
International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 16, November 2014

9

Parallel and Distributed GIS for Processing Geo-data: An

Overview

Abdul Jhummarwala

Bhaskaracharya Institute for
Space Applications and Geo-

informatics (BISAG),
Gandhinagar, Gujarat, India

M.B. Potdar, Ph.D.
Bhaskaracharya Institute for
Space Applications and Geo-

informatics (BISAG),
Gandhinagar, Gujarat, India

Prashant Chauhan
Bhaskaracharya Institute for
Space Applications and Geo-

informatics (BISAG),
Gandhinagar, Gujarat, India

ABSTRACT

Geographic Information System (GIS) is a collection of

applications whose tasks include (collaborating with other

systems and) gathering geographic data, store and process

spatio–temporal data (geo-data) and share the derived

geographic knowledge with the users and other applications.

Some of the most important routine applications of GIS are

spatial analysis, digital elevation model (DEM) analysis such

as line of sight and slope computations, watershed and

viewshed analysis, etc. GIS has became quite an important

tool for geospatial sciences and has gone beyond typical tasks

of mapping to performing complex spatio-temporal analysis

and operations. The number of users relying upon Decision

and Support Systems (DSS) built upon GIS has increased as a

result of the availability of very high resolution satellite

imagery and integration of spatial data and analyses with GIS

packages which now satisfies the needs of many and is not

just used for specialized operations. Moreover, Global

Positioning Systems (GPS) in a range of mobile devices and

sensors which includes updates in very short intervals has led

to geo-information explosion. Parallel and Distributed

Computing systems are now essential for computing over

such huge amount of data and deliver faster results. The focus

on development should thus be shifted from traditional GIS to

Parallel and Distributed GIS as the traditional GIS systems

have become quite mature and saturated while technologies

such as MPI (Message Passing Interface) and GPGPUs

(General Purpose Graphics Programming Units) can be

readily utilized for faster geo-data processing. The

performance improved using recently developed technologies

such as CUDA (Nvidia GPUs), OpenCL (ATI GPUs) and

Intel's Xeon Phi co-processors could be as much as ten times

if not more compared to traditional Geographic Information

Systems.

General Terms

Geographic information systems, Distributed GIS, Parallel

GIS

Keywords

GIS, GPS, DSS, spatio–temporal data, spatio–temporal

analysis, Digital Elevation Model (DEM), geospatial data,

geodata, geoprocessing, OGC, Message Passing Interface

(MPI), GPU, CUDA.

1. INTRODUCTION
The first widely known application of Geographic

Information System (GIS) is the World-Wide Earthquake

Locator. Bruce Gittings conceived its development at the

School of GeoScience, University of Edinburgh in 1995. The

World-Wide Earthquake Locator was meant to serve as a real-

time Geographical Information System. The system was

aimed at providing up-to-date information and data which

were taken from the National Earthquake Information Center

(NEIC) and also providing the detailed dynamic maps of

earthquakes across the world. The same were also published

over the World Wide Web (WWW) [1].

The first generation of GIS which can also be termed as

Desktop GIS has gone far beyond evolving into Enterprise

GIS or Corporate GIS to Web GIS. The system architecture of

Corporate and Enterprise GIS put all the data and its

processing on the centralized server. This client-server

approach resolved the issues of data consistency and data

sharing which had emerged due to increase in volume and

complexity of data. Collaborating and coordinating data

between different entities of an Enterprise GIS was then

possible for generation of information and in turn better

planning and supporting decision making. Historically, the

GIS used to be just a support system for the tasks of Remote

Sensing data analyses but since the inception of OGC (Open

Geospatial Consortium; previously known as Open GIS

Consortium), various service architecture and frameworks,

spatial databases and data formats have been standardized.

This has resulted into many OSGeo (Open Source for

Geospatial) packages not just supplementing Desktop and

Enterprise GIS but has also led to the evolution of Web GIS.

The standardization was necessary due to the distribution of

data and autonomous services provided by various

governmental and non-governmental organizations or groups

over the web. The standards were aimed at making such

services and data interoperable. Recently, spatial support has

been integrated into commercial database managements

systems such as Oracle and Microsoft SQL Server [4]. The

spatial database system may have the integrated spatial data

support or may be added by use of extensions such as in the

case of IBM DB2 and Open Source PostgreSQL DBMS

which use PostGIS addon [3]. Various ISO/IEC standards

formalize the storage and support for different two

dimensional geographic data which includes point, line,

polygon, etc. OpenGIS®‟s Simple Features Implementation

Specifications is one of the ISO/IEC standards which defines

interfaces that enable transparent access to geographic data

held in heterogeneous processing systems on distributed

computing platforms [2]. Most of the GIS software and

databases that support the Simple Feature Specification

standard provide application programming interfaces (APIs)

provide for publishing, storage, access and simple operations

on GIS features. This allows interoperability and collaboration

between different GIS software, applications and database

management systems built across different platforms, of

course using different technologies.

