
International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.11, November 2014

20

Cross Site Request Forgery: Preventive Measures

Sentamilselvan. K
Assistant Professor

Kongu Engineering College
Perundurai, Tamilnadu

Lakshmana Pandian. S
Associate Professor

Pondicherry Engineering
College

Puducherry

Ramkumar. N
Assistant System Engineer
Tata Consultancy Services

Chennai

ABSTRACT

Cross Site Request Forgery is considered as one of top

vulnerability in today’s web, where an untrusted website can

force the user browser to send the unauthorized valid request

to the trusted site. Cross Site Request Forgery will let the

integrity of the legitimate user. So far many solutions have

been proposed for the CSRF attacks such as the referrer HTTP

Header, Custom HTTP header, Origin Header, client site

proxy, Browser plug-in and Random Token Validation. But

existing solutions is not so immune as to avoid this attack. All

the solutions are partially protected only. This paper focuses

on describing the implementation of various possible cross

site request forgery methods and describing the pitfalls in the

various preventive techniques of cross site request forgery and

so we suggested some defense mechanism to prevent this

vulnerability.

Keywords

Security threats, Security breaches, Browser security, Forgery

prevention, Defense mechanisms, Open web application

security

1. INTRODUCTION
Now-a-days, Internet plays an important role for the business

people and for the commercial use. Everyday life becomes

easier for the internet users because of the progression in the

technologies, but some vulnerability moves the web

application to a risky environment. Even though many

internet users get increased, the attackers too get increased in

balance. So the security providence becomes must in the case

of secure organization, defense personals and financial bank

those interact with public. Aim of any companies is to provide

a secure web service to their customers in the case of web

environment and to safe guard the web from the threats. A

report was submitted by open web application security project

(OWASP) in the year 2013, on vulnerabilities based on

critical web applications which can be demoralized [7]. From

the survey among that Cross Site Request Forgery (CSRF)

attack ranks 7th position. This attack is harsh in the case of

web applications. Peter W introduced the general class of

Cross Site Request Forgery attacks in a posting to the

BugTraq mailing list most of the web application developer

chose this attack [8].Most of the web developers do not have

knowledge on Cross Site Request Forgery (CSRF) attack

which is the common vulnerabilities among various attacks.

In this attack victims are forced to perform an unwanted

action on a trusted website, without any user’s interaction

[16]. Cross Site Request Forgery is an attack which forces an

end user to execute unwanted actions on a web application in

which he/she is currently authenticated [2]. With a little help

of social engineering (like sending a link via email/chat), an

attacker may force the users of a web application to execute

actions of the attacker's choosing. A successful CSRF exploit

can compromise end user data and operation in case of normal

user. If the targeted end user is the administrator account, this

can compromise the entire web application. Entirely single

CSRF hole on the domain compromises the security.

Reflected and stored are two types of attacks in which a

malicious request, that is injected payload is hosted in a web

page by a reflected CSRF other than a trusted website page.

Reflected XSS Attacks [9]: where the injected code is

reflected off the web server, such as in an error message,

search result, or any other response that includes some or all

of the input sent to the server as part of the request. Reflected

attacks are delivered to victims via an e-mail message, or on

some other web server. When a user is tricked into clicking on

a malicious link the injected code travels to the vulnerable

web server, which reflects the attack back to the user’s

browser. The browser then executes the code because it came

from a "trusted" server. Therefore a victim is bared to an

attack when they logs on to a trusted website and switch over

to a different website concurrently. On considering stored

CSRF attack the payload is present as part of a webpage

downloaded from a trusted website [9]. This attack may found

in blogs, forums, and message boards that frequently need a

user to login before posting or viewing messages, where the

injected code is permanently stored on the target servers, such

as in a database, in a message forum, visitor log, comment

field, etc. The victim then retrieves the malicious script from

the server when it requests the stored information.

