
International Journal of Computer Applications (0975 8887)
Volume 106 - No. 14, November 2014

Every Complete Binary Tree Is Prime

Joseph Chang
Palo Alto High School
50 Embarcadero Road

Palo Alto, CA 94301, USA

ABSTRACT
A graph with a vertex set V is said to have a prime labeling
if its vertices can be labeled with distinct integers 1, 2, · · · , |V |
such that for every edge {x, y}, the labels assigned to x and
y are relatively prime. A tree is prime if it has at least one
prime labeling. Around 1980, Entringer conjectured that every
tree is prime. After three decades, this conjecture remains open.
Nevertheless, a few special classes of trees, specifically paths, stars,
caterpillars, spiders, and small trees, have been shown to be prime.
Among different types of trees, binary trees are probably the most
frequently used in computer science. Fu and Huang showed that
every perfect binary tree of order 2d − 1 is prime. Although Fu
and Huang ambiguously called perfect binary trees as complete
binary trees in their paper, it has been verified that they only proved
that perfect binary trees are prime. In this paper, the author looked
beyond perfect binary trees and devised a two-step method to prove
that every complete binary tree is prime.
First, for the case of 2k − 1 vertices, a near prime labeling was
constructed such that the co-prime requirement was satisfied for
every edge, except possibly for the edges between right leaves
and their parents. In order to successfully construct a prime
labeling without co-prime violations, the original prime labeling
problem was transformed into a complete (co-prime) matching
problem between the right leaves and their parents. By applying
Hall’s Theorem, we proved that a complete (co-prime) matching
exists for the right leaves and their parents, thus proving that a
prime labeling exists for every complete binary tree with 2k −
1 vertices. Second, for the case of 2k vertices, we applied
Bertrand-Chebyshev Theorem and proved that a three-way child
swap could be performed to construct a prime labeling for 2k
vertices based on the prime labeling for 2k − 1 vertices, thus
completing the proof that every complete binary tree of any number
of vertices is prime.
Our proof that all complete binary trees are prime broadens the
coverage of the tree classes that are known to be prime and propels
the research one step closer to prove Entringer’s conjecture.

Keywords:
prime labeling, Entringer’s conjecture, complete binary tree

1. INTRODUCTION
Prime labeling was first introduced by Tout, Dabboucy, and
Howalla [8]. Given a graph G = (V,E) comprising a set V of
vertices together with a set E of edges, a bijection f : V →

{1, 2, · · · , |V |} is called a prime labeling for G if for every edge
e = {u, v} ∈ E, the greatest common factor of their labels
gcd(f(u), f(v)) = 1. A graph that admits a prime labeling is
called a prime graph. Prime graphs have been studied by many
researchers [3, 5, 9]. Around 1980, Entringer conjectured that every
tree is prime. In 2007, Pikhurko proved that this conjecture is
true for small trees with less than 51 vertices [6]. In addition,
a few special classes of trees such as paths, stars, caterpillars,
and spiders have been shown to be prime. Nevertheless, after
30 years, the conjecture remains open. Gallian’s survey paper
in 2013 [3] contains a summary on recent progress made on
Entringer’s conjecture.
Among different classes of trees, binary trees are probably the
most frequently used in computer science. There are many types
of binary trees. A perfect binary tree is a binary tree in which every
parent has two children and all leaves are at the same depth [11].
As shown in Figure 1(a), a perfect binary tree of d levels has
exactly 2d − 1 vertices, and all its internal vertices must have two
children. As a comparison, a complete binary tree is a binary tree in
which every level, except possibly the deepest level, is completely
filled, and at depth d, the height of the tree, all vertices must be
as far left as possible [1]. A complete binary tree of 13 vertices
is shown in Figure 1(b) as an example. Because of the shape
property, any complete binary tree can be conveniently stored in
an array without storing any pointers. In addition, a binary heap, an
important computer data structure, is stored in a complete binary
tree. Note that a perfect binary tree is a special case of a complete
binary tree.

(a)

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(b)

1

2 3

4 5 6 7

8 9 10 11 12 13

Fig. 1. (a) A perfect binary tree of four levels. (b) A complete binary tree
of 13 vertices.