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 16, November 2014

10

Parallel, Distributed and Cloud Computing offers resolution to

many limitations possessed by commodity hardware. Each of

these computing techniques has its own set of strengths due to

their architectural differences. These set of strength not only

provides resolution to limitation of storage and processing of

conventional data but also provide scope to modify them for

supporting spatial querying cases or spatial operations. Due to

the large size of spatial datasets and computationally intensive

nature of spatial operations, it is now indeed necessary to reap

the benefits of parallel and distributed computing for spatial

analysis.

2. OVERVIEW
Geographic information systems are in the midst of

information revolution. Geographic data also known as

spatial/geo-data (i.e. data which has an associated location

component) is now being collected by various positioning

technologies and devices such as mobile devices (GPS),

sensor networks, RFIDs, etc in addition to the specialized

remote sensing capabilities of satellites. This has lead to an

unprecedented increase in the amount of geo-tagged data

(images, web-posts, tweets, etc) whose use is not just

restricted to the field of remote sensing (terrain, weather and

climate data, etc) but also being utilized by other scientific

applications such as those related to Medical Imaging,

Marketing, Geographic Intelligence, etc.

The Earth Observatory System (EOS) satellites of NASA

collect roughly about 1 TB of spatial data every day. Overall

the data collected and stored by Earth Observing System‟s

Data and Information System (EOSDIS) amounts to more

than 3 petabytes [5]. Geographically Distributed systems have

been developed for storing such vast amount of data, also

known as BigData [23]. The branch of Digital Medical

Imaging today generates extremely high resolution images of

trillion pixels and hundreds of thousands of such images are

taken regularly. The digital slide images taken pathology

instruments are very large, with dimensions that routinely

exceed 100,000 x 100,000 pixels [6]. Apart from the

collaborative efforts such as OpenStreetMap, techniques such

as montage, mosaicing and blending also generate very large

images from smaller images (tiles) to create a large and

complete view. Thus due to such an increase in volume of

spatial data, techniques used for handling, visualizing,

managing and processing terabytes to petabytes of data cannot

be ignored. This has resulted into two major challenges, the

same like every other high performance application has,

storage[7] and processing[8] of spatial data.

A decade earlier, MapReduce [9], a programming model and

an associated implementation for processing and generating

large data sets have been designed by engineers at Google to

keep pace with the exponential growth in data to be stored,

indexed and processed, etc collected by their web-crawlers. At

the same time another framework for storage and processing

of large scale data sets over commodity hardware named

Hadoop was in development for search engine at Yahoo! The

source code of Hadoop was made Open in 2009 and since

then Apache Software Foundation has been developing and

supporting Apache Hadoop as one of its top level project[10].

Apache Hadoop consists of Hadoop Distributed FileSystem

(HDFS) and an implementation of MapReduce model. It has

become an enterprise-ready cloud computing technology. It is

becoming the industry de facto framework for big data

processing [9].

There have been significant developments in storing and

handling of BigData. Declarative query interfaces such as

Apache Hive, Apache Pig, and SCOPE (Structured

Computations Optimized for Parallel Execution) have brought

the large scale data analysis (i.e. data from access logs, web

analytics, etc) one step closer to common users by providing

high level, developer friendly programming abstractions (such

as Pig for SQL on Hadoop) to MapReduce [12]. The

interesting fact here to know about is that these frameworks

have been specifically designed to compute upon textual data

(from streams such as output of webcrawlers, etc).

Spatial data analysis is the application of techniques to data

(geographic) over its topological, geometric or geographic

component or dimension. Spatial Analysis includes a variety

of operations such as spatial characterization, spatial

dependency/correlation, etc. Spatial Analysis can be

performed using the spatial constructs and spatial querying

engine provided by the underlying framework. Spatial and

non-spatial operations can be divided into following five

major categories [11] [19]:

1. Feature aggregation queries (non-spatial queries), for e.g.

queries for finding mean values of attributes or

distribution of attributes

2. Fundamental spatial queries, including point based

queries, containment queries and spatial joins including

union, intersection, difference and XOR

3. Complex spatial queries, including spatial cross matching

or overlay (large scale spatial join) and nearest neighbor

queries

4. Integrated spatial and feature queries, for e.g. feature

aggregation queries in a selected spatial region, and

5. Global spatial pattern queries, for e.g. queries on finding

high density regions, or queries to find directional

patterns of spatial objects.