Login CSRF is one of the variations of Cross-Site Request

Forgery, in which the attacker forges a cross-site request to

the login form, logging the victim into the honest web site as

the attacker. The severity of login CSRF vulnerability varies

by site, but it can be as severe as a cross-site scripting

vulnerability. Because of this attack private information are

exposed. A valid HTTP request was provided by a CSRF

attack which forces to perform an unwanted action in trusted

website from browser. Based on the sensitivity operation

which can be performed via these request will gives the

harshness of the damage [1]. User profile, executing

unauthorized financial transactions and so on are included in

this. Authenticated users are tricked to perform a malicious

action by an attacker, here the aim of attacker may get

succeed because of the weakness in the design in the targeted

application, cached credentials was automatically supplied by

the users web site.

Overall diagrams give an idea of how CSRF attack was

performed by an attacker. A malicious web site can force the

user browser to send the unauthorized valid request to the

targeted site. A user send a request to the server to view the

needed web page based on the users request the web

application was provided to the user by a server. While the

user views here requested page a malicious script posted by an

attacker was invisible or visible in the same page in the case

iframe tag or image tag, but the user does not have a

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.11, November 2014

21

knowledge that the link will direct to an unwanted page. Since

the user does not well known about the link he may force to

access the link by performing click operation on the malicious

link. An automatic execution of malicious script takes place.

As a result the attack will control the user’s web page and

send the forged request to the server via user’s web browser.

And the attacker will monitor the actions of a user repeatedly.

This monitoring action was not known to the user but he

thinks that he was in secure environment.

Fig1: Overview of CSRF Attack

2. LITERATURE SURVEY
Ramarao R, Radhesh M, Alwyn R Pais [9] was presented a

client-side proxy solution that detects and prevents CSRF

attacks using IMG element or other HTML elements which

are used to access the graphic images for the webpage. This

proxy is able to inspect and modify client requests as well as

the application’s replies (output) automatically and

transparently extend applications with the secret token

validation technique.

William Zeller and Edward W. Felten [11] implemented a

client side browser plug-in that can protect users from certain

types of CSRF attacks. They implemented their tool as an

extension to the Firefox web browser. Users will need to

download and install this extension for it to be effective

against CSRF attacks. Their extension works by intercepting

every HTTP request and deciding whether it should be

allowed. This decision is made using the following rules.

First, any request that is not a POST request is allowed.

Second, if the requesting site and target site fall under the

same-origin policy, the request is allowed. Third, if the

requesting site is allowed to make a request to the target site

using Adobe’s cross-domain policy, the request is allowed. If

their extension rejects a request, the extension alerts the user

that the request has been blocked using a familiar interface

(the same one used by Firefox’s popup blocker) and gives the

user the option of adding the site to a white list.

Sooel Son [10] was proposed PCRF is a dynamic token

generating defense scheme against CSRF. PCRF’s basic goal

is to prevent CSRF attacks by adding a fresh token to every

web request whose target page should be protected one way to

efficiently prevent CSRF attacks toward PHP web

applications. This defense system is called PCRF: Prevent

Cross-site Request Forgery attack. PCRF provides an

automatic robust solution again CSRF threats by using a

CSRF token. Due to the property of cryptographically secure

hash function, it used to verify whether the token has been

previously issued from servers.

Nanad jovanovic et.al [6] proposed a mitigation mechanism

for CSRF that provides only partial protection by replacing

GET requests by POST requests or relying on the information

in the Referer header of HTTP requests and also proposed a

solution that provides a complete automatic protection from

XSRF attacks. More precisely, his approach is based on a

server-side proxy that detects and prevents CSRF attacks in a

way that is transparent to users as well as to the web

application itself (Orthogonal proxy).

Johns and Winter [4] introduced RequestRodeo, a client side

solution to counter this threat. With the exception of client

side SSL, RequestRodeo implements protection against the

exploitation of implicit authentication mechanisms. This

protection is achieved by removing authentication information

from suspicious requests. They proposed a client side solution

to enable security conscious users to protect themselves

against CSRF attacks. Their solution works as a local proxy

on the user's computer.

