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ABSTRACT 

Geographic Information System (GIS) is a collection of 

applications whose tasks include (collaborating with other 

systems and) gathering geographic data, store and process 

spatio–temporal data (geo-data) and share the derived 

geographic knowledge with the users and other applications. 

Some of the most important routine applications of GIS are 

spatial analysis, digital elevation model (DEM) analysis such 

as line of sight and slope computations, watershed and 

viewshed analysis, etc. GIS has became quite an important 

tool for geospatial sciences and has gone beyond typical tasks 

of mapping to performing complex spatio-temporal analysis 

and operations. The number of users relying upon Decision 

and Support Systems (DSS) built upon GIS has increased as a 

result of the availability of very high resolution satellite 

imagery and integration of spatial data and analyses with GIS 

packages which now satisfies the needs of many and is not 

just used for specialized operations. Moreover, Global 

Positioning Systems (GPS) in a range of mobile devices and 

sensors which includes updates in very short intervals has led 

to geo-information explosion. Parallel and Distributed 

Computing systems are now essential for computing over 

such huge amount of data and deliver faster results. The focus 

on development should thus be shifted from traditional GIS to 

Parallel and Distributed GIS as the traditional GIS systems 

have become quite mature and saturated while technologies 

such as MPI (Message Passing Interface) and GPGPUs 

(General Purpose Graphics Programming Units) can be 

readily utilized for faster geo-data processing. The 

performance improved using recently developed technologies 

such as CUDA (Nvidia GPUs), OpenCL (ATI GPUs) and 

Intel's Xeon Phi co-processors could be as much as ten times 

if not more compared to traditional Geographic Information 

Systems.   
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1. INTRODUCTION 
The first widely known application of Geographic 

Information System (GIS) is the World-Wide Earthquake 

Locator. Bruce Gittings conceived its development at the 

School of GeoScience, University of Edinburgh in 1995. The 

World-Wide Earthquake Locator was meant to serve as a real-

time Geographical Information System. The system was 

aimed at providing up-to-date information and data which 

were taken from the National Earthquake Information Center 

(NEIC) and also providing the detailed dynamic maps of 

earthquakes across the world. The same were also published 

over the World Wide Web (WWW) [1]. 

The first generation of GIS which can also be termed as 

Desktop GIS has gone far beyond evolving into Enterprise 

GIS or Corporate GIS to Web GIS. The system architecture of 

Corporate and Enterprise GIS put all the data and its 

processing on the centralized server. This client-server 

approach resolved the issues of data consistency and data 

sharing which had emerged due to increase in volume and 

complexity of data. Collaborating and coordinating data 

between different entities of an Enterprise GIS was then 

possible for generation of information and in turn better 

planning and supporting decision making. Historically, the 

GIS used to be just a support system for the tasks of Remote 

Sensing data analyses but since the inception of OGC (Open 

Geospatial Consortium; previously known as Open GIS 

Consortium), various service architecture and frameworks, 

spatial databases and data formats have been standardized. 

This has resulted into many OSGeo (Open Source for 

Geospatial) packages not just supplementing Desktop and 

Enterprise GIS but has also led to the evolution of Web GIS. 

The standardization was necessary due to the distribution of 

data and autonomous services provided by various 

governmental and non-governmental organizations or groups 

over the web. The standards were aimed at making such 

services and data interoperable. Recently, spatial support has 

been integrated into commercial database managements 

systems such as Oracle and Microsoft SQL Server [4]. The 

spatial database system may have the integrated spatial data 

support or may be added by use of extensions such as in the 

case of IBM DB2 and Open Source PostgreSQL DBMS 

which use PostGIS addon [3]. Various ISO/IEC standards 

formalize the storage and support for different two 

dimensional geographic data which includes point, line, 

polygon, etc. OpenGIS®‟s Simple Features Implementation 

Specifications is one of the ISO/IEC standards which defines 

interfaces that enable transparent access to geographic data 

held in heterogeneous processing systems on distributed 

computing platforms [2]. Most of the GIS software and 

databases that support the Simple Feature Specification 

standard provide application programming interfaces (APIs) 

provide for publishing, storage, access and simple operations 

on GIS features. This allows interoperability and collaboration 

between different GIS software, applications and database 

management systems built across different platforms, of 

course using different technologies. 
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Parallel, Distributed and Cloud Computing offers resolution to 

many limitations possessed by commodity hardware. Each of 

these computing techniques has its own set of strengths due to 

their architectural differences. These set of strength not only 

provides resolution to limitation of storage and processing of 

conventional data but also provide scope to modify them for 

supporting spatial querying cases or spatial operations. Due to 

the large size of spatial datasets and computationally intensive 

nature of spatial operations, it is now indeed necessary to reap 

the benefits of parallel and distributed computing for spatial 

analysis.  