As per our previous discussion spatial constructs have been

provided in the recent versions of Oracle, PostGIS and SQL

Server database management systems. These constructs have

been extensively used and are still under development for

spatial support. Computations performed on Spatial datasets

using a single machine has its own inherent limitations arising

out of memory and disk space. Moreover, the spatial

framework used might not be able to support the size of the

dataset. For example, a spatial query which performs a spatial

join between two datasets having tens of thousands of

attributes might take exponentially long time or might require

more than maximum available memory and disk space

supported by the hardware.

In this paper we discuss the relevance of various distributed

and parallel technologies and frameworks that have extended

the traditional desktop based GIS systems to scale with the

increase in amount of data coming from millions of handheld

portable, autonomous devices, sensor webs and very large

scale imagery generated from high precision devices and

remote sensing satellites. These precision devices and the

latest advances in telescope design and satellite imagery have

dramatically improved the accuracy and spatio-temporal

scope of the data. Exabytes of data is accessible through

internet in the public domain and most of it can be

characterized as geo-data (geospatial data) as every element of

data has a geographic component such as an address, an area

reference or a map coordinate. Whether it is massive remotely

sensed images, billions of records generated everyday by ad-

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 16, November 2014

11

click and tracking services or data collected through/for

location based services, it is used for better facilitation for the

users. The scientific use of this data is predicting earthquakes,

tsunamis, environmental issues, etc. The commercial and

domestic use of the data includes the trend analysis for

various business entities. The same is again useful to

governments for urban planning, transport, agriculture,

criminology, etc all for making human lives more convenient.

Several frameworks have been specifically designed to tackle

the shortcomings of the commodity hardware while dealing

with such massive amount of data and are not fault tolerant,

fails to scale with the increase in demand, accessibility and

interoperability. The most prominent of these models are built

upon the strength of high performance technologies which

include cloud computing, hadoop based map-reduce and

graphics processor based CUDA and OpenCL environments.

The rest of the paper is organized as follows:

Section 3 provides background of GIS raster and vector data.

Section 4 and 5 reviews the literature briefly for high-

performance architectures developed for specific use cases

(MapReduce/Hadoop) and related work.

Section 6 discusses the shortcomings of the approaches and

future research directions.

3. BACKGROUND OF RASTER AND

VECTOR DATA
Real world digitized geo-spatial data can be stored in two

basic forms with an optional temporal component viz. raster

and vector.

3.1 Raster Data
ESRI (Environmental Systems Research Institute) defines

Raster as a spatial data model that defines space as an 2D

array of equally sized cells arranged in rows and columns, and

composed of single or multiple bands. It describes the

information through values stored in pixels. The spatial

resolution of a raster image is dependent upon the resolution

of the acquisition device such as Optical Sensor, CCD Device

or other imaging device and its quality upon the source of

data. Raster data requires more storage space than vector data.

Each pixel that represents its attribute value is known as a

cell. A group of cells belong to a grid in the raster matrix. The

cells in a grid have similar values to represent the same type

of geographic feature. The co-ordinates of the cells are in the

positional ordering of the matrix. The most widely used

Raster file formats are GeoTiff (an extension of TIFF format

to accommodate GIS Metadata), JPEG2000, formats

standardized by National Geospatial Intelligence Agency

(Compressed/ARC Raster Graphics) and proprietary file

formats such as those supported by products of ESRI and

Hexagon Geospatial, etc. The specific examples of such

raster images known to us are cadastral, aerial imagery, digital

elevation models, etc. Images are captured at various scales,

resolutions and are archived at different locations/formats.

Heterogeneity problems such as different formats, encoding

schemes, temporal characteristics, etc arise frequently due to

such non-structured data. OGC introduced GML (Geography

Markup Language), WKT (Well Known Text) and WKB

(Well Known Binary) as interoperable alternatives to various

types of non-structured data formats. Studies have been

conducted such as “Retrieving and indexing spatial data in the

cloud computing environment” [15] and “Demonstration of

Hadoop-GIS: A spatial data warehousing system over

mapreduce” [11] which aim at distributed storage as well as

processing of extremely large datasets.

Fig 1: Representation of Cells in a Raster Grid [14]

Fig 2: Value Attribute Table showing unique records for

Grid Cells

3.2 Vector Data
The vector data describes information through geometric

shapes such as point, line, multiline, polygons and other

complex shapes. It is mostly prepared through surveying and

digitization of maps manually or through supervised/non

supervised automated programs. Pattern Recognition and

Image Processing techniques are used to convert raster

formats into vector formats whereby vector features such as

lines and polylines are identified by the tracing program.

Recent advances in image processing algorithms helps to

convert much of the raster data into vector formats with very

high acceptable accuracy [18].

