
International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 13, November 2014

1

Design and Implementation of 2-Axis Circular

Interpolation Controller in Field Programmable Gate

Array (FPGA) for Computer Numerical Control (CNC)

Machines and Robotics

Mufaddal A. Saifee

Institute of Technology, Nirma University,
Ahmedabad, Gujarat,

India - 382481

Usha S. Mehta, Ph.D.
Institute of Technology, Nirma University,

Ahmedabad, Gujarat,
India - 382481

ABSTRACT

This paper presents design and implementation of a 2 axis

Circular Interpolation Controller in a Xilinx Spartan 6 FPGA

to control a 2D Circular motion of a CNC machine or robotic

arm. It is implemented using Verilog HDL. Circular motion

like linear motion is one of the fundamental movement and an

absolute necessity for any motion controller. High precision,

repeatability and direction-independent are the three important

factors to evaluate the performance of circular interpolation

algorithm. To achieve this, a novel analogy Digital

Differential Analyzer (DDA) algorithm based circular

interpolation controller is implemented, which avoids

complex on-the-motion computation with skillful combination

of the accumulator and multiplier based hardware structure of

FPGA. Hence the real-time performance and precision are

enormously improved. The principle of algorithm and its

hardware implementation with macro and micro architecture

design are discussed in detail in the paper. The simulation

results verify the excellent performance and effectiveness of

implemented circular interpolation controller.

General Terms

CNC machines, Robotics, Circular interpolation, Motion

Controllers, FPGA

Keywords

CNC, Circular interpolation, DDA, Motion Controllers,

FPGA, UART

1. INTRODUCTION
The Heart of Industrial Automation Devices like CNC

Machines, Assembly Machines and Robotic Arms are Motion

Controllers. Motion controllers control the motion in a

predetermined direction through motors. The circular motion

of the motor is translated to the robotic arm or CNC tool

linearly in small steps. A motor each is required for motion in

one particular axis. The controlled motion (line/arc) along the

required path trajectory is achieved through various

interpolation algorithms run in 2D or 3D space, which are

responsible for providing varying rate of pulses to

corresponding axis. Therefore, for a 2D motion, the arm or

tool is controlled by providing varying rate of pulses to each

of the two motors, corresponding to an axis.

Interpolation algorithms are classified as software and

hardware interpolation algorithms. Software algorithms are

run by processors or controllers serially through instructions,

while hardware algorithms are run by dedicated hardware

blocks. Most of the interpolation algorithm uses complex

parametric function like sine and cosine for necessary

calculations. Software implementation of such algorithms by

serial pipelined processors is time consuming and as well as

difficult and impractical for real time applications. Thus the

efficient, real time complex computation approach is only

feasible with hardware logic circuits like FPGA or ASIC

having parallel and lower power processing architectures. As

compared to ASIC, FPGA’s have lower time to market and

simpler design cycle making it an excellent solution for the

implementation of motion controllers.

Circular motion controller is the fundamental part of any

motion controller. For a 2D circular movement, Circular

interpolation controller, controls 2 motors by driving each of

them with varying angular velocities and directions depending

on the quadrant of motion, to achieve a circular movement

from start to end coordinates. Circular motion is approximated

by series of small steps. Most of the algorithms of circular

interpolation use parametric functions of sine and cosine to

perform the necessary calculations. Parametric functions

require high degree of numeric precision and consume more

hardware and time to be useful in a real-time application.

Digital Differential Analyzer (DDA) requires no parametric

functions and complex mathematical calculation, so it is fast

enough to be used in real-time applications for motion

controllers. This paper implements algorithm based on DDA

principle [1]. The paper is organized as follows: Section 2

describes the algorithm. Section 3 describes its

implementation. Synthesis and simulation results are given

Section 4 and Conclusions are detailed in Section 5.

2. CIRCULAR INTERPOLATION

ALGORITHM

2.1 Principle of DDA
A random function profile x = f (t) in a rectangular coordinate

plane is shown in figure 1.