Fu and Huang [2] have proved that every perfect binary tree of order
2d − 1 (d ≥ 1) is prime. Although Fu and Huang ambiguously
called perfect binary trees as complete binary trees in their paper,

1

International Journal of Computer Applications (0975 8887)
Volume 106 - No. 14, November 2014

we have confirmed that they only proved that perfect binary trees
are prime. Their technique is to label all vertices from 2 to |V |+ 1
based on in-order traversal starting from the root of the tree. Then
the label of the final vertex (|V | + 1) is replaced by 1. It is
easy to show that all leaf vertices are labeled with even numbers
or 1, and all parent vertices are labeled with odd numbers. The
difference between any (odd-labeled) parent and its even-labeled
child is 1, and the difference between any (odd-labeled) parent
and its odd-labeled child is a power of 2. With this labeling,
every edge in a perfect binary tree connects a pair of coprime
vertices, which proves that every perfect binary tree has a prime
labeling. Figure 2(a) shows an example of Fu’s labeling for a
15-vertex perfect binary tree. However, Fu’s algorithm will not
always produce a prime labeling for a complete binary tree. For
example, as shown in Figure 2(b), Fu’s algorithm labels the three
vertices at the top of a 8-vertex complete binary tree with 4, 6, and
8, which are not coprime.

(a)

9

5 13

3 7 11 15

2 4 6 8 10 12 14 1

(b)

6

4 8

3 5 7 1

2

Fig. 2. (a) Fu’s prime labeling for a perfect binary tree of four levels. (b)
Fu’s prime labeling algorithm not applicable to a 8-vertex complete binary
tree.

In this paper, the author looks beyond perfect binary trees and
shows that every complete binary tree is prime. Since a perfect
binary tree is a special case of a complete binary tree, we move
closer to prove Entringer’s conjecture that every tree is prime.

2. PRIME LABELING OF COMPLETE BINARY
TREES

2.1 Definitions
Let vp,q be the qth vertex (from the left) of the pth level (from the
top) in a complete binary tree of n vertices. In this paper, we also
say vp,q is at location (p, q). Note that for the vertex at location
(p, q), its parent (if existent) is at location (p− 1, d q

2
e), and its left

and right children (if existent) are at locations (p+ 1, 2q − 1) and
(p+ 1, 2q), respectively.
Define the index of a vertex as a one-to-one and onto mapping x
from the vertex set onto {1, · · · , |V |} as follows:

x(vp,q) = 2p−1 + q − 1, p ∈ {1, · · · , d}, q ∈ {1, · · · , 2p−1} (1)

As illustrated in Figure 1(b), the index of a vertex is in fact its
position in the level-order traversal sequence in which every vertex
on a level is visited from left to right before descending to a lower
level. It can be easily verified that, in a complete binary tree, the ith
vertex (except the root) has the parent with the index b i

2
c. If the ith

vertex itself is also a parent, its left child has the index 2i, and right
child has the index 2i+ 1. Thus, the index of a left child is always
even, and the index of a right child is always odd. Conversely, every
vertex with an even index is a left child.

Define a leading parent as a parent that is also a left child or the
root. Since the index of a left child is always even, the index of
a leading parent must be even or 1. For example, in the complete
binary tree shown in Figure 1(b), vertices with indices 1, 2, 4, and
6 are leading parents.
In the next section, it will be shown that a prime labeling can be
constructed in a two-step procedure for any complete binary tree
with an odd number of vertices. Thereafter, it will be shown that a
prime labeling for any complete binary tree with an even number
of vertices can be constructed with one additional step.