Tatiana Alexenko et.al [10] were developed a Mozilla

extension that integrates with the Firefox web-browser to

protect the user's browsing history. The extension generates

HTTP requests to random URLs from the user's browsing

history. The extension allows the user to specify how often

the requests get sent as well as giving users the option of

adding a random URL to the Referrer field of the extension-

generated HTTP request. The latter option is bound to initiate

discussion, because the pairing of the requested URL and

Referrer is random which can lead to combinations that

should not exist during normal browsing. This can affect

online advertising and raise red flags for web administrators.

They implemented a client-side defense measure that

previews the HTML code before each page load and detects

potential CSRF attacks. The detector would first find all form

tags and check the “action” attribute of the “form” tags for

deep linking. If such forms are found, the CSRF detector will

prompt the user if they want to add the pairing of the URL of

the website the code is located on and the URL of the form

action to a white list.

Burns and Schreiber [3] provide comprehensive introductions

to CSRF attacks. To prevent the CSRF attack, they used

following methods. Use cryptographic tokens to prove the

Action Formulator knows a session specific secret, use secret

tokens to prove the Action Formulator knew an Action and

user specific secret, use the optional HTTP referrer [sic]

header to verify Action Formulators, require changes to

application state to be done only with HTTP POST operations

and use a simplified CSRF Prevention Token.

Drawback of their proposed work is that the attackers can

adjust their attacks to be form based like CSRF, Submit forms

automatically or though tricking users by making huge,

mislabeled submit buttons. The header is optional and may

not be present, some browsers disable this header and it is not

available when interactions occur between HTTPS and HTTP

served pages. The risk of header spoofing exists, and tracking

the valid sources of invocations may be difficult in some

applications.

Browser

 Server Malicious Script

Hacker

 User

User Request

Forged Request

Posting Malicious

Link

Trigger

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.11, November 2014

22

XSS vulnerabilities are being discovered and disclosed at an

alarming rate [12]. XSS attacks are generally simple, but

difficult to prevent because of the high flexibility that HTML

encoding schemes provide to the attacker for circumventing

server-side input filters. Paper describes an automated script-

based XSS attack and predicts that semi automated techniques

will eventually begin to emerge for targeting and hijacking

web applications using XSS, thus eliminating the need for

active human exploitation.

Any unauthorized user cannot find space in the

communication. For client and server communication first

client will be registered in the admin as an authorized node.

Our algorithm can work on word, pdf and html types of

mitigated files. If it is registered successfully then it can

demand the file from server. Web-based attacks due to

program security vulnerabilities are huge concerns for users.

Efficient approach with DES encryption for better data

receiving and sending mechanism was proposed [13].

A practical privacy-preserving approach was presented to

defending against cross-site and same-site request forgery

attacks. Fine-grained access control was used to allow a

website owner to decide how requests should be sent and

received within protection scopes, so as to prevent forged

requests from being initiated outside the scopes. Two-phase

checking as a building block that allows the browser and the

website to exchange configuration information in a privacy-

preserving manner was key process [14].

3. REAL TIME EXAMPLES OF CSRF

ATTACK

3.1 ING Direct
It is one of the financial institutions where CSRF attack was

first took place [11]. Attacks implemented by transferring the

funds out of the user’s bank account by the unauthorized

people. This is due to the vulnerability on lNG's website. It

makes to add the additional accounts on behalf of an arbitrary

user.

3.2 Youtube
YouTube is one of the most viewable sites [11].

Vulnerabilities on the YouTube make the unauthorized people

to add the account on behalf of the legitimate user. Using that

account attacker added videos to a user's "Favorites," added

himself to a user's "Friend" or "Family" list, sent arbitrary

messages on the user's behalf, tagged videos as inappropriate,

automatically shared a video with a user's contacts, subscribed

a user to a "channel" (a set of videos published by one person

or group) and added videos to a user's "Quick List" (a list of

videos a user intends to watch at a later point)..

3.3 Metafilter
Metafilter is one of the site where vulnerability present here

makes the user’s account taken over by the attacker [11]. A

forged request could be used to set a user's email address to

the attacker's address. A second forged request could then be

used to activate the "Forgot Password" action, which would

send the user's password to the attacker's email address

Equations..

