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ABSTRACT
Some parallel applications that solve big problems in fields like
weather forecasting, data analysis, energy fields, and protein
folding need to create unpredicted processes at the application
run time. The MPI package provides capability to not only write
static parallel programs but also to create dynamic processes
at run time. However, the MPI standard did not provide any
way to schedule these dynamically created processes. Online
scheduling can be a solution for this problem. Hence, this
work introduces an online scheduling algorithm for dynamically
created processes on cluster’s nodes according to the machines
performance. The objective of the algorithm is to achieve dynamic
load balancing along the scheduler run time over heterogeneous
cluster’s machines. In addition, the proposed scheduler achieves
load balancing over heterogeneous hardware according to the
current real-time state of the nodes even if the processors are
responding to other parallel simultaneous schedulers or running
other parallel or sequential programs.
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1. INTRODUCTION
Although MPI 1.2 has succeeded in adding new functionalities
to the previous version of the Massage Passing Interface (MPI),
it still missed important features which posed limitations on
using the MPI packages for many real world parallel computing
applications. A major example of these limitations is the inability of
many applications to create processes at the applications run time.
Therefore, all the applications that cannot anticipate the number of
processes needed to complete its work could not be written in MPI
1.2. As a result, these limitations have made a significant weakness
in the MPI package. This motivated the MPI developing team to
work on recovering from this critical shortcoming by adding a new
feature in the next version of MPI [1][2].

The MPI development team succeeded in adding the sought new
feature that creates processes during the applications run time
in the new version called MPI-2. This new version provides an
interface that allows creating processes during the execution of
MPI programs namely MPI_Comm_spawn, which in turn allows the
spawned processes to communicate by message passing between

each other, and between each spawned process and its parent.
Although MPI-2 was improved by various new other features,
this paper focuses on the dynamic creation and management
of processes. Thus, the current research concentrates on the
MPI_Comm_spawn function which will be detailed because it plays
a vital role in the introduced work.

The MPI_Comm_spawn function implements the dynamic process
creation as introduced before. This function provides the creation
of new processes after the MPI program is launched. In order to
spawn a new process, this function needs some parameters to be
passed:

(1) The1st is the [file executable name] this parameter should be
compiled as MPI program.

(2) The 2nd parameter is the arguments of the executable file at
the first parameter.

(3) The 3rd parameter specifies the number of the newly created
processes. Each process represents a separate program instance
from the 1st parameter.

(4) The 4th parameter is [mpi info] which represents the host name
on which the process will be created.

(5) The 5th parameter represents the rank of the processes in which
previous arguments are examined.

(6) The 6th parameter represents a communicator for which the
newly created (spawned) processes belong and consequently
can communicate through MPI messages.

(7) The 7th parameter represents a communicator between
the spawned process(es) and the parent so that spawned
processes may communicate with parent through classical MPI
messages.

MPICH-II is considered to be the most widely used package that
implements dynamic process creation [3]. Besides, since MPICH is
an open source package, the researchers prefer to use it rather than
many other commercial packages that implement MPI. By using
MPICH, the researchers can learn how MPI is implemented, and
those researchers can also improve this implementation.

MPICH runs on the Linux operating system by using Multi-
Purpose Daemon (MPD), the process manager that is able to
launch the execution of a parallel program on multiple machines.
Additionally, it provides communication between all launched
processes to exchange data [4][5]. The MPD starts on all the nodes
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participating in the cluster. Using mpdboot, MPD launches itself
on all nodes of the cluster. The MPD clusters configuration has
a ring topology, where each node is connected to the next node,
and the last node is connected to the first one. When a parallel
program calls MPI_Comm_spawn, without specifying where to run
the newly spawned process through the [mpi info] parameter, the
process manger MPD starts the new spawned process(es) on the
next node in the MPD’s ring. For the newly created processes, the
default is that these newly created processes follow Round Robin
algorithm starting from rank(0) every time [6]. So, the creation
of processes by using MPI_Comm_spawn has two scenarios: The
first happens when using one MPI_Comm_spawn function to create
many processes by using the [Maxproc] parameter. It will follow
the Round Robin algorithm to distribute processes starting from
rank(0), and this will distribute the load equally [2][7]. Conversely,
the second scenario suffers from a significant problem when the
MPI_Comm_spawn function is called many times. For example,
when calling the function iteratively inside a loop, or when making
recursive calls for this function. In both cases, each call of this
function will submit the new process every time to the first rank. In
this case, all the created processes will be submitted to one node,
the first machine, as shown in Table 1. As a result, the first machine
will have all the load, whereas no tasks will be submitted to the
other machines [6].