Fig 3: Information from Map represented in Raster and

Vector formats

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 16, November 2014

12

Vector formats explicitly stores the coordinates of the

geometry or the geometries may be defined using

mathematical formulas unlike a Raster format. Vector data

enables the GIS or CAD (Computer Aided Design) systems

utilizing it to be more flexible in terms of resolution, scaling

and conversions. Moreover it is very easy to embed metadata

(data about data) in vector file formats. Some examples of

metadata includes map legend, representation of different map

elements, publishing date, projection and coordinate system,

etc[13]. Most widely used and standardized vector data

formats are GML (Geography Markup Language), ESRI‟s

shapefile format, etc. Figure below shows representation of

map information in Raster and Vector formats.

Most of the existing data formats (raster and vector) can be

processed through a variety of processing techniques[16]

specifically designed for handling such data and image

formats. These may include preprocessing, digital

enhancements, geometric corrections (via Ground Control

Points), Map Projections, etc. Massive amount of data is

accumulated everyday due to the advancements in the sensor

technologies not just limited to imagery (raster data in form of

millions of photographs and images shared everyday on the

internet.) but also spans other domains such as those using

temperature, pressure, light, sound and other environmental

aspects such as humidity, aerosols, etc. Much of this data

sought from wireless sensor networks is spatially linked to

provide better judgment in manufacturing and machinery

applications.

4. HIGH PERFORMANCE GIS

(LITERATURE REVIEW)
The inception of Hadoop framework took place at Yahoo! in

2005 to support distributed computation of the data gathered

by the web-crawlers. The architecture of Hadoop was similar

to the many open-source and closed source implementation of

Map Reduce frameworks and also known as MapReduce, a

Google technology but the term has since been generalized for

distributed applications due to the massive and unprecedented

wide-spread acceptance and usage of Hadoop. This was the

result of the move of Yahoo! to make the source code of

Hadoop Open-Source and available to general public in 2009.

Hadoop is a distributed Computing platform written in JAVA

and provides a Compute and Storage architecture similar to

those being used by Google, Yahoo and others for BigData

processing.

Fig 4: A multi-node Hadoop cluster having multiple data-

nodes

The Hadoop Distributed File System (HDFS) and MapReduce

model forms the most important entities of the architecture.

Hadoop extensively makes use of Linux environment for

running shell scripts and depends on remote connectivity

services only available in Linux but can be run on Windows

environment using CygWin [20].

4.1 MapReduce
Map reduce is a technology that was first widely publicized

by Google. The Map reduce terminology is similar to divide-

and-conquer methods most prominently used by the parallel

and distributed architectures. The MapReduce programming

model relieves the programmers from the underlying issues of

parallel and distributed architectures and allowing them to

develop the application. As the term suggests, the model is

based upon two most important phases, the Map and the

Reduce.

The Map phase splits the input data and the processing (user

submitted jobs) to be done into tasks which are then assigned

to Worker Nodes/Task Trackers for computation. Hadoop

takes care of localizing the Data so that the processing is sent

to a Worker node that has the Data and reduces the

communication overhead. Each worker node also acts as a

Data node. The Task Tracker heartbeat (a service monitoring

the execution, status of task and Worker Node being online) is

continuously monitored by the Job Trackers, the master node

in the Hadoop Environment. The Job Tracker is also

responsible for admission control, tracking the liveness of

Task Trackers, reporting job status to users, etc. [10]

Fig. 5 represents a MapReduce model for performing some

computation upon Text input. Textual input is the simplest of

all input forms to MapReduce as the data from it can be easily

divided (to store on multiple data nodes) and the intermediate

results merged easily for the required output. We would like

to highlight both the vertical and horizontal partitioning of

data (slices) which is simple to implement on Text.

Fig 5: Simple MapReduce Operations upon Textual input

4.2 YARN (Yet Another Resource

Negotiator) and its Applications
With the introduction of the new architecture of Hadoop‟s

approach to MapReduce, also known as YARN[21], it is now

possible to deploy other parallel and distributed programming

frameworks such as Dryad, Giraph, Hoya, Reef, Spark, Storm

and Tez over Hadoop. The new architecture separates the

monolithic programming model from the resource

management infrastructure. The scheduling function rather

than being system wide is now on a job basis as multiple

applications require its own scheduling while running over

YARN. Applications following the MapReduce paradigm can

also be deployed easily over YARN. YARN promises to have

full backward compatibility with other existing applications

and legacy Hadoop implementations.

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 16, November 2014

13

How did YARN come into existence? Applications deployed

over legacy Hadoop used to create clusters (using a group of

nodes) and transfer the data to HDFS (Hadoop Distributed

File System), perform map-reduce operations and release the

cluster/nodes. This scenario resulted in Hadoop and HDFS to

being extended to support a multi-tenant model whereby

shared clusters were formed to deploy different applications.

The sharing of resources lead to creation of resource pools

[23] and features such as permissions, quotas per user and per

job, etc. were added to Hadoop. It was also possible to deploy

applications using different versions of Hadoop.

