
International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 15, November 2014

23

Context-free Grammar Learning from Text Document

using Sequential Pattern

Ramesh Thakur
International Institute of

Professional Studies
 Devi Ahilya University

 Indore, India

ABSTRACT

The World-Wide-Web and information system has gained

significant achievements over the last two decades as

expressed their dominance in various business and scientific

applications. As estimated by Blumberg and Atre more than

85% of all business information exists in the form of

unstructured and semi-structured document, typically

formatted for human viewing, not for system processing.
Extracting information from these document are challenging

task. Extracting grammar rules from these documents is

interesting idea. Grammar rules can be used to create

structural descriptions of text documents. In this paper I

propose grammatical inference using sequential pattern to

infer formal language (context free grammar), which

describes the given sample set.

Keywords

Information Extraction, Grammatical Inference, Sequential

Pattern.

1. INTRODUCTION
The computer and information systems have gained

significant achievements over the last two decades as

expressed by their dominance in various business and

scientific applications. The management of text document is

recognized as one of the major unanswered problem in

information technology due to unavailability of suitable tools

and techniques to transform it for business intelligence. As

estimated [1, 2] more than 85% of all business information

exists in the form of unstructured and semi-structured data, it

is commonly available in the form of text documents and web

pages. These documents are intended for human viewing, and

not for the application to process it. The text document is

without a well defined schema or data model i.e. do not have

global schema. Grishman and Sundheim [3] described

Information Extraction as “The identification and extraction

of instances of a particular class of events or relationships in a

natural language text and their transformation into a structured

representation e.g. database”.

The objective of the grammatical inference to infer a formal

language, such as context-free grammar, which describes the

given sample set. These grammar rules will be used to create

structural descriptions of the text documents. In automated

grammar learning, the task is to infer grammar rules from

given information about the target language. Information

Extraction from textual data has various applications, such as

semantic search [4]. If the sentences confirm to a language

described by a known grammar, several techniques exist to

generate the syntactic structure of these sentences. Parsing [5,

6] is one of such technique that rely on knowledge of

grammar.

In automated grammar learning, the task is to infer grammar

rules from given information about the target language. The

sentences (or strings of alphabet) are given as examples for

such learning. If the example belongs to the target language, it

is called as a positive example. Otherwise, it is called as a

negative example. A language that can be inferred by looking

at a finite number of positive examples only said to be

identifiable in the limit [7, 8].

In this paper I propose a Grammatical (context-free grammar)

inference methodology using discovery of sequential pattern

form text document. The documents are treated as sequence of

string over a fixed alphabet set. The algorithm selects the

constituents sequentially.

2. SEQUENCE AND SUBSEQUENCE
Finding sequential pattern in large transaction database is an

important data mining problem. The problem of mining

sequential pattern and the support-confidence work ware

originally proposed by Agrawal and Srikant [9, 10].

Let I= {i1, i2, ……,in} be a set of items in text. We call a subset

𝑋 ⊆ 𝐼 an itemset and we call │X│ the size of X. A sequence

S=(s1, s2,….,sm) is an ordered list of itemsets where 𝑠𝑖 =
(𝑠1, 𝑠2 , … . . , 𝑠𝑚) is an ordered list of items where 𝑠𝑖 ⊆
𝐼, 𝑖 ∈ {1,… ,𝑚}. The size m of a sequence is the number

itemset in the sequence i.e. │s│ the length of sequence s=(s1,

s2,....sm) is defined as:

𝑙 =𝑑𝑒𝑓 │si

𝑚

𝑖=1

│

A sequence with length l is called l of sequence. A sequence

sa=(a1,a2, ….an) is contained in another sequence sb=(b1,b2,

….bn) if there exist integers 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑛 ≤
𝑚 such that 𝑎1 ⊆ 𝑏𝑖1, 𝑎2 ⊆ 𝑏𝑖2, … . , 𝑎𝑖𝑛 ⊆ 𝑏𝑖𝑛 . If

sequence 𝑠𝑎 is contained in sequence 𝑠𝑏 , then we call 𝑠𝑎 a

subsequence of 𝑠𝑏 and 𝑠𝑏 is called supersequence of 𝑠𝑎 .

For example {bbobbb}, are sequence and {bob} are

subsequence. A dataset D is a set of strings in the document

and X is the item set such that 𝑋 ⊆ 𝐼.

2.1 Frequent Sequential Pattern
A datasheet D is a set of strings, where each string represents

the one listing in corpus, and X is an item set in corpus such

that 𝑋 ⊆ 𝐼 i.e. X represents a single line of string. Each xi

1 ≤ 𝑖 ≤ 𝑚 (where m is the no of string in corpus)

representing the individual item in D, we refer this

representation of D as its sequence representation.

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 15, November 2014

24

The absolute support of a sequence 𝑠𝑎 in the sequence

representation of a datasheet D is defined as the number of

sequence 𝑠 ∈ 𝐷 that contains 𝑠𝑎 , and the relative support is

defined as the percentage of sequence 𝑠 ∈ 𝐷 that contain 𝑠𝑎 .
Given a support threshold “minSup”, a sequence 𝑠𝑎 is called a

frequent sequential pattern on D if 𝑠𝑢𝑝𝐷(𝑠𝑎) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝. The

problem of finding sequential pattern is to find all frequent

sequential patterns for a datasheet D, given a support

threshold sup [11].