2. OVERVIEW 
Geographic information systems are in the midst of 

information revolution. Geographic data also known as 

spatial/geo-data (i.e. data which has an associated location 

component) is now being collected by various positioning 

technologies and devices such as mobile devices (GPS), 

sensor networks, RFIDs, etc in addition to the specialized 

remote sensing capabilities of satellites. This has lead to an 

unprecedented increase in the amount of geo-tagged data 

(images, web-posts, tweets, etc) whose use is not just 

restricted to the field of remote sensing (terrain, weather and 

climate data, etc) but also being utilized by other scientific 

applications such as those related to Medical Imaging, 

Marketing, Geographic Intelligence, etc. 

The Earth Observatory System (EOS) satellites of NASA 

collect roughly about 1 TB of spatial data every day. Overall 

the data collected and stored by Earth Observing System‟s 

Data and Information System (EOSDIS) amounts to more 

than 3 petabytes [5]. Geographically Distributed systems have 

been developed for storing such vast amount of data, also 

known as BigData [23]. The branch of Digital Medical 

Imaging today generates extremely high resolution images of 

trillion pixels and hundreds of thousands of such images are 

taken regularly. The digital slide images taken pathology 

instruments are very large, with dimensions that routinely 

exceed 100,000 x 100,000 pixels [6]. Apart from the 

collaborative efforts such as OpenStreetMap, techniques such 

as montage, mosaicing and blending also generate very large 

images from smaller images (tiles) to create a large and 

complete view. Thus due to such an increase in volume of 

spatial data, techniques used for handling, visualizing, 

managing and processing terabytes to petabytes of data cannot 

be ignored. This has resulted into two major challenges, the 

same like every other high performance application has, 

storage[7] and processing[8] of spatial data. 

A decade earlier, MapReduce [9], a programming model and 

an associated implementation for processing and generating 

large data sets have been designed by engineers at Google to 

keep pace with the exponential growth in data to be stored, 

indexed and processed, etc collected by their web-crawlers. At 

the same time another framework for storage and processing 

of large scale data sets over commodity hardware named 

Hadoop was in development for search engine at Yahoo! The 

source code of Hadoop was made Open in 2009 and since 

then Apache Software Foundation has been developing and 

supporting Apache Hadoop as one of its top level project[10]. 

Apache Hadoop consists of Hadoop Distributed FileSystem 

(HDFS) and an implementation of MapReduce model. It has 

become an enterprise-ready cloud computing technology. It is 

becoming the industry de facto framework for big data 

processing [9]. 

 

There have been significant developments in storing and 

handling of BigData. Declarative query interfaces such as 

Apache Hive, Apache Pig, and SCOPE (Structured 

Computations Optimized for Parallel Execution) have brought 

the large scale data analysis (i.e. data from access logs, web 

analytics, etc) one step closer to common users by providing 

high level, developer friendly programming abstractions (such 

as Pig for SQL on Hadoop) to MapReduce [12]. The 

interesting fact here to know about is that these frameworks 

have been specifically designed to compute upon textual data 

(from streams such as output of webcrawlers, etc). 

Spatial data analysis is the application of techniques to data 

(geographic) over its topological, geometric or geographic 

component or dimension. Spatial Analysis includes a variety 

of operations such as spatial characterization, spatial 

dependency/correlation, etc. Spatial Analysis can be 

performed using the spatial constructs and spatial querying 

engine provided by the underlying framework. Spatial and 

non-spatial operations can be divided into following five 

major categories [11] [19]: 

1. Feature aggregation queries (non-spatial queries), for e.g. 

queries for finding mean values of attributes or 

distribution of attributes 

2. Fundamental spatial queries, including point based 

queries, containment queries and spatial joins including 

union, intersection, difference and XOR 

3. Complex spatial queries, including spatial cross matching 

or overlay (large scale spatial join) and nearest neighbor 

queries 

4. Integrated spatial and feature queries, for e.g. feature 

aggregation queries in a selected spatial region, and 

5. Global spatial pattern queries, for e.g. queries on finding 

high density regions, or queries to find directional 

patterns of spatial objects. 