2.2 The Prime Labeling Procedure for Complete
Binary Trees with 2k − 1 Vertices

Starting from an indexed complete binary tree with 2k−1 vertices,
a prime labeling can be constructed in two steps. The first step is to
bubble leading parents down their right branches. The goal of this
step is to create a near prime labeling for a complete binary tree of
2k − 1 vertices. After the bubbling down step, it is guaranteed that
the coprime requirement is satisfied for every edge, except possibly
for the edges between right leaves and their parents.
The following describes the bubbling down step in details. In
this bubbling down step, each and every leading parent displaces
its right child recursively until the leading parent becomes a
(right) leaf. During this process, all displaced right descendants
are promoted one level up. For example, the leading parent with
index 1 bubbles down the path 1 → 3 → 7 in Figure 3(a) and
becomes a right leaf in Figure 3(b), while 3 and 7 are promoted one
level up. The leading parent with index 2 bubbles down the path
2→ 5→ 11 in Figure 3(a) and becomes a right leaf in Figure 3(b),
while 5 and 11 are promoted one level up.

(a)

1

2 3

4 5 6 7

8 9 10 11 12 13

(b)

3

5 7

9 11 13 1

8 4 10 2 12 6

Fig. 3. A complete binary tree with 2k−1 vertices (a) before the bubbling
down step and (b) after the bubbling down step.

In a complete binary tree with 2k − 1 vertices, every parent has
exactly one right child, and every right child has exactly one parent.
In other words, the pairing between every parent and its right child
is a one-to-one correspondence. Thus, every leading parent bubbles
down to a unique right leaf, and every right leaf was a unique
leading parent before bubbling down.
After bubbling down, a new parent whose location is (p, q) must
have been promoted from location (p+1, 2q), while every left leaf
remains at its original location and every right leaf was a leading
parent before bubbling down. Define the label of a location as its
index after the bubbling down step. For the parent at location (p, q),
its label is the index of the vertex that used to be at location (p +
1, 2q). That is, the label for a new parent at location (p, q) is given
by

`(p, q) = x(vp+1,2q) = 2p + 2q − 1. (2)

2

International Journal of Computer Applications (0975 8887)
Volume 106 - No. 14, November 2014

From (2), it is clear that the labels for all the new parents after the
bubbling down step are odd numbers.
Next, it will be proved that, after bubbling down, any parent and its
left child are coprime. Let the parent’s location be (p, q). Then its
left child is at location (p+1, 2q−1). A left child is either a parent
itself or a left leaf. First, consider the case where the left child is
also a parent. Substituting location (p+1, 2q−1) into (2), we have

`(p+ 1, 2q − 1) = 2p+1 + 2(2q − 1)− 1 = 2`(p, q)− 1. (3)

Applying Euclidean algorithm, we have gcd(`(p, q), 2`(p, q) −
1) = 1. Therefore, a parent and its left child who is also a parent are
coprime. Next, consider the case where the left child is a left leaf.
Since every left leaf remains at its original location, substituting
location (p+ 1, 2q − 1) into (1), we have

`(p+ 1, 2q − 1) = x(vp+1,2q−1) = `(p, q)− 1. (4)

In other words, a left leaf’s label is always one less than its parent’s.
Applying Euclidean algorithm, we have gcd(`(p, q), `(p, q)−1) =
1. Hence, a left leaf and its parent are coprime. Combining both
cases, we assert that any parent and its left child are always coprime
after bubbling down.
If every parent and its right child were also coprime, then a prime
labeling would exists for the complete binary tree with 2k − 1
vertices. Let the parent’s location be (p, q). Then its right child is at
location (p+ 1, 2q). A right child is either a parent itself or a right
leaf. Consider the case where the right child is a parent. Substituting
location (p+ 1, 2q) into (2), we have

`(p+ 1, 2q) = 2p+1 + 2(2q)− 1 = 2`(p, q) + 1. (5)