Table 1. process distribution on machines using mpi primitive
spawn function

Spawned
processes Station1 Station2 Station3 Station4 Station5

25 25 0 0 0 0
50 50 0 0 0 0
75 75 0 0 0 0
100 100 0 0 0 0

As stated above, the decision of submitting new tasks to hosts
is made in the function level. In every call to this function,
the submission of tasks happens according to the Round Robin
algorithm starting from the clusters first host independent of
any MPI_Comm_spawn previously called. This unbalanced load
happens because of the decentralization in decision making that
MPI_Comm_spawn uses in submitting the new spawned process to
a host since MPI-2 does not introduce any way of scheduling [6]. To
overcome this problem, the authors of the current paper propose a
centralized decision making and scheduling approach for the newly
created dynamic processes. A different idea of the same approach
was introduced by Cera et al [6] which will be discussed in the next
section.

The rest of the paper is organized as follows: Section (2), the
Literature Survey, reviews previous approaches for solving the
problem of scheduling spawn processes in MPI. In Section (3), the
Proposed Scheduler, the authors present the main contribution of
the current paper, which is a new scheduling technique for dynamic
processes aiming at achieving load balancing. Section (4) covers
the evaluation and results analysis of the experimentation. Finally,
Section (5) draws the conclusions and lays out the future plans of
continuation of the current research.

2. LITERATURE SURVEY
There are many parallel applications described in the literature
as statically load balanced where a fixed amount of resources is
allocated a priori for the lifetime of every process. Load balancing

is understandably easier to achieve in such cases. Gang scheduling
[8] is one of the algorithms that can be used efficiently in the
static load balancing. It arranges processes or threads in rows
and processors in columns to form a matrix. Accordingly, each
row in the matrix represents a time slice since columns represent
processors. During the execution time, context switching occurs
at the same time through all machine processors to execute
processes of the next row, according to their corresponding nodes.
The Gange scheduling is designed to let processes in the same
row communicate and exchange data during their execution. The
drawback of Gang scheduling is its waste of time and resources.
Processes in the same raw take different time durations to finish
their jobs. Hence, some hosts will be idle for a while until all
processes in the same row finish their work.

As for dynamic load balancing, it can be rather easier to achieve
when there is a large number of independent tasks in the parallel
application. Since this application is implemented with server and
computing nodes, in case a node becomes slow, the application can
shift work to other nodes. For load balancing jobs dynamically,
Gang-scheduling will not be a suitable choice [9]. Processes on
the same raw will take equal time slots although, in practice, these
processes may differ in execution time. In such case, resources
allocated for the processes with shorter execution time will remain
idle until the current time slice ends, wasting computing time. For
programs with such loosely coupled processes, load balancing can
be better achieved by other methods such as Loadleveler [10],
Condor [11], or LSF [12][13]. However, in the case of tightly
coupled application processes which need to communicate during
their running to exchange data, Gang scheduling can be used
regardless of the performance issues due to unequal execution
times.

For more dynamism, resources utilization optimization, and better
performance, Gropp and Lusk introduced a runtime environment
architecture for parallel applications to enable portability of parallel
applications over different environments while optimizing the
usage of environment resources [13]. Gropp and Lusk built their
architecture based on client-server model that interacts with newly
created processes in any environment so that Gropp and Lusk do
not need to make changes in MPI primitive functions.

Fig. 1. Parallel runtime environment architecture

Gropp and Lusk realized that parallel environments have
distributed resources besides the need to distribute processes
equally over resources. Hence, Gropp and Lusk decided to
centralize the information about both resources and processes’
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locations. Accordingly, Gropp and Lusk designed general
architecture not related to specific parallel library. This architecture
is composed of three main parts: job scheduler, process manager,
and security as illustrated in Figure 1.

Job scheduler: It is responsible for the time the process will
be launched and the processor that will run it. So job scheduler
is considered to be as a queuing system [4].

Process manager: It takes management from the point of
handling stdin, stdout and stderr by guaranteeing the delivery of
their signals and handling them in a reasonable way.