As per our previous discussion spatial constructs have been 

provided in the recent versions of Oracle, PostGIS and SQL 

Server database management systems. These constructs have 

been extensively used and are still under development for 

spatial support. Computations performed on Spatial datasets 

using a single machine has its own inherent limitations arising 

out of memory and disk space. Moreover, the spatial 

framework used might not be able to support the size of the 

dataset. For example, a spatial query which performs a spatial 

join between two datasets having tens of thousands of 

attributes might take exponentially long time or might require 

more than maximum available memory and disk space 

supported by the hardware. 

In this paper we discuss the relevance of various distributed 

and parallel technologies and frameworks that have extended 

the traditional desktop based GIS systems to scale with the 

increase in amount of data coming from millions of handheld 

portable, autonomous devices, sensor webs and very large 

scale imagery generated from high precision devices and 

remote sensing satellites. These precision devices and the 

latest advances in telescope design and satellite imagery have 

dramatically improved the accuracy and spatio-temporal 

scope of the data. Exabytes of data is accessible through 

internet in the public domain and most of it can be 

characterized as geo-data (geospatial data) as every element of 

data has a geographic component such as an address, an area 

reference or a map coordinate. Whether it is massive remotely 

sensed images, billions of records generated everyday by ad-
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click and tracking services or data collected through/for 

location based services, it is used for better facilitation for the 

users. The scientific use of this data is predicting earthquakes, 

tsunamis, environmental issues, etc. The commercial and 

domestic use of the data includes the trend analysis for 

various business entities. The same is again useful to 

governments for urban planning, transport, agriculture, 

criminology, etc all for making human lives more convenient. 

Several frameworks have been specifically designed to tackle 

the shortcomings of the commodity hardware while dealing 

with such massive amount of data and are not fault tolerant, 

fails to scale with the increase in demand, accessibility and 

interoperability. The most prominent of these models are built 

upon the strength of high performance technologies which 

include cloud computing, hadoop based map-reduce and 

graphics processor based CUDA and OpenCL environments.  

The rest of the paper is organized as follows: 

Section 3 provides background of GIS raster and vector data.  

Section 4 and 5 reviews the literature briefly for high-

performance architectures developed for specific use cases 

(MapReduce/Hadoop) and related work. 

Section 6 discusses the shortcomings of the approaches and 

future research directions.  

3. BACKGROUND OF RASTER AND 

VECTOR DATA 
Real world digitized geo-spatial data can be stored in two 

basic forms with an optional temporal component viz. raster 

and vector. 

3.1 Raster Data 
ESRI (Environmental Systems Research Institute) defines 

Raster as a spatial data model that defines space as an 2D 

array of equally sized cells arranged in rows and columns, and 

composed of single or multiple bands. It describes the 

information through values stored in pixels. The spatial 

resolution of a raster image is dependent upon the resolution 

of the acquisition device such as Optical Sensor, CCD Device 

or other imaging device and its quality upon the source of 

data. Raster data requires more storage space than vector data. 

Each pixel that represents its attribute value is known as a 

cell. A group of cells belong to a grid in the raster matrix. The 

cells in a grid have similar values to represent the same type 

of geographic feature. The co-ordinates of the cells are in the 

positional ordering of the matrix. The most widely used 

Raster file formats are GeoTiff (an extension of TIFF format 

to accommodate GIS Metadata), JPEG2000, formats 

standardized by National Geospatial Intelligence Agency 

(Compressed/ARC Raster Graphics) and proprietary file 

formats such as those supported by products of ESRI and 

Hexagon Geospatial, etc.  The specific examples of such 

raster images known to us are cadastral, aerial imagery, digital 

elevation models, etc. Images are captured at various scales, 

resolutions and are archived at different locations/formats. 