3.4 The Newyork Times
Vulnerability present in the New York Time's website allows

an attacker to find out the email address of an arbitrary user

[11]. This takes advantage of the NYTimes’s. Email this

feature, which allows a user to send an email about a story to

an arbitrary user. This email contains the logged-in user's

email address. An attacker can forge a request to active the

"Email this" feature while setting his email address as the

recipient. When a user visit's the attacker's page, an email will

be sent to the attacker's email address containing the user's

email address. This attack can be used for identification (e.g.,

finding the email addresses of all users who visit an attacker's

site) or for spam. This attack is particularly dangerous because

of the large number of users who have NYTimes' accounts

and because the NYTimes keeps users logged in for over a

year. Also, Times People, a social networking site launched

by the New York Times on September 23, 2008, is also

vulnerable to CSRF attacks.

3.5 Gmail
In January 2007 this serious vulnerability was discovered in

GMail which allowed an attacker to steal a GMail user's

contact list [5].

3.6 Net Fix
It was discovered in Nettlix which allowed an attacker to

change the name and address on the account, as well as add

movies to the rental queue etc. [5].

3.7 G. EBay’s Site
EBay is one of the auction sites, where more and more

information get stored. CSRF attack was implemented which

leads to loss of many personal information of about 18 million

people. This issue was discovered in February 2008 [10].

4. PROPOSED WORK

4.1 Stored Attack
In the Stored attack, the attackers post the script in the

server itself. This script was stored in the server. While user

visits the page and doing any activities means in the script

also gets execute and send information to the attacker. So the

attackers know the information and user credentials. Here, we

proposed pattern recognition method for preventing the stored

attack.

Fig 2: Implementation of Stored Attack

In this method, if the text contents matches the following

regular expression for the “regex=/^[a-zA-Z0-9

.,:;{}!@#$%_?^*()<]+$/;” and

“regex=/<imgsrc=|<form|<iframe=|<a ref=|<script=/;” pattern

means it will allow to post the comment and it will be stored

in server. Otherwise it will not allow to posting the comments.

Using this regular expression pattern we can avoid the stored

attack.

Get the Text

Analyzing

the Pattern

Allow to store

Display

Error

Message

Match

Not Match

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.11, November 2014

23

4.2 Login CSRF Attack

In the Login CSRF attack, Attacker and honest user are

considered as an authenticated user for a provided web

service. In general the username and password entity present

in the URL remains same for all users with certain slight

entity variation in it. Attacker will generate a malicious link

using his username and password and include it in the user’s

web page which may be visible for them.

If the user clicks the malicious link, he will enter into the

attacker account without user’s knowledge. Then the attacker

enters into his login and to view the users account history.

Now attacker feels free to steal the user’s identity, or to spy

on the user. Normally the user authentication was performed

based on the username and password. This user credential will

be stored in the database. If the wrong authentication gives a

negative result an error message will be displayed. This attack

was not prevented by username and password verification

process because the attack was carried out by an attacker

using the username and password. To prevent the login CSRF

attack a secure 2-step verification method was enhanced. In

this method a random number generation was carried out by a

server and sends it to the user’s mail or mobile, using the

provided code the user will prove him as an authenticated

user. Using that code user can view his homepage

Fig 3: Login CSRF Attack

5. EXISTING DEFENCE MECHANISMS
Since CSRF attack is one the Vulnerability which presents in

the web applications. It is need to be given mitigation, so that

information present will be safeguarded. Below are the

Defenses Mechanisms, which can able to protect the

information to some extent. It is a policy that needs to be

adopted by developers and users to avoid this attack to some

extent.

5.1 Using Random Token
To defend against the CSRF attack it is one of the greatest

mechanisms. Form proposal was done during the use of

random tokens at all time. To fill in malicious URL,

prediction of next random pattern was difficult for the

aggressor [5].

5.2 Using of Form Post
Form submission involves two methods they get and post.

Form submission is the secure one for post method. Variables

and values in URL are understood by anyone in get method as

a query strings [5].

5.3 Limitation the Lifetime of

Authentication Cookies
Beside CSRF it is a durable deterrence. In a short period of

time lifetime was limited. After a short period of time cookies

will be terminated when the user moves to further web site.