Security: It handles the security from the point of guaranteeing
that the scheduler allocates resources of users programs correctly.

Gropp and Lusk designed this architecture regardless of its
implementation or the parallel library used. Besides, it did not
introduce a specific algorithm to deal with spawn processes.
The MPI package can be taken as a case study or testbed to
implement the architecture of Gropp and Lusk. MPI-2 has a
primitive MPI_Comm_spawn function that creates processes at the
application run time. This primitive has a noticeable problem in
dynamic process creation since it cannot achieve balancing among
machines. Consequently, some kind of load distribution should be
achieved. Cera, Pezzi, Mathias, Maillard, and Navaux [2] suggested
to centralize the allocation decision making of distributing the
load between all available machines. Thus, Cera, Pezzi, Mathias,
Maillard, and Navaux followed Gropp and Lusk steps and designed
architecture composed of centralized job scheduler and resource
manager which deal in parallel with MPI_Comm_spwan functions
that are included in a parallel application.

The Round Robin scheduler of Cera et. al. must be running in
parallel as a daemon besides any parallel application that spawns
many processes at its run time. In addition, this scheduler will be
more efficient when it allocates resources in a good way beside
a short overall run time of the parallel application [2]. Cera et.
al. built their solution based on two main parts: a scheduler
and a job manager. The job manager keeps track of all jobs in
the system maintaining the information needed for the scheduler.
The scheduler is mainly a daemon running beside the parallel
spawning application that uses MPI_Comm_spawn function with
some modifications, that enable communication between a daemon
and the running application. The daemon assigns hosts for the
running parallel application calling MPI_Comm_spawn according to
the Round Robin algorithm, in order to achieve distribution balance
between all hosts. The scheduler depends on the job manager which
records all distributed tasks to determine the next host for the new
spawned process according to Round Robin algorithm to achieve
equal distribution for the newly created processes between all hosts
[2].

For verification and testing, the research team of the current paper
reimplemented this Round Robin scheduler of Cera et. al. and
applied some test cases using a matrices computation program. The
program spawns many times by a specific given number that is
passed as a parameter at run time. The matrices are also created
dynamically by passing the number of rows and columns also as
parameters. The authors of the current paper verified and confirmed
that this Round Robin scheduler of Cera et. al. distributes the
load according to the given list of machines on the test cluster.
The scheduler distributes the total number of processes equally
between the given machines. When the number of processes is not
divisible by the number of machines in the cluster it distributed

the remaining processes on the machines from the beginning of the
scheduler’s list of machines according to their order in this list. This
is simply because MPI_Comm_spawn assigns process on a specific
machine (host) not a specific core by using [mpi info] parameter to
assign the machine name to this parameter [7]. The authors carried
out the testing experimentation on the HiPer-FC cluster at the
Faculty of Computers and Information - Cairo University, which is
a heterogeneous cluster running Scientific Linux operating system.
Station1 has a quad core processor with 4GB RAM. Station2
to station5 are dual core processor machines with 2GB RAM.
According to this Round Robin scheduler of Cera et. al. station1
being quad machine takes double the load of any of the other four
machines. The rest of processes will be distributed on the top of the
machine list. In this specific case, the remainder of these processes
will be loaded on station1. Table 2 summarizes the experimentation
results of applying the Round Robin scheduler of Cera et. al. [2] to
distribute the spawned processes.

Table 2. process distribution on machines using mpi modified
spawn function with Round Robin scheduler of Cera et. al.

Spawned
processes Station1 Station2 Station3 Station4 Station5

25 9 4 4 4 4
50 18 8 8 8 8
75 27 12 12 12 12
100 36 16 16 16 16

Figure 2 illustrates the comparison in time performance between
the native MPI scheduling and the Round Robin scheduler of Cera
et. al. It is clear from the figure and the underlying experimentation
that Cera, Pezzi, Mathias, Maillard, and Navaux achieved two main
benefits which become clearer with the growth of the number
of spawned processes: (1) significant performance enhancement
demonstrated by the growing difference in response time, and (2)
the new scheduler enabled spawning larger number of processes as
shown in Figure 2.

Fig. 2. Comparison between MPI native scheduling and Round Robin
scheduler of Cera et. al.