Heterogeneity problems such as different formats, encoding 

schemes, temporal characteristics, etc arise frequently due to 

such non-structured data. OGC introduced GML (Geography 

Markup Language), WKT (Well Known Text) and WKB 

(Well Known Binary) as interoperable alternatives to various 

types of non-structured data formats. Studies have been 

conducted such as “Retrieving and indexing spatial data in the 

cloud computing environment” [15] and “Demonstration of 

Hadoop-GIS: A spatial data warehousing system over 

mapreduce” [11] which aim at distributed storage as well as 

processing of extremely large datasets. 

 

Fig 1: Representation of Cells in a Raster Grid [14] 

 

Fig 2:  Value Attribute Table showing unique records for 

Grid Cells 

3.2 Vector Data 
The vector data describes information through geometric 

shapes such as point, line, multiline, polygons and other 

complex shapes. It is mostly prepared through surveying and 

digitization of maps manually or through supervised/non 

supervised automated programs. Pattern Recognition and 

Image Processing techniques are used to convert raster 

formats into vector formats whereby vector features such as 

lines and polylines are identified by the tracing program. 

Recent advances in image processing algorithms helps to 

convert much of the raster data into vector formats with very 

high acceptable accuracy [18].  

 

Fig 3:  Information from Map represented in Raster and 

Vector formats 
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Vector formats explicitly stores the coordinates of the 

geometry or the geometries may be defined using 

mathematical formulas unlike a Raster format. Vector data 

enables the GIS or CAD (Computer Aided Design) systems 

utilizing it to be more flexible in terms of resolution, scaling 

and conversions.  Moreover it is very easy to embed metadata 

(data about data) in vector file formats. Some examples of 

metadata includes map legend, representation of different map 

elements, publishing date, projection and coordinate system, 

etc[13]. Most widely used and standardized vector data 

formats are GML (Geography Markup Language), ESRI‟s 

shapefile format, etc. Figure below shows representation of 

map information in Raster and Vector formats. 

Most of the existing data formats (raster and vector) can be 

processed through a variety of processing techniques[16] 

specifically designed for handling such data and image 

formats. These may include preprocessing, digital 

enhancements, geometric corrections (via Ground Control 

Points), Map Projections, etc. Massive amount of data is 

accumulated everyday due to the advancements in the sensor 

technologies not just limited to imagery (raster data in form of 

millions of photographs and images shared everyday on the 

internet.) but also spans other domains such as those using 

temperature, pressure, light, sound and other environmental 

aspects such as humidity, aerosols, etc. Much of this data 

sought from wireless sensor networks is spatially linked to 

provide better judgment in manufacturing and machinery 

applications. 

4. HIGH PERFORMANCE GIS 

(LITERATURE REVIEW) 
The inception of Hadoop framework took place at Yahoo! in 

2005 to support distributed computation of the data gathered 

by the web-crawlers. The architecture of Hadoop was similar 

to the many open-source and closed source implementation of 

Map Reduce frameworks and also known as MapReduce, a 

Google technology but the term has since been generalized for 

distributed applications due to the massive and unprecedented 

wide-spread acceptance and usage of Hadoop. This was the 

result of the move of Yahoo! to make the source code of 

Hadoop Open-Source and available to general public in 2009. 

Hadoop is a distributed Computing platform written in JAVA 

and provides a Compute and Storage architecture similar to 

those being used by Google, Yahoo and others for BigData 

processing. 

 

Fig 4:  A multi-node Hadoop cluster having multiple data-

nodes 

The Hadoop Distributed File System (HDFS) and MapReduce 

model forms the most important entities of the architecture. 

Hadoop extensively makes use of Linux environment for 

running shell scripts and depends on remote connectivity 

services only available in Linux but can be run on Windows 

environment using CygWin [20]. 

4.1 MapReduce 
Map reduce is a technology that was first widely publicized 

by Google. The Map reduce terminology is similar to divide-

and-conquer methods most prominently used by the parallel 

and distributed architectures. The MapReduce programming 

model relieves the programmers from the underlying issues of 

parallel and distributed architectures and allowing them to 

develop the application. As the term suggests, the model is 

based upon two most important phases, the Map and the 

Reduce. 