Applying Euclidean algorithm, we have gcd(`(p, q), 2`(p, q) +
1) = 1. Therefore, a parent and its right child that is also a parent
are coprime.
In the case where the right child is a right leaf, the right leaf and
its parent are not guaranteed to be coprime after bubbling down,
as shown in Figure 4. Hence, this case is more complicated and
requires the second step of the procedure to be described in the
following. Consider a complete binary tree with 2k − 1 vertices.
Let Lk be the set of the labels of all the right leaves, and Pk be the
set of the labels of the parents of all the right leaves. For k = 1,
the complete binary tree degenerates into a single vertex with zero
edge, which is prime trivially. For k = 2, the complete binary tree
consists of two edges and three nodes labeled 1, 2, and 3, which is
prime easily. When k ≥ 3 and k is odd, Pk = {k, k+2, · · · , 2k−
1} and Lk = {1, 2, 4, · · · , k − 1}. When k ≥ 3 and k is even,
Pk = {k + 1, k + 3, · · · , 2k − 1} and Lk = {1, 2, 4, · · · , k − 2}.
In both cases, |Pk| = |Lk| = d k2 e. The goal is to match each right
leaf r ∈ Lk with a unique parent p ∈ Pk such that gcd(p, c) =
1. In other words, the original prime labeling problem has been
converted into a matching problem.
We need to introduce the Hall’s (marriage) theorem. In 1935,
Hall [4] answered the following question, also known as the
marriage problem: for a finite set of girls, each of whom knows
several boys, under what conditions can all the girls marry the boys
in such a way that each girl marries a boy she knows? This problem
can be represented graphically by taking H to be the bipartite
graph [10] in which the vertex set is divided into two disjoint sets
X and Y which correspond to the girls and boys, respectively, and
each edge joins a girl to a boy she knows. A matching M in H is
a subset of edges such that no two edges in M are incident to the
same vertex. A complete matching of X into Y is a matching such
that every vertex in X has an edge incident from it. The marriage

3

5 7

9 11 13 15

17 19 21 23 25 27 29 31

33 35 37 39 41 43 45 47 49 51 26 6 28 14 30 1

32 16 34 8 36 18 38 4 40 20 42 10 44 22 46 2 48 24 50 12

Fig. 4. A complete binary tree with 51 vertices after bubbling down. There
are two coprime violations highlighted in red. The first violation is between
labels 27 and 6. The second violation is between labels 51 and 12.

problem can then be restated as follows: given a bipartite graph
H = H(X,Y), under what conditions does a complete matching
from X into Y exist? For a set A ⊆ X , define the set R(A) to be
the vertices in Y that are adjacent to at least one vertex in A. Hall
proved the sufficient and necessary conditions for the existence of
a complete matching.

THEOREM 1. Let H be a bipartite graph with parts X and Y .
There is a complete matching of X into Y if and only if |A| ≤
|R(A)| for every A ⊆ X .

For our specific matching problem, X = Lk and Y = Pk. An
element x ∈ X and an element y ∈ Y are adjacent to each other if
gcd(x, y) = 1. Consider a subset A ⊆ Lk. If A contains any pure
power of 2, then R(A) = Pk since every member of Pk is an odd
number and coprime to any pure power of 2. Hence, the sufficient
condition |R(A)| = |Pk| = |Lk| ≥ |A| is true, and the equality
holds only when A = Lk.
Now consider the case where A does not contain any pure power
of 2. For any element ai ∈ A, the prime factorization of ai =
2yi ×

∏
j q

sij
ij where qij are odd prime factors of ai, 3 ≤ qij ≤

1
2
maxLk. For any element bi ∈ Lk which has the same prime

factors as ai, let bi = 2y
′
i
∏

j q
s′ij
ij and let Bi = {bi} be the set of

all such bi. It is trivial that ai ∈ Bi and A ⊆
⋃

i Bi. By definition,
R({ai}) = {p | p ∈ Pk, qij - p,∀j}. Note that R(Bi) = {p | p ∈
Pk, qij - p, ∀j} = R({ai}). Consequently, R(

⋃
i Bi) = R(A).

Let ` = |Lk| = |Pk| = d k
2
e. Note that the elements of Lk

are (` − 1) consecutive even numbers and 1. For these (` − 1)
consecutive even numbers, there are at most b(` − 1)

∏
j

1
qij
c

elements in Lk that have the same prime factors as ai. That is,
|Bi| ≤ b(` − 1)

∏
j

1
qij
c. Consider the union of all such sets Bi

and apply the De Morgan’s Law, and we have

|A| ≤ |∪iBi| =
∣∣∣∩iBi

∣∣∣ ≤ ⌊(`− 1)(1−
∏
i

(1−
∏
j

1

gij
))