For any action user involves in re-login. Re-submission of

password by the user was not done if the attacker tries to send

any HTTP request [5].

5.4 Damage Limitation
To reduce the damage from CSRF those steps are followed by

the Destruction restriction. To perform CSRF by an attacker

on a website an authentication was required for every usage to

limit the damage [5].

5.5 Forcing the User to use the Form
Force the user always to use the form of website. For this

purpose a hidden fields are used which a helpful one. It is one

of the protection and easy to bypass [5].

5.6 Auto Logoff
If a user moves to some other site (untrusted) means it will

automatically log off. So again the user wants to login. Don’t

start new task while sensitive task running: If the user is using

sensitive task means don’t start new application or task

(untrusted).

6. PERFORMANCE METRICS
Table 2 comprises of the performance metrics which is done

by using some sample cases in real time environment.

6.1 Sample Test Case

Get Username

and Password

Generate

Random

Numbers

Display

Error

Message Data

Base

Code

Code

Authentic

ation

Database

Test out

Visit Home page

Display

Error

Message

Yes Sent to User

Mobile/Mail

No

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.11, November 2014

24

Table 2. Performance Metrics done in Real time

Environment

Table 3：System Evaluation Result

True

accept

False

accept

True

reject

False reject

207 0 90 0

Here, we have taken around 300 trails and we have analyzed

from that result. From this analysis we got 208 true accept, 0

false accept, 90 true reject and 0 false reject.

TRUE ACCEPT-The texts do not have any malicious script

and it is accepted

TRUE REJECT-The text contain with malicious script and it

is rejected.

FALSE ACCEPT-The text contains with malicious but it is

accepted.

FALSE REJECT-The text do not have any malicious script

but it is rejected.

7. ADVANTAGES AND

DISADVANTAGES
The following tables give knowledge about the advantages

and disadvantages for the existing solution [17].

Table 3. Advantages and Disadvantages

Existing

Solution
Advantages Disadvantages

Browser Plug-

in
It’s Simple

It may sometime

Crushed.

May be Some user

aware of this plug-in.

Clint Side

Proxy

It is easy way to

monitor and

find attack.

If proxy

Compromised means

all sensitive

information will lost.

It won’t detect the

login CSRF

Secret Token

Validation

Computational

is low

Requires Dynamic

generation

Random

Validation

Token

It is one of the

best solutions.

Simple to

implement.

It needs SSL to be

implemented in all

applications. It won’t

Detect Login CSRF

Cryptographic

token

Very Strong

Protection and

it requires no

additional

memory

Requires Dynamic

Generation and

requires a small

amount of system

resources to check

tokens and big

database tables to

manage tokens and

sessions.

Referrer

Header
Simple to Many browsers

TRAIL CASES ACCEPT/

REJECT

Hai Accepted

GOOD MORNING Accepted

Thank you…. Accepted

How are you? Accepted

abc@gmail.com Accepted

<imgsrc=a.jpeg> Rejected

 Rejected

https://www.facebook.com/groups/3

8749/42826355/?ref=notif¬if_t=

group_activity

Accepted

www.google.com Accepted

<html> Rejected

<a> Rejected

 Rejected

<h1> Rejected

my mobile no.+91-9894098940 Accepted

abc_xyz@yahoo.co.in Accepted

Wow…….!!!!!!!!!!!!! Accepted

$ 400 rs Accepted

 Accepted

 Accepted

<3 Accepted

:’(Accepted

100% Accepted

{hbnbgkj} Accepted

[67] Accepted

(note: 12346) Accepted

5/8 Accepted

7>8 Accepted

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.11, November 2014

25

implement disable this Header

Origin Header

It one of the

way to find the

same site

request and

cross site

request.

Many browsers

disable this Header

Origin Header

It one of the

way to find the

same site

request and

cross site

request.

Many browsers

disable this Header

Custom Header

It also one of

the way to find

the same site

request and

cross site

request.

Many browsers

disable this Header

Captcha[16]

Easy to Store in

the memory. It

is better

Solution for

auto submitting

forms.