3. THE PROPOSED SCHEDULER
It was concluded from the previous sections that the default
dynamic process manager in MPI-2 is the MPD process manger,
which starts the new spawned process(es) on the first next node in
the MPD ring [14]. This results in a problem in balancing the load
when MPI_Comm_spawn primitive function is called many times
such as the cases when using it inside a loop or making recursive
calls for a spawn function. According to the MPD native scheduling
policy, every call to the spawn function will submit the new task
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every time starting from the first rank [14][6]. This imbalance is
illustrated by Figure 3. As a consequence, and as shown in Figure

Fig. 3. Iterative MPI Comm spawn function call with MaxProc=1.

3, all the created processes will be admitted to one machine. This
will defy the load balancing concept as the system will end up with
one overloaded machine even though it may have many other idle
machines. This problem is caused mainly by the decentralization
of the decision to determine the host when using the MPI spawn
primitive. Therefore, each new MPI spawn call decides the machine
that will spawn on regardless the other previous MPI spawn call
decisions and not knowing anything about the status of the other
machines.

The embedded Round Robin scheduler of Cera et. al. [2][6]
appeared to centralize the decision making by running the
scheduler as a daemon beside the running application to make
the scheduler connect to the embedded scheduler every time the
application needs to spawn a new process. The scheduler then
decides the next host machine according to the Round Robin
algorithm. This was the approach Cera et. al. used to achieve the
load balancing concept over all the system’s machines equally,
overcoming the overload problem on one machine when calling the
primitive MPI spawn iteratively or recursively.

Despite the improvement gained in both performance and load
balancing by using The embedded Round Robin scheduler of
Cera et. al., the current research team noted another problem
when the cluster’s machines are not dedicated to one application.
Some machines of the cluster get higher load than others
because of running other programs on some machines of the
cluster while using the embedded Round Robin scheduler. It
distributes the processes of this application equally over all cluster
machines regardless if some machines are preloaded by other
running applications. This impairs the targeted load balancing on
all machines intended by the scheduler of Cera et. al. [2][6].
Furthermore, sometimes the machine’s overload may hit the
limitations of the machine’s resources. This may lead the
overloaded machines to crash, even though other machines in
the system may have some idle processes. Figure 4 illustrates a
situation when various nodes on the system have different levels of
resources availability to start with when the target parallel program
is launched.

When the load is distributed equally on the nodes according to the
embedded Round Robin mechanism of Cera et. al., the end result
will be load imbalance and in some cases cuasing overloads hitting
the resources limitations which may lead to machines crashing as
shown in Figure 5.

Fig. 4. Independed individual processes running on cluster’s machines.

Fig. 5. Round Robin scheduler of Cera et. al. processes running besides
independed individual processes.

In Figure 5 above, some machines hit or exceed the resources
limits, such as Stations 1 and 3 in the Figure, while others, Stations
2, 4, and 5 have different degrees of availability to run more tasks.
Designing a mechanism to enable the redistribution of tasks not
necessarily equally but considering the actual status of the node
would lead to true load balancing and crash avoidance. The crash to
be avoided can be either a machine crash due to hitting limitations
or a whole system crash due to a crashed station not returning
results to parents.

This imbalance imposed by the heterogeneity of the system or
status of the nodes running other unfinished jobs motivated the
current research team to consider the design and development of
a solution that takes the load status of the cluster’s machines
into consideration even if the load is attributed to other running
programs or external factors. This should lead to better true load
balance and crash avoidance. It will also leads to more reliable
programs and higher performance because the probability that
some machines may crash due to hitting or exceeding resource
limitations resulting in the prevention of returning results from the
processes on those machines to their parent processes, or to the
scheduler, will be much lower.

The underlying task of estimating the load on each machine in the
system in order to device a load balancing scheduler necessitates
the study of how the MPI_Comm_spawn assigns its new tasks.
MPI_Comm_spawn creates a new process and by using the [mpi
info] parameter in this function the programmer can assign it to
a specific machine. Accordingly, this function assigns the newly
created process to a specific machine, not on a specific core [14]. At
the machine level, the newly submitted processes will be scheduled
according to the operating system’s scheduler. Hence, to achieve
both the load balancing and the optimization in using resources,
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the authors of the current paper proposed to assign a number
of spawned processes on each machine equal to the number of
cores in each machine and the tasks of which the machine was
already preloaded from other running programs. Since the cluster’s
machines are heterogeneous, the load of each machine can be
estimated by recording the machine’s completion time of each
assigning task. According to each completion time, a number is
given to the machine that represents the priority of using this
machine when scheduling new tasks. Therefore, according to the
proposed solution, the time is measured for each spawned process
starting from the assigning time on a machine until the responding
time has arrived to the spawner again. When a machine is needed
to be choosen for a new spawned process, the generated list of
machines is sorted according to each machine priority then the best
priority machine is selected.

