user ‘i’. Here if

‘t’out of ‘n’ users join together then they will generate the

polynomial using Lagrange interpolation. Knowledge of just

‘t-1’ values does not construct any data that is hidden.

Advantage of this scheme is:

a) Since it requires at least ‘t’ shares of data and not

less than this number gives any information about

the data hence the security of data increases.

Shortcomings of this scheme are as follows:

a) Size of each piece is approximately equal to the size

of data. Hence this method is space inefficient.

b) If data is modified during its stay in cloud servers,

then this method will not indicate which piece is

modified and user also not guaranteed that data is

modified or not during its stay..

3.2 Rabin’s efficient dispersal of

information for security, load balancing,

and fault tolerance.
In this scheme [11], the way of dividing secret into pieces is

different from Shamir’s algorithm. Robin makes ‘n’ fragments

from the file ‘F’ by assuming F = b1, b2……………….bn .

In this file bi represents some character. There are N numbers

of characters in file. Each bi character denotes a single byte as

0≤bi≤ 255.However the character bi can represent any number

of possible values at the implementer’s discretion.

Let us now select a prime number P such as 255<P. Now, we

can take F as a string of residues modulo P. All calculations

preformed subsequently on modulo P, and each such value

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.17, November 2014

26

may exceed 255. Taking example if P=257, the calculation

may calculate values as high as 256.

In next step select x and y such as x ≤ y so that required space

usage or fault tolerance can be achieved. File F divided into x

sections of length. F = (b1, b2……….. bx) (bx+1………..b2x).

Here it is important to note that if n is not multiple of x, zeros

must be added with bi. And therefore we can write the

sequence of F as F = S1,S2 ---------- S(n/X)

Now in order to create fragment Fi we consider alpha vector

ai = (ai,1, ai,2, -------- ai.m) which is associated with fragment.

Hence 1≤ i≤ n as there are n fragments .With the help of alpha

vector and the file which was divided into sequence of

bytes,the fragment Fi is considered where 1≤ i≤ n

Fi=c i,1 ,c i,2,………………….ci,(n/x) where ci,j = ai .Sj. Let us

assume that B is the unknown data which is to reconstruct and

C is the data from fragments where Ci is the data from ith

fragment. This can be written as A . B = C

Hence B = A-1. C

As per dispersal algorithm B is having data from original file.

 Advantages of this scheme are as follows:

a) Size of each piece of the secret is small which

 makes it space efficient.

b) If any piece of data is modified during its stay on

 servers, fingerprinting will help in determining

which piece is modified.

Shortcomings of this scheme are as follows:

a) There is need for management and storage of

secret keys.

b) Verification of the fingerprint requires knowledge

of the secret key, but then whoever can read the

information can also modify it without being

detected.

3.3 Distributed fingerprints and secure

information dispersal
This scheme [9] is based on distributed fingerprints. It uses

Rabin’s Information dispersal algorithm for fragmentation of

data into pieces. In this scheme distributed fingerprints are

used to find the fingerprints of information in distributed

environment. These are known as public fingerprints which

ensure data integrity. These fingerprints of data are stored

without encryption keys. Using public fingerprints everyone

in system can calculate fingerprinted information and if same

is altered it is being noticed. To illustrate this technique let us

assume there is a secure storage in which information is stored

for later use and same is not modified here. This safe space is

used for integrity validation by fingerprinting the whole

information by the help of short string and store the

fingerprint result in this space. The information here can be

modified and without being noticed by replacing information

by different piece of data whose fingerprint is the same. This

type of fingerprints functions are hard to find and are called as

collision free or one-way hash functions. In particular, no

encryption keys are involved for handling them, and the same

function can be used to fingerprint information of different

sizes. Hence, the problem of creating the secure storage, that

give guarantee of the fingerprint integrity is through

distributing the fingerprint result between the users in the

system using error correcting codes. The function H has a

short description that is shared by all parties in the distributed

system, and this description uniquely defines for each string

of information, its corresponding hash value. The length of

this value is independent of the length of information. The

infeasibility for any party in the system to generate colliding

pairs is assumed.