Yahoo extended the legacy MapReduce Hadoop and

developed Hadoop on Demand (HoD) using schedulers such

as Torque and Maui to support this dynamic resource

allocation. HoD still lacked the isolation and security

requirements due to the federated (tightly coupled)

architecture of Hadoop Installations. Based upon Torque,

HoD lacked allocation of nodes taking into consideration, the

locality of Data, which formed the strength of Hadoop.

Hadoop was built around the philosophy of taking

computation to data (and in turn minimize the communication

cost). It was also not possible to resize the clusters during the

execution of fewer Reduce operations. While there are

applications that require hundreds and thousands of nodes

during peak calculations (processing), the same may require a

handful of nodes for the very few Reduce operations e.g.

Application workloads that can be represented in the form of

DAGs (Directed Acyclic Graphs) having a high degree of

Fan-In or Fan-Out. Due to the static allocation of

nodes(resources), if the workflow possesses map or reduce

operation as its bottleneck, it would lead to poor cluster

utilization and wastage of useful computation power.

Fig 6: DAG Representation of MapReduce Operations

HDFS evolved gradually due to the increase in storage

requirements of the applications which accumulate terabytes

of data everyday resulting in the data-store of petabytes while

the Job Tracker was not much modified and still remained

primitive. Application specific customizations to the

JobTrackers lead to bugs and failures in workflow executions.

Moreover as the JobTracker, a single point of failure was

shared across applications inside a shared cluster, there was

too much dependency and overload of large number of Job

Monitoring lead to unnecessary delay in allocation of

resources. A strong and scalable authentication and

authorization model was required for securing applications in

the multitenant clusters. Legacy Hadoop lacked support for

different programming models so users would write

“MapReduce” equivalents for jobs required for Machine

Learning and Graph Algorithms, all leading to poor resource

utilization. The following table summarizes features

supported by the major releases of Hadoop.

Table 1. Classic MapReduce vs. YARN

Feature

Classic

MapReduce

(Hadoop 1)

YARN

(Hadoop 2)

Authentication

for HDFS
No Yes

HDFS federation No Yes

HDFS high-

availability
No Yes

Separate

Application

Manager and

Resource

Manager

Scheduler takes

care of

applications and

resources (and is

the bottleneck for

scalability to

>1000s of nodes)

Yes

Task Size (w.r.t

running time and

I/O)

Large Large and Small

Supported

Applications

Single

(MapReduce)

Multiple

Paradigms

Backward

Compatible
-

Yes (Supports

Classis

MapReduce as

one of the

paradigms)

4.3 HDFS (Hadoop Distributed File

System)
Hadoop uses HDFS as its primary distributed storage system

[22]. HDFS can function as a general purpose distributed

storage filesystem or conjunctively used with Hadoop

Clusters on commodity hardware. It is highly similar to

existing distributed file systems but is highly fault tolerant and

provides streaming access to data. HDFS is designed for

scalability and supports multi-gigabyte to multi-terabyte files

with emphasis on low latency of data access. HDFS is based

upon the simple coherency model of write-once-read-many

(WORM) which enables high throughput but at the same time

restricts the updations/appends which are usually sluggish.

HDFS has been designed on the foundations of data locality

and thus it serves best for applications not requiring frequent

updates (writes).

HDFS is designed to be a distributed file system and handle

extremely large files that are not supported by normal file

systems. These files are divided into typical chunk/block size

of 64MB and stored in datanodes. A Cluster of Data Nodes

forms the HDFS cluster which is able to handle files of size in

the range of gigabytes to even terabytes. HDFS achieves fault

tolerance by replicating (default value: 3) blocks/chunks

across datanodes dynamically. There exists a single

NameNode in the Hadoop Infrastructure and is the main

metadata server. As the namenode is the sole entity storing

and managing the file system metadata, it becomes a huge

bottleneck in supporting a large number of small files. We do

acknowledge that the bottom up design of HDFS has been to

store a few huge files rather than millions and billions of tiny

files. The failure of the NameNode results in the failure of the

application. A secondary namenode can also present in the

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 16, November 2014

14

environment to cope up with the failure of the primary

NameNode which clones the directory structure of the

primary NameNode and serves as a backup for restarting the

failed primary NameNode without having to rebuild the

HDFS. This has been tackled in the Hadoop 2.0 through use

of separate NameNode spread across multiple namespaces.

Fig 7: HDFS Architecture (http://hadoop.apache.org)

Classes within DFSInputStream and DFSOutputStream

namespaces handle the retrieval and storage of files in the

HDFS in form of blocks/chunks. The data of file from the

client requesting a File Write is cached by DFSOutputStream

to the local filesystem. After the data write operation reaches

the block size of HDFS, DFSOutputStream requests the

NameNode to add the block to the file on HDFS. NameNode

returns a pipeline of DataNodes to whom the client writes the

block. After successful writing and replication, the DataNode

sends a blockReceived message to the NameNode and an

acknowledgement to DFSOutputStream.