Requires more

memory. It is

expensive

Code Verifier
It will detect the

login CSRF

It will take long time

to verify the code

8. CONCLUSION
Cross Site Request Forgery is one of the top vulnerabilities in

the internet. It remains challenging for the researchers to

provide a better solution for mitigating this attack. There were

many organizations which affected by this cross site request

forgery attack. Defense mechanisms and existing solutions

for cross site request forgery are working in some extend

only. The above work can be extended to provide suitable

solutions for the cross site request forgery attack by means of

applying parsing techniques to identify the attacking spots

before the attackers attack. Some pattern for img, script, form,

iframe tags can be designed to identify the attack.

9. REFERENCES
[1] A.Barth, C.Jackson, and J.C.Mitchell. “Robust defenses

For cross site request forgery”. In Proc. ACM

Conference on Computer and Communications Security

(CCS), Oct, 2008.

[2] Cross-Site Request Forgery.

www.owasp.org/index.php/CrossSite_Request_Forgery,

May, 2009.

[3] J. Burns. Cross Site Reference Forgery: An introduction

to A common web application weakness.

http://www.isecpartners.com/documents/XSRF_Paper.pd

f, 2005.

[4] M. Johns and J. Winter, “RequestRodeo: Client Side

Protection against Session Riding,” In Proc. of the

OWASP Europe Conference, Leuven, Belgium, May

2006.

[5] Mohd. Shadab Siddiqui and Deepanker Verma,"Cross

Site Request Forgery: A common web application

weakness",

 IEEE Conference and white paper, 2011.

[6] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel.

 “Preventing cross site request forgery attacks”.In IEEE

International Conference on Security and Privacy in

Communication Networks (SecureComm), 2006.

[7] OWASP. Top ten most critical web application security

vulnerabilities.https://www.owasp.org/index.php/Top_10

_2013-

Top_10.Forgeries.www.securityfocus.com/archive/1/19S

90,2001.

[8] Ramarao R. Tool “preventing image based CSRF

attacks”.

http://isea.nitk.ac.in/rod/csrf/PreventImageCSRF/. May,

2009.

[9] Sooel Son, “Prevent Cross site Request Forgery

PCRF”userweb.cs.utexas.edu/~samuel/PCRF/Final_PCR

F_paper.pdf.

[10] Tatiana Alexenko Mark Jenne suman Deb Roy and

Wenjun Zeng,” Cross-Site Request Forgery: Attack and

Defense”. In Proc. IEEE Communications Society

(CCNC), 2010.

[11] W. Zeller and E. W. Felten, “Cross-Site Request

Forgeries: Exploitation and Prevention,” Technical

Report, Princeton University, 2008.

[12] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic.

Noxes, “A Client-Side Solution for Mitigating Cross Site

Scripting Attacks”, Proceedings of the 21st ACM

Symposium on Applied Computing, 2006.

[13] Sapna Choudhary, Bhupendra Singh Thakur, “DES

Encryption and Attack detection in Client-Server

Communication”, International Journal of Advanced

Research in Computer Science and Software

Engineering. Volume 4, Issue 3, March 2014.

[14] B. S. Y. Fung, “A Fine-Grained Defense Mechanism

against general Request Forgery Attacks”, In Proc. of

IEEE/IFIP DSN Student Forum, 2011.

[15] Luis von Ahn, Nick Hopper Manuel Blum, and John

Langford, “CAPTCHA: Using hard AI problems for

security”, In Eurocrypt 2003.

[16] Sentamilselvan K, S Lakshmana Pandian,

Dr.K.Sathiyamurthy. "Survey on Cross Site Request

Forgery." IEEE International Conference on Research

and Development Prospects on Engineering and

Technology (IEEE ICRDPET-2013). Vol. 5. No. 5.

IEEE, 2013.

[17] Sentamilselvan K, Prasath T. "A conceptual study of

Cross Site Request Forgery with comprehensive

scrutiny." International Research Journal Of Sustainable

Science & Engineering 1.ISSN: 2347-6176 Issue:1

(2014): 1-6.

IJCATM : www.ijcaonline.org