⌋
. (6)

Recall that R(Bi) = R({ai}) = {p | p ∈ Pk, qij - p,∀j}.
Similar to the derivation of the Euler’s totient function, there are
at least d(` − 1)

∏
j(1 − 1

gij
)e elements in Pk that are coprime

to ai. Consider the union of all such elements and apply the De

3

International Journal of Computer Applications (0975 8887)
Volume 106 - No. 14, November 2014

Morgan’s Law, and we have

|R(A)| = |∪iR(Bi)| =
∣∣∣∩iR(Bi)

∣∣∣
≥
⌈
(`− 1)(1−

∏
i(1−

∏
j

gij−1
gij

))

⌉
.

(7)

Since gij ≥ 3,∀i, j, gij−1
gij

> 1
gij

. Hence, the lower bound of
|R(A)| is always greater than the upper bound of |A|. In other
words, |R(A)| > |A| if A does not contain any pure power of
2. Combined the results from both cases, |R(A)| ≥ |A| for any
subset A ⊆ Lk, and |R(A)| > |A| for any non-empty proper
subset A ⊂ Lk. By Hall’s Theorem, there is a complete matching
of Lk into Pk. That is, a complete coprime matching can always
be found for the set of right leaves and the set of their parents.
Therefore, a prime labeling exists for a complete binary tree with
2k − 1 vertices. As shown in Figure 5, after completely matching
the right leaves and their parents, a prime labeling is constructed
for the complete binary tree with 51 vertices.

3

5 7

9 11 13 15

17 19 21 23 25 27 29 31

33 35 37 39 41 43 45 47 49 51 26 20 28 18 30 24

32 10 34 6 36 2 38 22 40 4 42 8 44 14 46 16 48 12 50 1

Fig. 5. A complete binary tree with 51 vertices after completely matching
the right leaves and their parents. A prime labeling exists for any complete
binary tree with 2k − 1 vertices. Note that, this prime labeling contains a
special pair (47, 16).

2.3 The Prime Labeling Procedure for Complete
Binary Trees with 2k Vertices

Recall that |R(A)| > |A| for any non-empty proper subset A ⊂
Lk. Let r∗ ∈ Lk and p∗ ∈ R({r∗}), so gcd(p∗, r∗) = 1. Let
L = Lk\{r∗} and P = Pk\{p∗}. Then for any subset A ⊆ L, A is
a proper subset of Lk. It follows that |R(A)| > |A| or equivalently
|R(A)| ≥ |A|+1. Since p∗ may or may not be in R(A), it follows
that |R(A)\{p∗}| ≥ |R(A)|−1 ≥ |A|, for any A ⊂ Lk. By Hall’s
Theorem, there is a complete matching of L = Lk \ {r∗} into P =
Pk \ {p∗}. Since gcd(p∗, r∗) = 1, a complete matching of Lk into
Pk with (p∗, r∗) paired together is constructed. The significance of
this fact is that there is great freedom when choosing the preferred
coprime pair (p∗, r∗).
By Bertrand-Chebyshev Theorem [7], for any integer t > 3, there
is always at least one prime p such that t < p < 2t − 2. Let t =
k + 1. Then there is always at least one prime p such that k + 1 <
p < 2k, ∀k ≥ 3. In other words, there is always at least one prime

number in Pk. Let p∗ be the largest prime in Pk. Let r∗ = 2z be the
largest pure power of 2 in Lk. Clearly, gcd(p∗, 2z) = 1. Therefore,
when a prime labeling is constructed for a complete binary tree
with 2k − 1 vertices, the special pairing (p∗, 2z) can always be
made mandatory.

3

5 7

9 11 13 15

17 19 21 23 25 27 29 31

33 35 37 39 41 43 45 47 49 51 26 20 28 18 30 24

32 10 34 6 36 2 38 22 40 4 42 8 44 14 46 16 48 12 50 1 52

Fig. 6. The only difference between complete binary trees with 51 and 52
vertices is the extra vertex 52 and the edge connected to its parent 26.