The replication of the block as specified by the HDFS user is

done by the other DataNodes in the pipeline until the specified

replicas of the block have been written. Reading of a file from

HDFS requires the Client to request the NameNode for the

desired block. The NameNode returns a list of locations of the

replication sites. The client can then fetch the block from one

of the replicas. Corrupt block received has to be reported by

using reportBadBlocks to the NameNode.

As Hadoop is built upon the philosophy of bringing

Computation to Data, it minimizes the read data from the

network. Depending upon the scalability required for

applications, HDFS instances run on nodes that may spread

across many racks leading to IO between different racks. In

most cases this IO is slower than communication between

nodes in the same rack [22]. HDFS provides APIs to

customize applications that can utilize the rack id‟s for better

placement of data. This does improve the overall efficiency of

the infrastructure but is quite unnecessary for high speed

networks such as 10Gigabit Ethernet, Infiniband and their

successors.

The performance analysis of the HDFS over different types of

networks and its optimization is quite viable to devise

distributed file systems specifically for today‟s high speed

networks and support millions of files (small and large) which

are simultaneously used by many interoperating applications.

4.4 Apache Oozie
Apache Hadoop is complimented by Oozie, a server based

Workflow Engine that also acts as a Coordinator Engine and a

Bundle Engine [10]. Oozie has been specially designed for

running workflow jobs executing as Hadoop‟s Map/Reduce or

Pig jobs. Oozie workflow applications contain files such as

.xml, .jar, .so, etc and are installed in the HDFS itself. The

workflow jobs are specified in hPDL (a XML Process

Definition Language). The workflow jobs can be executed on

triggers such as time and data availability, if not manually.

This is necessary to coordinate between jobs that execute in

continuity with other Map/Reduce operations across the depth

in a DAG representation.

Fig 8a: A Simple GIS workflow model representation

The latest version of Oozie also allows coordination between

different applications. The users can control the flow of the

executing workflow jobs as Oozie provides better operational

control for managing jobs such as start/stop/suspend/resume

and restart, if required. There are numerous GIS applications

that can advantage from this capability. Most of the GIS

applications require more than one geoprocessing function

(Intersect, Union, Buffer, Clip, etc) to be applied to the input

in a sequence (or a cycle) for performing complex Geo-

processing known as a workflow. Such Workflow

applications (containing cycles) can always be reduced to the

form of a DAG. The DAG then may contain either Hadoop

Jobs, or Pig Jobs or Streaming applications or sub-DAGs.

Oozie lacks a visual workflow model builder and

interoperability with OGC standards. Fig. 8a represents a

sample GIS workflow.

It is indeed important to highlight here that cycles in

workflows are not supported which makes us to redesign

applications that require recursive executions of jobs. Oozie

maintains the states (PREP, RUNNING, SUSPENDED,

SUCCEEDED, KILLED and FAILED) for workflow jobs.

Fig 8b: Oozie workflow job state valid transitions and

lifecycle

http://hadoop.apache.org/

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 16, November 2014

15

The DAG representation in Fig 6 shows a Fork and Join

example for an Oozie workflow. It has „1‟ Starting Job (Start

Map) generated from the Input Workflow, „8‟ Jobs (R) that

are executing in Parallel which are created by „Start Map‟, „1‟

Reduce and Map Job (M) that collects results of „7‟ jobs (R)

while „1‟ Job (R) is still running. After the completion of the

„1‟ (R) Job that was still running and the „1‟ Reduce and Map

Job (M), „3‟ Reduce Jobs (R) again start in parallel. The last

Job (Output) finally collects the results and provides the

output.

4.5 Motivations
We have already discussed what makes GIS a perfect usecase

for the parallel and distributed computing architecture. Spatial

operations involve analysis over two categories of data; vector

(points, lines and polygons, etc) and raster (image data). Let

us now discuss more regarding the approaches and directions

that have been implemented for various use cases which

includes spatial operations such as polygonal overlays, spatial

range queries, spatial joins such as Intersection, Spatial Cross

Matching, global spatial pattern discovery, etc.

As previously discussed, high performance architecture is

required for querying on large volumes of spatial data which

is important in many scientific as well as commercial

domains. This presents with two major challenges; the storage

and management of spatial data and high computational

requirements of spatial queries. Parallel RDBMS (Relational

Database Management System) and SDBMS (Spatial

Database Management System) exists to achieve scalability

and reduce the I/O bottleneck by distribution and aggregation

of data across multiple systems but are not optimized for

performing computation of spatial queries.