2.2 Support Factor
The support Factor (SF) for sub-sequences in corpora C

SFβ=∑
i=1

N count of β in sentences ×length of β

length of sentences

Where N= number of sentences in Corpora C and  is a

candidate sub-sequence for replacement.

3. SEQUENCE MINING ALGORITHM
I propose a grammar inference methodology to automate the

construction of grammar rules from text document. I used

finding frequent sequential pattern based on support factor to

generate context-free grammar rules from text document.

Our algorithm that infers a sequential pattern from a sequence

sentences from the input corpus. The basic insight is that sub-

string is selected on the basis of high support factor by taking

entire sentences into account. Which appears more frequently

in string can be replaced by a grammatical rule X→α where α

is sub-sequence that generate the new strings, and this process

is repeated many times, producing a single length rules of the

sequence. The result is strictly a context-free grammar rule,

which provide a compact summary of corpora that aids

understanding of its properties.

I split the problem of grammatical inference into following

phases:

1. Codification of string: I transformed the data into

suitable format for processing simplicity. The

algorithm expects a set of positive sequence of

symbols from a finite alphabet set. So the strings

(sentences) of input data sets are codified based on

their syntactic categories.

2. Discovery of sequential pattern: Searching of

repeated sub-sequences is performed and the sub-

sequence having highest support factor is selected

for replacement (X→α where α is sub-sequence).

Repeated sub-sequence is replaced by a non-

terminal symbol with proper grammar.

3. Replacement rules of discovered sequence are

stored as grammar rule.

4. Rule Simplification: Right part of production rule

having similar sequences is compacted by a single

rule.

3.1 Proposed Algorithm
Input: corpora C of Flat sentences (codified text

String)

 Max-Length (sub-string)

Output: Set of CFG rules R

Begin

 Initialize rule set R=

// Calculate sub-sequence upto given Max-length

= sub-sequence(c, Max-length)

while for every  in C and length of  >1 do

 for each sub-sequence    do

 // calculate support factor

for sub-string 

 SF=support-factor()

end //for

=select  of highest score SF

N= select next non terminal symbol

// add new rule to rule set R

if length of  >1 then

R=R{N}

// apply replacement rule for each string in the

corpora

update(c, N)

else

R=R{N+}

Update(C, N+)

end if

end while

end // SEQPD

Fig 1: Proposed Algorithm for CFG extraction.

Procedure support-factor (u)

// This procedure return support factor for the sub

string u in the corpora.

Begin

score=0.0

for    C, >1 do

 score=score+(count_of_subsequence_u_in_*

u/)

end for

return(score)

end

Fig 2: Procedure support factor.

4. EXPERIMENTAL RESULTS
The proposed algorithm has been implemented using a code

written in C programming language. The main data structure

used is the array of string, which holds the text document. It

uses support factor in deciding the replacement rules in the

corpora. Some of the experimental results obtained are shown

bellow.

Arithmetic expression based on terminal T= {0, 1, +, -, (,)}

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 15, November 2014

25

Table 1. Arithmetic expression

1+1

10+1

1+(1+0-10)

(1+10)+1+0

1+0+11+101+0+(1+1)

10+101+1+1

1+0+(10+1+100)

11+1+(1+1+01)

(1+0+10)-(11+101)

(11+0+1+111+((1+1+0))

…

……

4.1 Rules for Codification
b→0/1, o→+/-, a→(, c→)

Table 2. Coded Arithmetic expression

bob

bbob

boabobobbc

abobbcobob

bobobbobbboboabobc

bbobbbobob

boboabbobobbbc

bboboabobobbc

abobobbcoabbobbbc

abbobobobbboaabobobcc

…

……

4.2 Result (Grammar Inference)

Start→A/B/J/N/R/P/K/L/I/M

A→bob, C→b+ , B→CA, E→aAoCc, F→o+ , D→BF,

G→Cc, H→Fa, De, J→CFE, K→BDC, L→AHDG,

M→EHBG, N→aAGFA, O→DACHF, P→Oc, Q→AFBDa,

R→Qac.

I have applied the algorithm on arithmetic expression for

grammatical inference.. The algorithm is applied repeatedly to

the text document till all the token are replaced by non-

terminal symbol of a context-free grammar. In the each

iteration of the algorithm, the support factor for each tokens

are calculated and the tokens with highest support factor is

replaced by a non-terminal symbol.

5. EVALUATION OF ALGORITHM
The evaluation of Information Extraction using grammatical

inference problem has different approaches. Generally, the

evaluation of grammar inference algorithm is carried out by

giving input to the algorithm a set of unstructured data and

evaluating its output (grammar rules). Three principal

evaluation strategies usually applied for evaluating grammar

inference algorithm [12].

a. Looks-Good-to-me,

b. Compare Against Treebank,

c. Rebuilding Known Grammars.