The area under the curve between T0 to T1 for the function

f(t) can be calculated with equation 1.

S = f(t)
T1

T0
 dt (1)

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 13, November 2014

2

Fig 1: Area Calculation with DDA

The time between T1 and T0 is divided into small time unit

delta(∆)t such that the sum of m unit ∆t equals to T1 - To.

Then the area between T1 and T0 is equal to the integration of

m time ∆t areas from T0 to T1. Digital differential analyzer

comprises an arithmetic unit to perform an integration

operation.

If ∆t tends to zero the integration can be approximated with

summation of m rectangle showed by the shadowed section in

figure 1, so equation 1 becomes.

S = Xi ∆t = ∆t

m−1

i=0

 Xi

m−1

i=0

 (2)

In equation 2, the parameters satisfy the following

requirements.

m ∆t = T1 – T0;

X0 = f(T0) ;

Xm = f(T1)

The complex integration operation is thus decomposed into

two fundamental operation, accumulation and multiplication,

which can be implemented easily in hardware. Smaller the ∆t,

more is the accuracy of the results.

2.2 DDA Circular Interpolation
Circular interpolation is far more difficult than the integration

operation for curve. To make it clear consider a circular

motion in anti-clockwise direction in 1st quadrant as shown in

figure 2, where vector V is the angular speed of circular

motion. The direction of the speed is the tangent to a circle.

Fig 2: Principal of DDA Circular Interpolation

Let us consider Qi(Xi,Yi) a random point on circle. From the

geometrical relation, the following equation can be deduced.

V

R
=

Vy

Xi
=

Vx

Yi
= k (3)

The instantaneous displacement at point Qi for each axis in a

very small time period ∆ is:

∆y = Vy ∆t = k Xi ∆t (4)

∆x = -Vx ∆t = -k Yi ∆t (5)

The sign of displacement depends on the quadrant the track

point is in. Taking the absolute displacement of equations 4

and 5.

|∆y| = k |Xi| ∆t (6)

|∆x| = k |Yi| ∆t (7)

From the equation 6, 7, it can be concluded that when the

radius of interpolation circle is fixed, the accumulation value

for XY displacement only have X coordinate or Y coordinate

one variable for the time unit ∆t which is a fixed value.

Moreover for one point on circle the speed of X axis is in

direct proportion to Y coordinate of this point and vice versa.

From the equation 4 and 5, it can be concluded that if one step

is moved in either X or Y direction, the new error result is

equal to the previous error result plus a constant value which

depends upon the end points of the line in XY coordinates.

2.3 Circular Interpolation Algorithm
For an arc in a 2D plane, two motors are required to control

the XY movements of the arc. Since motors move in discrete

steps, the actual curve is approximated by a series of small

XY motions. The proposed circular interpolation module has

9 only writable registers which are listed in table 1. Through

setting values for the registers, several needed parameters,

such as the XY coordinates of start and finish point of the arc,

arc radius, displacement coefficients in X and Y directions,

feed rate and control register are assigned.

Table 1. Registers

Name Addr

-ess

Function

Control 0 Control Register

Feedrate 1 Feedrate of principal axis

motor in revolution/sec

Start_X 2 Start coordinate X direction

Start_Y 3 Start coordinate Y direction

Finish_X 4 Final coordinate X direction

Finish_Y 5 Final coordinate Y direction

Radius 6 Radius of circular arc

Displacement

coefficient X

7 Step linear movement in X

direction corresponding to each

revolution

Displacement

coefficient Y

8 Step linear movement in Y

direction corresponding to each

revolution

Figure 3 shows the flowchart of the 2D circular interpolation

algorithm. Accumulators are used to hold the current position

and velocity vectors. If accumulator value of X axis reach to

or exceed its upper limit value (unit step displacement of X

axis motor), Xi will add kx. Similarly once the accumulator

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 13, November 2014

3

value of Y axis reach to or exceed its upper limit value (unit

step displacement of Y axis stepping motor), Yi will add ky.