5. RECENT ADVANCES IN HIGH

PERFORMANCE GIS
GeoJinni aka SpatialHadoop[17] has been designed upon

Apache Hadoop to perform batch analysis of large spatial

data. GeoJinni alike other Hadoop customizations and unlike

PostGIS is not designed and is not capable of running

interactive queries upon small datasets. The spatial indexes

generated (Grid File, R-tree and R+-tree) and stored in HDFS

are accessible to applications using GeoJinni API and it also

provides interfaces with other Hadoop tools and related

projects such as Apache Hive, Pig or Hbase.

Pigeon [18] extends Pig by including two additional

components viz. spatial datatypes and spatial functions.

Pigeon supports the standard OGC datatypes such as Point,

Linestring, MultiLinestring, Polygon, MultiPolygon, and

GeometryCollection in addition it can import spatial objects

stored in the Well-Known Text (WKT) and Well-Known

Binary (WKB) formats. Pigeon relies upon the ESRI

Geometry API 1.0 to support spatial objects. Pig has been

extended through its support of User Defined Functions

(UDFs) which can be used to extend the existing operators

such as filter, join and group by. There are four groups of

spatial functions implemented in Pigeon: (1) Basic spatial

methods such as Eval (Area occupied by a spatial object), (2)

Spatial predicates such as those defining relationships among

spatial objects such as (Do A intersects B), (3) Spatial

analysis which operates upon 1+ spatial objects, and (4)

Aggregate functions that computes upon a set of spatial

objects (e.g. Convex Hull). User can create customized

Pigeon scripts with the same syntax as that of Pig to perform

simple spatial operations involving a single MapReduce job

while complex spatial operations can be performed using

multiple MapReduce Jobs.

Hadoop-GIS [11] is a scalable and high performance spatial

data warehousing system for running large scale spatial

queries utilizing the distributed storage and MapReduce

capabilities of Hadoop. Hadoop-GIS support spatial data

types, spatial operators and functions. Spatial partitioning is

achieved through global partition indexing and customizable

on demand local spatial indexing. It integrates a customizable

spatial query engine RESQUE (Real-time Spatial Query

Engine) similar to Pigeon but in addition supports data-

compression resulting into low I/O overhead and

communication. RESQUE supports implicit parallel spatial

query execution on MapReduce through use of a declarative

spatial query language upon HiveSP (Spatial Hive). Hive

Query Engine is also extended to support spatial queries. In

addition to supporting complex spatial partitioning and

querying, major operators and functions from ISO SQL/MM

are also supported by the spatial querying language (QLSP)

used with HiveSP. This is achieved by extending HiveQL

with spatial constructs, spatial query translation and

execution. Hadoop-GIS employs distributed spatial queries

through spatial workflows include joins, containments while it

also effectively amends query results efficiently handling

boundary objects.

6. CONCLUSION AND FUTURE WORK
Billions of devices are generating unstructured data every day.

Most of this data is utilized by application for provision of

user friendly services personalized according to their location.

Terabytes to petabytes of data is required to be processed in

seconds to obtain time-relevant smart output. Existing

infrastructures have to adapt to such requirements as users are

unaware about the complexities of the geoprocessing tasks.

Methodologies adopted for BigData have kept up with the

increasing data but the scope for complexities associated with

the real-time analysis of such data resulting in quality

information is still open.

In this paper we reviewed quantity of parallel and distributed

tools and technologies which can be adapted for processing of

Geo-data. Several of them are based on Hadoop, which works

on principle of MapReduce (Divide and Conquer). Although,

MapReduce is more than a decade old, the paradigm has not

evolved for use with GIS applications. Recent developments

in variety of distributed technologies (mostly by Apache such

as Hive, Pig, etc) can be modified and utilized for creation of

Spatial Data Infrastructures and GIS applications. In addition,

modern HPC (High Performance Computing) systems are also

designed around CUDA (from Nvidia) and OpenCL

architectures for faster processing. Several experimentations

have already been conducted for GIS with CUDA but are still

not available for general use. Further research needs to be

carried out for porting processing of GIS applications to

GPGPUs.

The utilization of both the parallel and distributed

architectures remain open for geo-processing owing to the

strengths of both. The utilization of parallel architectures for

compute intensive geoprocessing tasks and distributed

processing for data intensive tasks. Further of our work would

be based upon dynamic visual workflow based geoprocessing

engine developed over Hadoop and CUDA concurrently for

executing workflow processes.

7. ACKNOWLEDGMENTS
We would like to take an opportunity to express our gratitude

and deep regards to Bhaskaracharya Institute for Space

Applications and Geo-informatics (BISAG), Gandhinagar,

India for providing the adequate resources and work

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 16, November 2014

16

environment. We would also like to thank Mr. T. P. Singh,

Director, BISAG for his invaluable support. We would

additionally duly recognize the feedback and constant

encouragement provided by Mr. Miren Karamta and Mr. Punit

Lalwani, Project Scientists at BISAG, Gandhinagar. Their

perceptive criticism and innumerable support kept us working

and concretizing this research work.