Compare the complete binary trees of 2k − 1 versus 2k vertices.
Their only difference is that the complete binary tree with 2k
vertices has an extra vertex 2k as the left leaf child of the vertex
k, as shown in Figure 6. Let us temporarily remove the vertex 2k
and construct a prime labeling for the resulting 2k − 1 tree with
the special pairing (p∗, 2z). Let p1 be the parent of 1 in our prime
labeling for the 2k − 1 tree. Now re-attach the left leaf 2k back
to the vertex k. The only coprime violation is the pair (k, 2k), as
shown in red in Figure 6. Consider the following three parent-child
pairs: (k, 2k), (p∗, 2z), and (p1, 1). If a three-way child swap is
performed to form the following three pairs: (k, 1), (p∗, 2k), and
(p1, 2

z), we will establish three coprime parent-child pairs while
maintaining a valid prime labeling for the rest of the tree. In other
words, a prime labeling for a complete binary tree with 2k vertices
can be constructed from the prime labeling for a complete binary
tree with 2k − 1 vertices with a three-way child swap, which is
demonstrated in Figure 7.
In summary, a complete binary tree with either 2k−1 or 2k vertices
has a prime labeling. Thus, we assert that every complete binary
tree is prime.

3. CONCLUSION
Entringer’s conjecture that every tree has a prime labeling remains
unsolved after three decades. Mathematicians were able to prove
that several classes of trees such as paths, stars, caterpillars, spiders,
small trees, and perfect binary trees are prime. To contribute to the
effort of proving Entringer’s conjecture, we looked beyond those
solved trees and studied the class of complete binary trees.
Using a novel method, we showed that every complete binary tree
is prime. Our proof of the prime labeling for complete binary trees
shed new light on Entringer’s conjecture by expanding the coverage
of the types of trees and paved the way for further prime labeling
researches.

4

International Journal of Computer Applications (0975 8887)
Volume 106 - No. 14, November 2014

3

5 7

9 11 13 15

17 19 21 23 25 27 29 31

33 35 37 39 41 43 45 47 49 51 26 20 28 18 30 24

32 10 34 6 36 2 38 22 40 4 42 8 44 14 46 52 48 12 50 16 1

Fig. 7. After performing three-way child swap, the three new parent-child
pairs (26, 1), (47, 52), and (51, 16) are all coprime pairs. The coprime
violation (26, 52) in Figure 6 is removed, and a prime labeling for the
complete binary tree with 52 vertices is constructed.

4. REFERENCES
[1] P. E. Black. Complete binary tree. U.S. National Institute of

Standards and Technology, 2011. http://xlinux.nist.gov/dads.
[2] H. L. Fu and K. C. Huang. On prime labelling. Discrete

Math., 127:181–186, 1994.
[3] J. A. Gallian. A dynamic survey of graph labeling. The

Electronic Journal of Combinatorics, 16, 2013.
[4] P. Hall. On representatives of subsets. J. London Math. Soc.,

10:26–30, 1935.
[5] P. Haxell, O. Pikhurko, and A. Taraz. Primality of trees. J.

Combinatorics, 2:481–500, 2011.
[6] O. Pikhurko. Trees are almost prime. Discrete Math.,

307:1455–1462, 2007.
[7] Sondow and Weisstein. Bertrand’s postulate.

From MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/BertrandsPostulate.html.

[8] A. Tout, A.N. Dabboucy, and K. Howalla. Prime labeling of
graphs. Nat. Acad. Sci. Letters, 11:365–368, 1982.

[9] S. K. Vaidya and U. M. Prajapati. Some new results on prime
graphs. J. Discrete Math., 2:99–104, 2012.

[10] Weisstein. Bipartite graph. From
MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/BipartiteGraph.html.

[11] Y. Zou and P. E. Black. Perfect binary tree. U.S.
National Institute of Standards and Technology, 2008.
http://xlinux.nist.gov/dads.

5

	Introduction
	Prime Labeling of Complete Binary Trees
	Definitions
	The Prime Labeling Procedure for Complete Binary Trees with 2k-1 Vertices
	The Prime Labeling Procedure for Complete Binary Trees with 2k Vertices

	Conclusion
	References