Begin

Finish

Set Value For Registers

Generate Interrupt Signal

Command For Run?

Time Interval For
Accumulation?

Xi = Xend or
Yi = Yend?

Vy >= Step Value?Vx >= Step Value?

Command For Stop?

Vy = Vy +Xi

Y Axis Output One Pulse
Vy = Vy – Step Value

Yi = Yi + Ky

X Axis Output One Pulse
Vx = Vx – Step Value

Xi = Xi + Kx

Vx = Vx + Yi

Calculate The Step Value

Yes

Yes

Yes

No

Yes

YesYes

No No

No

No

Fig 3: Flowchart of 2D Circular Interpolation

Algorithm

The value of kx, and ky with different situation is listed in

table 2.

Table 2. Kx and Ky Values in Different Scenarios

Direction Clockwise Anti-clockwise

Quadrant 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Kx 1 -1 1 -1 -1 1 -1 1

Ky -1 1 -1 1 1 -1 1 -1

The coefficient k and ∆t are constant value. Moreover

increment of instantaneous displacement in X direction of the

track point depends on Y coordinate end value and vice versa.

Therefore XY speed relationship on different points on the

circle relates to their XY end coordinates.

As shown in figure 2, the interpolation speed V pps has two

speed components, Vx speed in X axis direction and Vy speed

in Y axis direction. Vy is the greatest and equal to V, when

the track point is on the X axis, that is the frequency of out

pluses of Y axis is equal to V pps. So at this point, the

accumulating result of accumulator of Y axis is just the upper

limit value for one unit step of stepping motor in Y axis, so

upper limit value stepvalue can be calculated in following

equation.

Stepvalue =
1/V

∆t
∗ R =

Fosc/V

Fosc ∗ ∆t
∗ R

Having this value the circular interpolation algorithm avoids

complex on the motion computation and reduces it to

accumulation of the coordinate values. This increases the real-

time performance drastically. Because of concurrent

processing of FPGA and DDA algorithm the circular

interpolation module reduces the on-the motion computation

and has better real-time performance than the other software

interpolation.

3. IMPLEMENTATION
Block diagram of the Circular Interpolation module is shown

below in figure 4. It has 6 main modules.

3.1 Buf Dcm Sync Reset (Buffer, Digital

Clock Manager and Synchronous Reset)
This module does the buffering and differential to single

ended and frequency down conversion of input clk. It also

does the Asynchronous to Synchronous reset conversion to be

used as synchronous reset for entire design.

3.2 UART
UART is used for asynchronous serial data communication

with the Interpolation module. It’s a generic UART

supporting all baud rates. The corresponding design uses the

115200 baud rate. UART architecture is based on Recursive

Running Sum Filter which provides better noise performance

[2].

3.3 UART Register Interface
UART Register Interface is responsible for configuring the

Circular Interpolation module. It provides the glue logic

between UART and the configuring part. It configures 4, 32

bit registers, namely Control, feedrate, displacement

coefficient X and displacement coefficient Y, used for

controlling the Circular Interpolation design. Registers

function are given in table 1. It also writes the 32 bit

coordinates of start and finish of the X and Y axes and radius

of each circular interpolation in a 32 bit x 64 block ram.

3.4 RAM
Ram used is a 32 bit wide and 64 deep synchronous simple

dual port block ram of FPGA. It is used to hold coordinates of

the 2d axis in bunch of five one after other, capable of storing

12 such coordinates. Coordinates are written in RAM by

UART Register Interface through UART, while read by Top

Control logic.

3.5 Top Control
Top Control module controls the entire circular interpolation

process. It receives data like displacement coefficients in X

and Y axes for the respective servo drives, feed rate of the

machining process, clockwise or anticlockwise movement for

the circular motion and absolute or incremental addressing for

the consecutive coordinates of the circular interpolation

process from the UART Register Interface. On detection of

start signal it starts fetching 2D coordinates from the Ram in

bunch of 5 for X and Y start and end positions of the circular

arc and its radius and writes them to corresponding registers

shown in Table 1. Depending on the current axes position and

the fetched coordinates it calculates interpolation parameters.