In addition, this scheme uses an error correcting code with its

coding and decoding functions denoted by C and D,

respectively. Let n, k and d be the code parameters such that:

the coding function C maps strings of length k into a sequence

of n strings, i.e. C(S) = Sl, S2, Sn, and the decoding

function D can reconstruct the string S from any sequence s
'

1 ,

s
'

2 ,. . .,s
'

n , as long as there are at least (d-1)/2 indices i for

which s
'

i = S i . In this formulation d is the distance of the

code, and n is the number of parties to which the fingerprint is

to be distributed. The fingerprinting method assumes a piece

of information L is to be stored in some location that is

distributed in nature. Before it is stored, L is fingerprinted by

the following steps:

Table 1: Steps for fingerprinting the file [9]

1. Compute H (L)

2. Compute s 1 , s 2 , …….. , s n = C (H (L))

3. Distribute to each party L, i=1, 2, ……..,n, the

corresponding share s i

At a later stage, whenever a party P in the system needs to

verify the integrity of that information it performs the

following steps (L’ denotes the information in its current

form, which may be different than the original, L):

Table 2: Steps for retrieving original file [9]

1. Require from each party i, i = 1, n, its piece of

fingerprint corresponding to the information L; denote the

returned piece by s
'

i

2. compute D(s
1
' , s

2
' , . . . , s

n
') and H(L’)

if both computations agree accept L’ as the correct

information L, otherwise reject it as corrupted.

Advantages of this scheme are as follows:

a) It helps to know which piece of data is modified

 by comparing fingerprints.

b) Encryption keys are not used.

c) Size of shares is small and thus this scheme is

space efficient as well.

3.4 A tree based recursive information

hiding scheme.
In [13], another scheme for dividing secret into shares and

reconstructing the secret back from its shares is explained. In

this scheme, additional information is added in the shares of

the secret. This additional information is a message and the

message is retrieved along with file (secret) on reconstructing

the file (secret). Reconstruction of correct message shows the

data is same as it was submitted which insures integrity of

data (secret file). It is a k-out-of-n recursive secret sharing

scheme which is based on n-ary tree data structure. In this

scheme the user encodes extra secrets in the partitions of

secret without increasing the size of original partition hence

decreasing the effective size of partitions per secret hence

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.17, November 2014

27

increases the space efficiency of sharing the secret. This space

efficiency is achieved with a trade off in security. This

scheme is having application in area of secure distributed

storage and Information dispersal algorithms.

Advantages of this scheme are as follows:

a) Integrity of data/secret is ensured.

b) Data/secret can be reconstructed even if some (n-k)

pieces of secret are damaged. The limit is (n-k), where

n is the total number of shares of the secret and k is the

least number of shares required to reconstruct the

secret. According to this algorithm, if (n-k) servers are

damaged out of n servers, where shares of secret are

available, even then file can be retrieved. Hence, if a

hacker or espionage employee tries to destroy some

servers and is able to destroy very few, the data can still

be retrieved. In cloud systems, this kind of attack can

occur especially in public cloud where everyone is

welcome to use the services of the cloud. Such attacks

are less in number in private cloud; because, of added

security features which are not available in public

cloud. Like in private cloud, the computers or nodes

that can take services have their IP addresses registered.

So, only registered IP addresses are allowed to use the

services.

c) If unauthorized person will access data from within a

particular number of servers then the person will not be

able to get information about the secret file. This

algorithm comes under the category of k-out-of-n

scheme such that at least k shares are required to

reconstruct a message and file. If unauthorized person

will gain access to even (k-1) shares, then also file and

the message will not be retrieved. In cloud systems, this

kind of attack can also occur. The unauthorized person

can be a hacker, criminal or espionage employee.

Whoever the person be; but, if the person is able to

access only upto (k-1) shares, then still the file will not

be retrieved.

Shortcomings of this scheme are as follows:

a) Space efficiency is achieved with a trade off against

 security.

b) If some pieces of secret are modified, it is determined

that secret is modified with the help of status of

message; but, it cannot be determined which piece is

modified. If number of modified servers along with

number of destroyed servers together are less than or

equal to (n-k), then the file/secret can be retrieved. This

is done by considering the modified share as damaged.