The Map phase splits the input data and the processing (user 

submitted jobs) to be done into tasks which are then assigned 

to Worker Nodes/Task Trackers for computation. Hadoop 

takes care of localizing the Data so that the processing is sent 

to a Worker node that has the Data and reduces the 

communication overhead. Each worker node also acts as a 

Data node. The Task Tracker heartbeat (a service monitoring 

the execution, status of task and Worker Node being online) is 

continuously monitored by the Job Trackers, the master node 

in the Hadoop Environment. The Job Tracker is also 

responsible for admission control, tracking the liveness of 

Task Trackers, reporting job status to users, etc. [10]  

Fig. 5 represents a MapReduce model for performing some 

computation upon Text input. Textual input is the simplest of 

all input forms to MapReduce as the data from it can be easily 

divided (to store on multiple data nodes) and the intermediate 

results merged easily for the required output. We would like 

to highlight both the vertical and horizontal partitioning of 

data (slices) which is simple to implement on Text. 

 

Fig 5:  Simple MapReduce Operations upon Textual input 

4.2 YARN (Yet Another Resource 

Negotiator) and its Applications 
With the introduction of the new architecture of Hadoop‟s 

approach to MapReduce, also known as YARN[21], it is now 

possible to deploy other parallel and distributed programming 

frameworks such as Dryad, Giraph, Hoya, Reef, Spark, Storm 

and Tez over Hadoop. The new architecture separates the 

monolithic programming model from the resource 

management infrastructure. The scheduling function rather 

than being system wide is now on a job basis as multiple 

applications require its own scheduling while running over 

YARN. Applications following the MapReduce paradigm can 

also be deployed easily over YARN. YARN promises to have 

full backward compatibility with other existing applications 

and legacy Hadoop implementations.  
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How did YARN come into existence? Applications deployed 

over legacy Hadoop used to create clusters (using a group of 

nodes) and transfer the data to HDFS (Hadoop Distributed 

File System), perform map-reduce operations and release the 

cluster/nodes. This scenario resulted in Hadoop and HDFS to 

being extended to support a multi-tenant model whereby 

shared clusters were formed to deploy different applications. 

The sharing of resources lead to creation of resource pools 

[23] and features such as permissions, quotas per user and per 

job, etc. were added to Hadoop. It was also possible to deploy 

applications using different versions of Hadoop. 

Yahoo extended the legacy MapReduce Hadoop and 

developed Hadoop on Demand (HoD) using schedulers such 

as Torque and Maui to support this dynamic resource 

allocation. HoD still lacked the isolation and security 

requirements due to the federated (tightly coupled) 

architecture of Hadoop Installations. Based upon Torque, 

HoD lacked allocation of nodes taking into consideration, the 

locality of Data, which formed the strength of Hadoop. 

Hadoop was built around the philosophy of taking 

computation to data (and in turn minimize the communication 

cost). It was also not possible to resize the clusters during the 

execution of fewer Reduce operations. While there are 

applications that require hundreds and thousands of nodes 

during peak calculations (processing), the same may require a 

handful of nodes for the very few Reduce operations e.g. 

Application workloads that can be represented in the form of 

DAGs (Directed Acyclic Graphs) having a high degree of 

Fan-In or Fan-Out. Due to the static allocation of 

nodes(resources), if the workflow possesses map or reduce 

operation as its bottleneck, it would lead to poor cluster 

utilization and wastage of useful computation power. 

 

Fig 6:  DAG Representation of MapReduce Operations 

HDFS evolved gradually due to the increase in storage 

requirements of the applications which accumulate terabytes 

of data everyday resulting in the data-store of petabytes while 

the Job Tracker was not much modified and still remained 

primitive. Application specific customizations to the 

JobTrackers lead to bugs and failures in workflow executions. 

Moreover as the JobTracker, a single point of failure was 

shared across applications inside a shared cluster, there was 

too much dependency and overload of large number of Job 

Monitoring lead to unnecessary delay in allocation of 

resources. A strong and scalable authentication and 

authorization model was required for securing applications in 

the multitenant clusters. Legacy Hadoop lacked support for 

different programming models so users would write 

“MapReduce” equivalents for jobs required for Machine 

Learning and Graph Algorithms, all leading to poor resource 

utilization. The following table summarizes features 

supported by the major releases of Hadoop. 