It then passes the actual movement required in the 2 axes to

the Circular Interpolation Control and Algorithm, which then

accordingly generate pulses to the servo drives of respective

axes. On getting done signal from Circular Interpolation

Control and Algorithm module it fetches the next coordinate

set and repeats the above process again. A FSM is designed to

take care of this.

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 13, November 2014

4

Pulses_X

Pulses_Y

Dir_X

Dir_Y

d
o

n
e_

ci
rc

u
la

r

Start_inst

reset

Set_ri_out

Set_ti_out

RX

Clk

Buf_dcm_sy
nc_reset

rst
Clk200_n
Clk200_p

Sbuf_out

UART

UART_reg_interface

Sbuf_in

TX

Sc
o

n
_i

n
 =

 8
'h

1
0

Sa
m

p
le

s_
b

it
_i

n
=

1
6

'h
0

0
8

6

RAM

D
in

a

wea

Top_control

Circular_interpolation_
Control and Algorithm

Addra

Douta

Cntrl

Dis_coeff_x

Dis_coeff_y

feedrate

 m

u
l_

en
d

_x

 m

u
l_

en
d

_y

 m
u

l_
st

_y

Pulses_
generation

Rot_start

Cnthf_period

Rot_done

TX

Direction_
Generation

Y_crnt_msb
X_crnt_msb
Clk_anticlk

Radius

Pulse_done
Pulse

reset

clk

reset clk

reset

Clk

reset

Clk

reset
Clk

reset
Clk

 m
u

l_
st

_x

d
is

_c
o

ef
_m

u
l_

y

d
is

_c
o

ef
_m

u
l_

x

 s
te

p
va

lu
e

C
lk

_a
n

ti
cl

k
St

ar
t

ci
rc

u
la

r

Fig.4 Block Diagram of Circular Interpolation module

This module calculates the stepvalue and coordinates value

according to the accuracy required in millimeters. Stepvalue is

calculated from the below formula

Stepvalue = (((fosc / V) / fosc * ∆t)

Where for this implementation, fosc = 50MHz, V = 10000

pulse/rev x 20 rev/s = 0.2 M pulse/sec, ∆t = 20 ns) x 10000

(multiply by 10000 as per the accuracy)

3.6 Circular Interpolation Control and

Algorithm

The DDA principle is used to implement 2D Circular

Interpolation algorithm. Top control module provides the

movements required in the respective axes. After calculating

its algorithm parameters it activates the pulse generation

module which provides continuous pulses while direction

module gives the direction of rotation. This module compares

the current coordinates with the final end coordinates of the

arc; if they are not same the velocity vector of the coordinate

which is less than the final value is incremented with the

current coordinates of the other axes. After incrementing,

velocity vector of individual axes is compared to the less than

the step value, if it’s so, the corresponding axes coordinates is

incremented by its displacement coefficient and velocity

vector is decremented by its step value. Moreover the pulse

from the pulse generation module is given to the

corresponding axes for which the above equality has been

less. The above process is repeated until the coordinates

reaches their final values forming a circular arc. Pulse

generation module is disabled and above process is repeated

for next set of coordinates.

This module, figure 5 is made of three sub modules 1)

Circular interpolation algorithm & control FSM, 2) Pulses

generation and 3) Direction generation.