8. REFERENCES
[1] The World-Wide Earthquake Locator.

http://tsunami.geo.ed.ac.uk/local-

bin/quakes/mapscript/home.pl

[2] Simple Features for OLE/COM.

http://www.opengeospatial.org/standards/sfo

[3] PostGIS - Spatial and Geographic Objects for

PostgreSQL. http://postgis.net/

[4] Li Yingcheng, Li Ling. 2012 Research On Spatial

Database Design and Tuning Based on Oracle and

ARCSDE, International Society for Photogrammetry and

Remote Sensing, Volume XXXV Part B4, 2004. XXth

ISPRS Congress Technical Commission IV.

[5] The Open Data project. http://data.nasa.gov/about/

[6] A. Aji, F. Wang, and J. H. Saltz. 2012 Towards Building

A High Performance Spatial Query System for Large

Scale Medical Imaging Data. In SIGSPATIAL/GIS

pages 309–318.

[7] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J.

Saltz. 2013 Hadoop-GIS: A High Performance Spatial

Data Warehousing System over MapReduce,

Proceedings of the VLDB Endowment Vol 6.

[8] Jeffrey Dean, Sanjay Ghemawat 2008 MapReduce:

Simplified Data Processing on Large Clusters,

Communications of the ACM, Volume 51, Issue 1.

[9] Hadoop at Yahoo!. https://developer.yahoo.com/hadoop/

[10] The Apache Software Foundation. http://apache.org/

[11] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J.

Saltz. 2013 Demonstration of Hadoop-GIS: A Spatial

Data Warehousing System Over MapReduce,

Proceedings VLDB Endowment.

[12] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Ake

Larson 2012 SCOPE: Parallel databases meet

MapReduce, The VLDB Journal, Vol 21, Issue 5.

[13] CLUP GIS Guidebook: A Guide to Comprehensive Land

Use Data Management

http://www.cookbook.hlurb.gov.ph/book/

[14] Esri Grid format

http://resources.arcgis.com/en/help/main/10.1/index.html

[15] Yonggang Wang, Sheng Wang, Daliang Zhou. 2009

Retrieving and Indexing Spatial Data in the Cloud

Computing Environment, Lecture Notes in Computer

Science Volume 5931, 322-331.

[16] Michael Paul Deskevich, Method and system for

processing raster scan images.

http://www.google.com/patents/US8731309

[17] Ahmed Eldawy, Mohamed F. Mokbel. 2013 A

Demonstration of SpatialHadoop: An Efficient

MapReduce Framework for Spatial Data, Proceedings of

the VLDB Endowment, Vol 6 Issue 12.

[18] Ahmed Eldawy and Mohamed Mokbel. 2014 Pigeon: A

Spatial MapReduce Language, In Proceedings of the

IEEE International Conference on Data Engineering.

[19] Ahmed Eldawy, Yuan Li, Mohamed F. Mokbel. 2013

CG_Hadoop: Computational Geometry in MapReduce,

Proceedings of the 21st ACM SIGSPATIAL

International Conference on Advances in Geographic

Information Systems

[20] Hadoop 2 On Windows

https://wiki.apache.org/hadoop/Hadoop2OnWindows

[21] Vavilapalli V.K., Murthy A.C., Douglas C., Agarwal S.,

Konar M. 2013 Apache Hadoop YARN: Yet Another

Resource Negotiator, Proceedings of the 4th annual

Symposium on Cloud Computing.

[22] The Hadoop Distributed File System: Architecture and

Design

https://svn.eu.apache.org/repos/asf/hadoop/common/tags/

release-0.16.3/docs/hdfs_design.pdf

[23] Fay Chang, Jeffrey Dean, Sanjay Ghemawat et al. 2008

Bigtable: A Distributed Storage System for Structured

Data, ACM Transactions on Computer Systems (TOCS),

Volume 26 Issue 2

IJCATM : www.ijcaonline.org

http://tsunami.geo.ed.ac.uk/local-bin/quakes/mapscript/home.pl
http://tsunami.geo.ed.ac.uk/local-bin/quakes/mapscript/home.pl
http://www.opengeospatial.org/standards/sfo
http://postgis.net/
http://data.nasa.gov/about/
https://developer.yahoo.com/hadoop/
http://apache.org/
http://www.cookbook.hlurb.gov.ph/book/
http://resources.arcgis.com/en/help/main/10.1/index.html
http://www.google.com/patents/US8731309
https://wiki.apache.org/hadoop/Hadoop2OnWindows
https://svn.eu.apache.org/repos/asf/hadoop/common/tags/release-0.16.3/docs/hdfs_design.pdf
https://svn.eu.apache.org/repos/asf/hadoop/common/tags/release-0.16.3/docs/hdfs_design.pdf