Table 1. Classic MapReduce vs. YARN 

Feature 

Classic 

MapReduce 

(Hadoop 1) 

YARN 

(Hadoop 2) 

Authentication 

for HDFS 
No Yes 

HDFS federation No Yes 

HDFS high-

availability 
No Yes 

Separate 

Application 

Manager and 

Resource 

Manager 

Scheduler takes 

care of 

applications and 

resources (and is 

the bottleneck for 

scalability to 

>1000s of nodes) 

Yes 

Task Size (w.r.t 

running time and 

I/O) 

Large Large and Small 

Supported 

Applications 

Single 

(MapReduce) 

Multiple 

Paradigms 

Backward 

Compatible 
- 

Yes (Supports 

Classis 

MapReduce as 

one of the 

paradigms) 

4.3 HDFS (Hadoop Distributed File 

System) 
Hadoop uses HDFS as its primary distributed storage system 

[22]. HDFS can function as a general purpose distributed 

storage filesystem or conjunctively used with Hadoop 

Clusters on commodity hardware. It is highly similar to 

existing distributed file systems but is highly fault tolerant and 

provides streaming access to data. HDFS is designed for 

scalability and supports multi-gigabyte to multi-terabyte files 

with emphasis on low latency of data access.  HDFS is based 

upon the simple coherency model of write-once-read-many 

(WORM) which enables high throughput but at the same time 

restricts the updations/appends which are usually sluggish. 

HDFS has been designed on the foundations of data locality 

and thus it serves best for applications not requiring frequent 

updates (writes). 

HDFS is designed to be a distributed file system and handle 

extremely large files that are not supported by normal file 

systems. These files are divided into typical chunk/block size 

of 64MB and stored in datanodes. A Cluster of Data Nodes 

forms the HDFS cluster which is able to handle files of size in 

the range of gigabytes to even terabytes. HDFS achieves fault 

tolerance by replicating (default value: 3) blocks/chunks 

across datanodes dynamically. There exists a single 

NameNode in the Hadoop Infrastructure and is the main 

metadata server. As the namenode is the sole entity storing 

and managing the file system metadata, it becomes a huge 

bottleneck in supporting a large number of small files. We do 

acknowledge that the bottom up design of HDFS has been to 

store a few huge files rather than millions and billions of tiny 

files. The failure of the NameNode results in the failure of the 

application. A secondary namenode can also present in the 
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environment to cope up with the failure of the primary 

NameNode which clones the directory structure of the 

primary NameNode and serves as a backup for restarting the 

failed primary NameNode without having to rebuild the 

HDFS. This has been tackled in the Hadoop 2.0 through use 

of separate NameNode spread across multiple namespaces. 

 

Fig 7: HDFS Architecture (http://hadoop.apache.org) 

Classes within DFSInputStream and DFSOutputStream 

namespaces handle the retrieval and storage of files in the 

HDFS in form of blocks/chunks. The data of file from the 

client requesting a File Write is cached by DFSOutputStream 

to the local filesystem. After the data write operation reaches 

the block size of HDFS, DFSOutputStream requests the 

NameNode to add the block to the file on HDFS. NameNode 

returns a pipeline of DataNodes to whom the client writes the 

block. After successful writing and replication, the DataNode 

sends a blockReceived message to the NameNode and an 

acknowledgement to DFSOutputStream. 

The replication of the block as specified by the HDFS user is 

done by the other DataNodes in the pipeline until the specified 

replicas of the block have been written. Reading of a file from 

HDFS requires the Client to request the NameNode for the 

desired block. The NameNode returns a list of locations of the 

replication sites. The client can then fetch the block from one 

of the replicas. Corrupt block received has to be reported by 

using reportBadBlocks to the NameNode. 

As Hadoop is built upon the philosophy of bringing 

Computation to Data, it minimizes the read data from the 

network. Depending upon the scalability required for 

applications, HDFS instances run on nodes that may spread 

across many racks leading to IO between different racks. In 

most cases this IO is slower than communication between 

nodes in the same rack [22]. HDFS provides APIs to 

customize applications that can utilize the rack id‟s for better 

placement of data. This does improve the overall efficiency of 

the infrastructure but is quite unnecessary for high speed 

networks such as 10Gigabit Ethernet, Infiniband and their 

successors. 