Pusles
Generation

Circular
Interpolation
Algorithm_

Control FSM
Dis_coeff_y (32 bit)

Dis_coeff_x (32 bit)

Finish_y (32 bit)

Feedrate (32 bit)

Direction
Generation

Start_circular

start_y (32 bit)

start_x (32 bit)

Feedrate (32 bit)

Pulses_x

Pulses_y

Dir_x

Dir_y

Done_circular

Stepvalue (32 bit)

Clk_anticlk

clk

reset

X_crnt_msb

Y_crnt_msb

Clk_anticlk

clk

reset

Rot_start

Rot_done

pulses

Pulse_done

Finish_x (32 bit)

Fig 5: Block Diagram of Circular Interpolation Control

and Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 13, November 2014

5

3.6.1 Circular interpolation algorithm and

control FSM
The inputs to this module are absolute displacement

coordinates of start and end points and the displacement

coefficient for the respective x and y axis. Feed rate is given

directly to pulses generation module. It also calculates the

unsigned value of the current coordinates required to

increment the velocity vectors of x and y axis. It calculates the

signed displacement coefficient values from the unsigned

displacement coefficient depending on the quadrant the

circulating point is and the direction of circular interpolation.

This module performs the interpolation algorithm described in

introduction section. It controls the pulse generation module,

and pulses generated by it are given to one of the axis or both

depending on the corresponding axis velocity vector value is

greater than the stepvalue. Heart of this module is its control

FSM, figure 6. This FSM has four states 1) st, 2) com 3) cal

and 4) wt_dn.

start = 0 /
rot_start_r = 0; done_circular = 0;

Vx = 0; Vy = 0;
x_crnt = 0; y_crnt = 0;

p_en_x = 0; p_en_y = 0;
s_p_x_r = 0; s_p_y_r = 0;

X_crnt == finish_x or y_crnt == finish_y /
rot_start_r = 0; done_circular = 1;

Vx = 0; Vy = 0;
x_crnt = 0; y_crnt = 0;

p_en_x = 0; p_en_y = 0;
s_p_x_r = 0; s_p_y_r = 0;

start =1 /
x_crnt = st_x;
y_crnt = st_y;

Pulse_done =1 / outputs same

!((Vx >= stepvalue) |
(Vy >= stepvalue)) /

rot_start_r = 1; done_circular = 0;
s_p_x_r = 0; s_p_y_r = 0;

If (Vx >= stepvalue){
p_en_x = 1; p_en_y = 0;
Vx = Vx - stepvalue;

x_crnt = x_crnt + cal_dis_coef_x;}

If (Vy >= stepvalue){
p_en_y = 1; p_en_x = 0;

Vy = Vy - stepvalue;
y_crnt = y_crnt + cal_dis_coef_y;}

!((Vx >= stepvalue) |
(Vy >= stepvalue)) /

outputs same
/ rot_start_r = 0;

done_circular = 0;
Vx = Vx + u_y_crnt;
Vy = Vy + u_x_crnt;
x_crnt = x_crnt;
y_crnt = y_crnt;

p_en_x = 0; p_en_y = 0;
s_p_x_r = 0; s_p_y_r =

0;
cal

com

st

Wt_dn

Pulse_done =0/
rot_start_r = 0; done_circular = 0;

Vx = Vx; Vy = Vy;
x_crnt = x_crnt; y_crnt = y_crnt;

p_en_x = p_en_x; p_en_y = p_en_y;
s_p_x_r = p_en_x & pulses;
s_p_y_r = p_en_y & pulses;

Fig 6: Circular Interpolation Algorithm FSM

St (Start): In St state, until start equal to 1 is detected, all

outputs, enable and pulses signals for two axis, velocity

vectors and current coordinates of two axes, start and stop

interpolation signals are all 0. When start is 1 FSM jumps to

Com state.

Com (Compare): In this state if actual coordinates of either x

or y axis becomes equal to their final arc end points then FSM

jumps to St state resetting all its output and raising circulation

done (done_circular) to 1, indicating the interpolation

algorithm is complete for the current coordinate values. If it’s

not equal, it increments the respective x and y coordinates

velocity vector with the unsigned value of the current y and x

coordinates value and jumps to Cal state.

Cal (Calculation): If either of the axis velocity vector is

greater than or equal to the stepvalue than FSM jumps to wait

state. If velocity vector of x axis is greater than the stepvalue

than it is decremented by the step value, x axis current

coordinate is incremented by its signed displacement

coefficient and x axis pulse enable is made 1. Similarly is

done for y axis. If neither of the axis velocity vector is greater

than or equal to the stepvalue than FSM jumps to com state

without changing the outputs.