In Looks-Good-to-me strategy grammar inference algorithm

is applied to a piece of unstructured text and the resulting

grammar is qualitatively evaluated on the base of the

linguistic intuitions of the evaluator, that highlights the

grammatical structures which look “good”. This kind of

evaluation is mainly conducted by experts who have specific

knowledge of the syntax of the language.

In Compare against Treebank evaluation strategy consists of

applying the grammar inference algorithm to a set of plain

unstructured sentences that are extracted from an annotated

treebank, which is selected as a “gold standard”. The

structured sentences generated by the algorithm are then

compared against the original structured sentences from the

Treebank and the recall and precision are computed.

The Rebuilding Known Grammars approach is another

evaluation strategy. This method, starting from a pre-defined

(simple) grammar, generates a set of example sentences,

which are given as input to the grammar inference algorithm

and the resulting grammar is compared manually to the

original grammar. If the inferred grammar is similar or equal

to the original grammar then the learning system is considered

good. The following metrics have been used to compare the

grammar learned by the proposed algorithms.

Precision, which measures the number of correctly learned

constituents as a percentage of the number of all learned

constituents. The higher the precision, the better the algorithm

is at ensuring that what has been learned is correct.

Precision =
 Correctly Learned Constituentes

 Learned Constituentes

Recall, which measures the number of correctly learned

constituents as a percentage of the total number of correct

constituents. The higher the recall, the better the algorithm is

at not missing correct constituents.

𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐿𝑒𝑎𝑟𝑛𝑒𝑑 Constituentes

 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 Constituentes

I have used the Rebuilding Known Grammars evaluation

strategy for the evaluation of our proposed algorithms. The

following metrics have been used to compare the grammar

learned by the proposed algorithms. I have prepared two

different data sets. The first set (sample one) contains the data

which follow the uniform rules for generation of document.

The second set (sample two) that contains the data which do

not follow uniform rules for generation of document.

Firstly, manually annotated results were stored, and then the

same content was supplied to the proposed algorithm for

automatic grammar extraction. Then the results were

compared with the human annotated results. The results of

evaluation are as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 15, November 2014

26

Table 3. Results of SEQPD algorithm

Data Set
Corpus size

(Sentences)

Precision

%
Recall %

Sample set

one
744 75.4 76.2

Sample set

two
878 55.6 42.8

Average --- 65.5 59.5

6. CONCLUSION
I have introduced a new algorithm for mining sequential

pattern form semi- structured document based on grammar

inference. It finds possible constituents and afterwards select

it based on high support factor by taking entire sentences into

account. The output of the algorithm is context-free grammar

rules, which provide a compact summary of corpora that aids

understanding of its properties.

7. REFERENCES
[1] Blumberg, R., & Atre, S. “The problem with

unstructured data.” DM REVIEW, 13, pp 42-49 2003.

[2] James, S., Mark, D. Roger, F., Melliyal, A., Jean, I., &

Xavier, L. “Managing Unstructured Data with Oracle

Database 11g”. An Oracle White Paper , pp. 1-9 Feb

2009.

[3] B. M. Sundheim, “Overview of the third message

understanding evaluation and conference,” In

Proceedings of the Third Message Understanding

Conference (MUC-3), pp. 3–16, San Diego, CA, 1991.

[4] P. Palaga, L. Nguyen, U. Leser, and J. Hakenberg,

“High-performance information extraction with AliBaba

,” In Proceedings of the 12th International Conference on

Extending Database Technology: Advances in Database

Technology, EDBT '09 ACM New York pp 1140–1143,

2009.

[5] Allen J., “Natural Language Understanding,” The

Benjamin/Cummings Publishing Company, Inc.,

Redwood City, CA, USA. Second Edition, 1995.

[6] N. A. Chinchor, Overview of MUC-7/MET-2 1998.

[7] E. M. GOLD, “Language identification in the limit,”

Inform Control. vol.10, no.5, pp 447–474,1967.

[8] E M. Gold, “Complexity of automaton identification

from given data,” Inform. Control, vol. 37, pp 302–320,

1978.

[9] Agrawal and R. Srikant. “Mining Sequential Patterns.” In

Proceedings of the International Conference on Data

Engineering (ICDE), Taipei, Taiwan, 1995.

[10] R. Srikant and R. Agrawal, "Mining Sequential Patterns:

Generalizations and Performance Improvements", In

Proceedings of the 5th International Conference on

Extending Database Technology (EDBT), Avignon,

France, March 1996.

[11] Suresh Jain, Ramesh Thakur and N.S. Chaudhari.

“Discovery of Sequential Pattern from Text Document”.

In Proceedings of the National Conference on Intelligent

Information Retrieval & Processing (NCIIRP - 2006),

CSI Surat Chapter Bardoli, Surat , April, 2006.

[12] D’Ulizia, Arianna, Fernando Ferri, and Patrizia Grifoni.

"A survey of grammatical inference methods for natural

language learning." Artificial Intelligence Review 36,

No. 1 pp 1-27, 2011.

IJCATM : www.ijcaonline.org

http://www.math.spbu.ru/edbticdt/
http://www.acm.org/publications