The performance analysis of the HDFS over different types of 

networks and its optimization is quite viable to devise 

distributed file systems specifically for today‟s high speed 

networks and support millions of files (small and large) which 

are simultaneously used by many interoperating applications. 

 

 

4.4 Apache Oozie 
Apache Hadoop is complimented by Oozie, a server based 

Workflow Engine that also acts as a Coordinator Engine and a 

Bundle Engine [10]. Oozie has been specially designed for 

running workflow jobs executing as Hadoop‟s Map/Reduce or 

Pig jobs. Oozie workflow applications contain files such as 

.xml, .jar, .so, etc and are installed in the HDFS itself. The 

workflow jobs are specified in hPDL (a XML Process 

Definition Language). The workflow jobs can be executed on 

triggers such as time and data availability, if not manually. 

This is necessary to coordinate between jobs that execute in 

continuity with other Map/Reduce operations across the depth 

in a DAG representation. 

 

Fig 8a: A Simple GIS workflow model representation 

The latest version of Oozie also allows coordination between 

different applications. The users can control the flow of the 

executing workflow jobs as Oozie provides better operational 

control for managing jobs such as start/stop/suspend/resume 

and restart, if required. There are numerous GIS applications 

that can advantage from this capability. Most of the GIS 

applications require more than one geoprocessing function 

(Intersect, Union, Buffer, Clip, etc) to be applied to the input 

in a sequence (or a cycle) for performing complex Geo-

processing known as a workflow. Such Workflow 

applications (containing cycles) can always be reduced to the 

form of a DAG. The DAG then may contain either Hadoop 

Jobs, or Pig Jobs or Streaming applications or sub-DAGs. 

Oozie lacks a visual workflow model builder and 

interoperability with OGC standards. Fig. 8a represents a 

sample GIS workflow. 

It is indeed important to highlight here that cycles in 

workflows are not supported which makes us to redesign 

applications that require recursive executions of jobs. Oozie 

maintains the states (PREP, RUNNING, SUSPENDED, 

SUCCEEDED, KILLED and FAILED) for workflow jobs. 

 

Fig 8b: Oozie workflow job state valid transitions and 

lifecycle 

 

http://hadoop.apache.org/
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The DAG representation in Fig 6 shows a Fork and Join 

example for an Oozie workflow. It has „1‟ Starting Job (Start 

Map) generated from the Input Workflow, „8‟ Jobs (R) that 

are executing in Parallel which are created by „Start Map‟, „1‟ 

Reduce and Map Job (M) that collects results of „7‟ jobs (R) 

while „1‟ Job (R) is still running. After the completion of the 

„1‟ (R) Job that was still running and the „1‟ Reduce and Map 

Job (M), „3‟ Reduce Jobs (R) again start in parallel. The last 

Job (Output) finally collects the results and provides the 

output. 

4.5 Motivations 
We have already discussed what makes GIS a perfect usecase 

for the parallel and distributed computing architecture. Spatial 

operations involve analysis over two categories of data; vector 

(points, lines and polygons, etc) and raster (image data). Let 

us now discuss more regarding the approaches and directions 

that have been implemented for various use cases which 

includes spatial operations such as polygonal overlays, spatial 

range queries, spatial joins such as Intersection, Spatial Cross 

Matching, global spatial pattern discovery, etc. 

As previously discussed, high performance architecture is 

required for querying on large volumes of spatial data which 

is important in many scientific as well as commercial 

domains. This presents with two major challenges; the storage 

and management of spatial data and high computational 

requirements of spatial queries. Parallel RDBMS (Relational 

Database Management System) and SDBMS (Spatial 

Database Management System) exists to achieve scalability 

and reduce the I/O bottleneck by distribution and aggregation 

of data across multiple systems but are not optimized for 

performing computation of spatial queries. 

5. RECENT ADVANCES IN HIGH 

PERFORMANCE GIS 
GeoJinni aka SpatialHadoop[17] has been designed upon 

Apache Hadoop to perform batch analysis of large spatial 

data. GeoJinni alike other Hadoop customizations and unlike 

PostGIS is not designed and is not capable of running 

interactive queries upon small datasets. The spatial indexes 

generated (Grid File, R-tree and R+-tree) and stored in HDFS 

are accessible to applications using GeoJinni API and it also 

provides interfaces with other Hadoop tools and related 

projects such as Apache Hive, Pig or Hbase. 