Wt_dn (Wait done): In this state FSM waits for the pulse

done signal from pulse generator. When it is detected it moves

to Com state for further interpolation calculation. While it is

in this state all output values are preserved, while pulse

outputs to respective axes are given out by anding their

respective enable pulses with the pulse generated from pulse

generator module.

3.6.2 Pulse Generation module

Pulse generation module is responsible for generating pulses

to servo drive of both the axis depending on the input

feedrate. Pulse Generation Module starts generating pulses on

detection of Rotation start (rot_start) and stops generating

pulses on getting Rotation done signal (rot_done) from

Circular Interpolation Control and Algorithm Module. Its

heart is control FSM which generates pulses and pulse_done

signal. Pulses generated have 50% duty cycle. Its control

FSM, figure 7 has 3 states 1) Idle, 2) pos_half and 3)

neg_half.

Cnt_equal = 1 /
cnt_en = 0

Cnt_equal = 0 /
cnt_en = 1,
 pulse = 0

Cnt_equal = 1 &&
rot_done = 1/

cnt_en = 0,
pulse_done = 1

Neg_half
Pos_half

idle

Cnt_equal = 1 /
cnt_en = 0,

pulse_done = 1

Cnt_equal = 0 /
cnt_en = 1,
 pulse = 1

Rot_start =1

rot_start = 0 /
 cnt_en = 0,
 pulse = 0,

 pulse_done =
0

Fig 7: Pulse Generation FSM

Idle: FSM remains in this state until it gets rotation start

(rot_start) signal, after which it jumps to pos_half state.

Pos_half:(Positive half cycle) In this state pulses signal

remains high for cnt_hf_period. Cnt_hf_period is the half of

the period configured in the feed rate. A count enable (cnt_en)

is made 1 which causes the counter to count up to

cnt_hf_period. The comparator output equals 1 when counter

value equals to cnt_hf_period. This causes FSM to jump to

Neg_half state. cnt_en is made 0.

Neg_half:(Negetive half cycle) In this state pulses signal

remains low for cnt_hf_period. If counter reaches

cnt_hf_period and rotation done (rot_done) signal is also 1,

indicating circular interpolation for the given coordinate is

completed the FSM moves to idle state. While if counter

comparator output is equal to 1 and rotation done signal is not

1, FSM jumps to Pos_half state. In above both conditions

cnt_en is made 0 and pulse done is raised high.

3.6.3 Direction Generation

Direction generation module generates direction of the two

servo motors depending on 1) the current position of the

coordinates in one of the four quadrants and 2) the clockwise

or anticlockwise movement of the circular arc being

interpolated. Below table 3 shows the direction determination

where 1 means clockwise and 0 means anticlockwise.

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 13, November 2014

6

Table 3. Direction Determination

X

current

MSB

Y

current

MSB

Clock/

Anti-

clock

Quad Directi

on X

Directi

on Y

0 0 0 1st 1 0

0 0 1 1st 0 1

0 1 0 4th 0 0

0 1 1 4th 1 1

1 0 0 2nd 1 1

1 0 1 2nd 0 0

1 1 0 3rd 0 1

1 1 1 3rd 1 0

4. RESULTS

4.1 Synthesis Results
Selected Spartan 6 FPGA Device: 6slx45tfgg484-3

Table 4. Device Utilization Summary

Type of Resource Utilization

Number

Utilization

Percentage

No. of Slice Registers 1102 out of

54576

1%

No. of Slice LUTs 1871 out of

27288

6%

No. of Slice LUTs used as

Logic

1871 out of

27288

6%

No. of bonded IOBs 13 out of 296 4%

No. of Block RAM/FIFO 1 out of 116 0%

No. of

BUFG/BUFGCTRLs

2 out of 16 12%

No. of DSP48A1s 12 out of 58 20%

Device utilization summary shows that the implemented

algorithm is highly hardware efficient consuming only 1871,

6 input LUTs and 1102 flip flops.