Algorithm 1: The Priority scheduler algorithm

1. Scheduler read hostsname.txt and specifications from host file.
2. Scheduler initialize the table with machines name and

specifications.
3. if machine specifications equals another
4. then
5. first machine priority = second machine priority
6. end if
7. Scheduler launch the main parallel application.
8. Parallel application send request to scheduler to spawn a

process.
9. if highest machine priority = another machine priority
10. then
11. get the first according its order in scheduler table
12. end if
13. Send machine name to the parallel application.
14. Parallel application spawn new process on the received

hostname.
15. Scheduler set machine timer to zero and start counting once

the parallel application call spawn function
16. Spawned process send to the scheduler when it is ended
17. Scheduler stops the timer.
18. Scheduler set machine priority according to its completion

time.
19. Scheduler update itself by new machine priority of the

spawned host name.
20. Scheduler terminated when all spawned processes ended up.

The experimentation with the proposed priority based scheduler
revealed clearly that it did not assign the same number of tasks
to each machine every time. This is because assigning processes to
a machine depends on the load status of the machine every time
a process is spawned. As a result, unlike the embedded Round
Robin scheduler which assigns the same number of processes to
each machine, it differs every time according to the machine’s
load status. After that the performance of the proposed priority
based scheduler can be evaluated by measuring its completion time
when scheduling different numbers of spawned processes. This is
to assess the effect on performance as a result of achieving the load
balancing between all cluster’s machines.

Fig. 6. RR and Priority schedulers without any additional load in hosts.

Fig. 7. RR and Priority schedulers with two programs loads.

Fig. 8. RR and Priority schedulers with 6 programs loads.

4. EVALUATION AND RESULT ANALYSIS
The results of the performance comparison between the proposed
priority based scheduler and the embedded Round Robin scheduler
are summarized and illustrated by figures 6, 7, and 8. It is obvious
from Figure 6 that the Priority Scheduler takes more time than the
Embedded Round Robin Scheduler. This is mainly due to the fact
that the Round Robin decision of determining in machine order is
based on formula (1) [6].

new resource = (last resource+1)%total resources[5] (1)

Equation (1) gives the formula for sample variance.
On the other side, the Priority Scheduler decision making depends
on searching for the best priority. This is the main reason the
results show that Embedded Round Robin scheduler has results
better than Priority Scheduler due to the searching overhead
in the absence of overload. However, when comparing between
the results of Embedded Round Robin Scheduler and Priority
Scheduler in case an overload is made on some cluster’s machines
by running external applications, the Embedded Round Robin
scheduler started equal or slightly better because all machines, even
the overloaded ones, still have idle processes. Hence, no need for
searching for machines, which appeared in the first part of Figure 7
until 175 submitted processes. The advantage of Priority scheduler
appeared when the overloaded machines reached or almost reached
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its peak number of processes, while the other machines still have
some idle processes. In which case, the Embedded Round Robin
scheduler will submit tasks on those overloaded machines that
do not have any idle processes according to the Round Robin
mechanism[6]. This leads to these spawned processes either taking
long times to be completed which leads to the overall application
completion time delay, or the machine will be crashed because of
submitting a huge number of processes that exceed its resources
capacity. In contradiction, the Priority Scheduler will avoid these
overloaded machines when the scheduler notices, these overloaded
machines take more time to respond after processing the spawned
processes. This means that either the machine is running too many
processes or there is a problem with the network connection that
leads to this delay. In both cases the proposed Priority Scheduler
avoids this machine by assigning it a low priority in order to
make it the last choice. Accordingly, the results returned from
such machine will not delay the overall completion time of the
application. This makes the priority scheduler proposed in this
paper better and more efficient. The time differences of small
spawned processes is usually small and can be ignored. This makes
Priority Scheduler better in average and worst cases that cannot
be predicted in a heterogeneous system. Experimentation showed
that it also worked comparatively well in best cases too as shown
in Figure 6, which proves overall significant enhancement over the
embedded round robin scheduler.
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