Pigeon [18] extends Pig by including two additional 

components viz. spatial datatypes and spatial functions. 

Pigeon supports the standard OGC datatypes such as Point, 

Linestring, MultiLinestring, Polygon, MultiPolygon, and 

GeometryCollection in addition it can import spatial objects 

stored in the Well-Known Text (WKT) and Well-Known 

Binary (WKB) formats. Pigeon relies upon the ESRI 

Geometry API 1.0 to support spatial objects. Pig has been 

extended through its support of User Defined Functions 

(UDFs) which can be used to extend the existing operators 

such as filter, join and group by. There are four groups of 

spatial functions implemented in Pigeon: (1) Basic spatial 

methods such as Eval (Area occupied by a spatial object), (2) 

Spatial predicates such as those defining relationships among 

spatial objects such as (Do A intersects B), (3) Spatial 

analysis which operates upon 1+ spatial objects, and (4) 

Aggregate functions that computes upon a set of spatial 

objects (e.g. Convex Hull). User can create customized 

Pigeon scripts with the same syntax as that of Pig to perform 

simple spatial operations involving a single MapReduce job 

while complex spatial operations can be performed using 

multiple MapReduce Jobs. 

Hadoop-GIS [11] is a scalable and high performance spatial 

data warehousing system for running large scale spatial 

queries utilizing the distributed storage and MapReduce 

capabilities of Hadoop. Hadoop-GIS support spatial data 

types, spatial operators and functions. Spatial partitioning is 

achieved through global partition indexing and customizable 

on demand local spatial indexing. It integrates a customizable 

spatial query engine RESQUE (Real-time Spatial Query 

Engine) similar to Pigeon but in addition supports data-

compression resulting into low I/O overhead and 

communication. RESQUE supports implicit parallel spatial 

query execution on MapReduce through use of a declarative 

spatial query language upon HiveSP (Spatial Hive). Hive 

Query Engine is also extended to support spatial queries. In 

addition to supporting complex spatial partitioning and 

querying, major operators and functions from ISO SQL/MM 

are also supported by the spatial querying language (QLSP) 

used with HiveSP. This is achieved by extending HiveQL 

with spatial constructs, spatial query translation and 

execution. Hadoop-GIS employs distributed spatial queries 

through spatial workflows include joins, containments while it 

also effectively amends query results efficiently handling 

boundary objects.  

6. CONCLUSION AND FUTURE WORK 
Billions of devices are generating unstructured data every day. 

Most of this data is utilized by application for provision of 

user friendly services personalized according to their location. 

Terabytes to petabytes of data is required to be processed in 

seconds to obtain time-relevant smart output. Existing 

infrastructures have to adapt to such requirements as users are 

unaware about the complexities of the geoprocessing tasks. 

Methodologies adopted for BigData have kept up with the 

increasing data but the scope for complexities associated with 

the real-time analysis of such data resulting in quality 

information is still open. 

In this paper we reviewed quantity of parallel and distributed 

tools and technologies which can be adapted for processing of 

Geo-data. Several of them are based on Hadoop, which works 

on principle of MapReduce (Divide and Conquer). Although, 

MapReduce is more than a decade old, the paradigm has not 

evolved for use with GIS applications. Recent developments 

in variety of distributed technologies (mostly by Apache such 

as Hive, Pig, etc) can be modified and utilized for creation of 

Spatial Data Infrastructures and GIS applications. In addition, 

modern HPC (High Performance Computing) systems are also 

designed around CUDA (from Nvidia) and OpenCL 

architectures for faster processing. Several experimentations 

have already been conducted for GIS with CUDA but are still 

not available for general use. Further research needs to be 

carried out for porting processing of GIS applications to 

GPGPUs. 

The utilization of both the parallel and distributed 

architectures remain open for geo-processing owing to the 

strengths of both. The utilization of parallel architectures for 

compute intensive geoprocessing tasks and distributed 

processing for data intensive tasks. Further of our work would 

be based upon dynamic visual workflow based geoprocessing 

engine developed over Hadoop and CUDA concurrently for 

executing workflow processes. 
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