But, the problem is that it cannot be determined which

share is modified by implementing this algorithm. If

any share is modified and it is retrieved from server to

reconstruct the file, then the value of message will be

incorrect. This ensures that one of the available shares

is modified. But, it cannot be known which one is

modified.

3.5 Online data storage using implicit

security
In this scheme [14] data partitioning scheme is described for

implementing security using roots of polynomial in finite

field. The servers on the cloud are randomly chosed in order

to store fragments of data. The data is reconstructed by access

the predefined number of servers. This scheme has two parts

the first part is known as (k, k) parting scheme. Here all the k

parts are required to create the data. Second part is the

extension of first part known as (k, n) partition method. Here

k is less than or equal to n and k greater than or equal to 2

means k partitions are needed from n partitions to reconstruct

the data.

Advantage of this scheme is as follows:

a) Partitioned data pieces cannot reveal any user

information.

Shortcoming of this scheme is as follows:

a) In case user forgot in which server the

partitioned data is stored, it will become

difficult to reconstruct original data.

4. CONCLUSION
As of now the security has been implemented in clouds using

firewalls and encryption techniques. Confidentiality of data is

ensured with the help of strong cryptographic techniques that

use encryption keys, availability is ensured by adding

redundant copies and integrity is ensured by comparing the

checksums of the redundant copies. These techniques are the

examples of explicit security. On the other hand Information

Dispersal Algorithms and Secret Sharing algorithms provide

implicit security which helps in survivability and protection of

system against data loss. Implicit security is not being used

for cloud systems. Hence, there is a need to implement

implicit security in clouds which support multi-tenancy

architecture.

5. REFERENCES
[1] Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008,

November). Cloud computing and grid computing 360-

degree compared. In Grid Computing Environments

Workshop, 2008. GCE'08 (pp. 1-10). IEEE.

[2] Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski,

A., Lee, G., ... & Stoica, I. (2009). Above the clouds: A

Berkeley view of cloud computing. Dept. Electrical Eng.

and Comput. Sciences, University of California,

Berkeley, Rep. UCB/EECS, 28, 13.

[3] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., &

Brandic, I. (2009). Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering

computing as the 5th utility. Future Generation computer

systems, 25(6), 599-616

[4] Mell, P., & Grance, T. (2009). The NIST definition of

cloud computing. National Institute of Standards and

Technology, 53(6), 50.

[5] Miller, M. (2008). Cloud computing: Web-based

applications that change the way you work and

collaborate online. Que publishing.

[6] Rimal, B. P., Choi, E., & Lumb, I. (2009, August). A

taxonomy and survey of cloud computing systems. In

INC, IMS and IDC, 2009. NCM'09. Fifth International

Joint Conference on (pp. 44-51). IEEE.

[7] Seiger, R., Groß, S., & Schill, A. (2011, September).

SecCSIE: a secure cloud storage integrator for

enterprises. In Commerce and Enterprise Computing

(CEC), 2011 IEEE 13th Conference on (pp. 252-255).

IEEE.

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.17, November 2014

28

[8] Garay, J. A., Gennaro, R., Jutla, C., & Rabin, T. (2000).

Secure distributed storage and retrieval. Theoretical

Computer Science, 243(1), 363-389.

[9] Krawczyk, H. (1993, September). Distributed

fingerprints and secure information dispersal. In

Proceedings of the twelfth annual ACM symposium on

Principles of distributed computing (pp. 207-218). ACM.

[10] A. De Santis and B. Masucci. (2002). On information

dispersal algorithms. In Proceedings of IEEE

International Symposium on Information Theory, (410).

IEEE.

[11] Rabin, M. O. (1989). Efficient dispersal of information

for security, load balancing, and fault tolerance. Journal

of the ACM (JACM), 36(2), 335-348.

[12] Shamir, A. (1979). How to share a secret.

Communications of the ACM, 22(11), 612-613.

[13] Parakh, A., & Kak, S. (2010, May). A tree based

recursive information hiding scheme. In

Communications (ICC), 2010 IEEE International

Conference on (pp. 1-5). IEEE.

[14] Parakh, A., & Kak, S. (2009). Online data storage using

implicit security. Information Sciences, 179(19), 3323-

3331.

IJCATM : www.ijcaonline.org