4.2 Simulation Results
Figure 8 Waveform1 shows that all parameters are configured

through UART. Absolute addressing is used for coordinates.

The address and data lines logic of the RAM are shown.

Coordinates are fetched from the RAM and updated to start x,

start y, finish x, finish y and radius. Stepvalue calculated, start

circular interpolation signals and rest control signals are also

visible.

Fig 8: Waveform1

In Waveform 2, figure 9 the circular interpolation algorithm

and its FSM signals are shown.

Fig 9: Waveform2

5. CONCLUSION
This paper explains detail design and implementation of 2

axis circular interpolation module. It gives brief explanation

of DDA based circular interpolation algorithm, explains it

macro and micro level architecture design and shows its

simulation results. DDA algorithm and concurrent hardware

processing of FPGA helps the circular interpolation controller

to achieve excellent real time performance. Simulation results

show the precision and performance to be excellent. Synthesis

report also shows it to be hardware efficient by consuming

fewer Flip flops and LUTS. Excellent real time operation,

good precision and optimum hardware resources makes the

FPGA-based circular interpolation controller have excellent

performance and useful for any motion controller for CNC

machines and Robotic arms.

6. REFERENCES
[1] Weihai Chen, Zhaojin Wen, ZhiyueXu and Jingmeng

Liu, “Implementation of 2-axis Circular Interpolation for

a FPGA-based 4-axis Motion Controller” IEEE

International Conference on Control and Automation,

2007, pp. 600-605

[2] Himanshu Patel, Sanjay Trivedi, R. Neelkanthan, V. R.

Gujraty, “A Robust UART Architecture Based on

Recursive Running Sum Filter for Better Noise

Performance” Conference Proceedings: 20th VLSI

Design - 6th Embedded Systems, The Institute of

Electrical and Electronics Engineers, Inc. January 2007,

pp 819-823.

[3] Mufaddal A. Saifee and Dr. Usha S. Mehta, “Design and

Implementation of 3 Axis Linear Interpolation Controller

in FPGA for CNC Machines and Robotics” International

Journal of Advanced Research in Engineering and

Technology, Volume 5, Issue 9, Sept 2014, pp. 52-62

[4] K Goldberg, and M Goldberg, “XY interpolation

algorithms”, Robotics Age, No 5, May 1983, pp.104-105

[5] K Goldberg, and M Goldberg, “XY interpolation

algorithms”, Robotics Age, No 5, May 1983, pp.104-105

[6] Z. Zhang, C. W. Peng, and L. G. Yin, “Motion Controller

Introduction and Application of MCX314”, Electronics

World, No. 5, 2005, pp. 45-46

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No. 13, November 2014

7

[7] J. L. Liu, W. Liu, and C. Y. Yu, “Complete Numeric

CNC System and Its Kernel Chip MCX314”, Electronic

Design & Application World,no.8, 2004, pp.104-106

[8] P. Q. Yue, and J. S. Wang "Motion Controller IC MCX3

14 and Numerical Control System Design". Beijing:

Beihang University Press Nov.2002

[9] X. Qing, C .D. Zhou and W. Wang "Hardware Design of

Arc Interpolator Based on FPGA", Lathe and Fluid

Power, No 5, 20026,pp.104-105

[10] Jung Uk Cho, Quy Ngoc Le, and Jae Wook Jeon, “An

FPGA-Based Multiple-Axis Motion Control Chip” IEEE

Transactions on Industrial Electronics Vol. 56, No. 3,

Mar. 2009

[11] B. T. Zhou, and B. J. Wang "A DDA arc interpolator for

digital differential analyzer based on FPGA ", Electric

Drive Automation. Vol.27, No .5, 2005, pp. 16-18

[12] S. L. Yang "The quick algorithm and realization of DDA

interpolation“, Machine Tool Electric Apparatus, no.6,

2003,pp.12-15

IJCATM : www.ijcaonline.org

