
International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.11, November 2014

13

Page Quality Optimization in Crawler’s Queue through

Employing Graph Traversal Algorithms

Saeideh Tajbar-Parashkoohi
Department of Software Engineerig, Islamic
Azad University, Rasht Branch, Rasht, Iran

Fatemeh Ahmadi-Abkenari
Department of Software Enginnering and

Information System, Payame Nour University
(PNU), Iran

ABSTRACT

In today's information era, Web becomes one of the most

powerful and fastest means of communication and interaction

among human beings. Search engines as Web based

applications traverse the Web automatically and receive the

set of existing fresh and up-to-date documents. The process of

receiving, storing, categorizing and ndexing is done

automatically based on partial smart algorithms. Although

many facts about the structure of these applications remains

hidden as commercial secrets, the literature tries to find the

best approaches for each modules in the structure of search

engines. Due to the limited time of today’s Web surfers,

providing the most related and freshest documents to them is

the most significant challenge for search engines. To do so,

every module in search engine architecture should be

designed as smart as possible to yield not only the most

related documents but also to act in a timely manner. Among

these modules is the sensitive part of crawler. One of the open

issues in optimization of search engines’ performance is to

reconfigure crawling policy in a way that it follows the most

promising out-links that carries the content related to the

source page. Crawler module has the responsibility to fetch

pages for ranking modules. If higher quality pages with less

content drift are indexed by the crawlers, the ranking module

will perform faster.

According to the graph structure of the Web, the way of

traversing the Web is based on the literature on graph search

methods. This paper experimentally employs different graph

search methods and different combinations of them by issuing

some queries to Google engine to measure the quality of

received pages with fixing the factor of graph depth to

identify the best method with reasonable time and space

complexity to be employed in crawler section in search engine

architecture.

Keywords

Graph Traversal approaches, Search Engine Optimization

(SEO), Web Crawler, Web Page Ranking Methods.

1. INTRODUCTION
Along with significant growth of the World Wide Web and

regarding the dynamic nature of the Web, providing the most

accurate search results is of the main demands of search

engines’ users. Web crawler is a section of a search engine

that by starting from some seed pages traverses the Web graph

and stores the primary set of addresses in a queue while stores

the Web pages content in the search engine repository. Web

crawler obtains the next addresses to follow from the out-links

of the downloaded pages and puts new addresses in the

starting point queue and obtains next address from this queue.

Web crawler repeats the crawling process until the stop

decision is made. Web crawler often downloads millions of

pages in short period of time, monitors them continuously and

updates its address queue. Additionally, Web crawler should

respect the server rules by following the robot.txt file and

should try to avoid overloading Web servers [1], [8], [12],

[16].

Most Web crawlers have five following main sectors:

1. Decision maker module

2. Fetching module

3. Control module

4. Filter module

5. Workload module

Decision maker module (DNS) searches for IP addresses in

the domain names. This module determines where the

determined page should be fetched. The compiler which is

monitored by the control unit goes to seed pages and sends the

documents to the filter unit which uses the HTTP protocol to

restore pages. Text filter module extracts a series of the links

from fetched pages. After separation, suitable links are sent to

workload unit and put in next instruction list for the fetching

unit. Actually, the filter unit includes two sectors, link

filtering and indexing. Figure 1 represents the main functions

of the Web crawler [4], [6], [15], [17].

Fig 1: Web crawler architecture

Since the best search engines have a database of about fifty

percent of the Web pages, identifying more important links is

much critical in search engines efficiency in order to provide

user’s satisfaction. In fact when a user requests a query,

instead of sending the query to millions of Web sites, it is

compared with a list of pre-processed data in order to find the

best match. Preprocessing is done by crawlers that perform

the extraction of Web pages in order to analyze and create

index on a regular, rapid and comprehensive routine and to

deliver them to pages storage. Considering the large number

of Web pages, the crawler can only download a fraction of

them which cannot be selected randomly. Therefore, it is

essential that the Web crawler be smart enough to be able to

download pages in order of their priority and importance.

Thus, defining the behavior of a Web crawler is a

W

W

W

DNS

Fetch Control

URL

Filter

Workload

URL

Frontier

URL

seen
Compiler Index

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.11, November 2014

14

combination of strategies in order to select an algorithm for

making decision on downloading pages with higher priority,

revisiting Web pages for updating and avoiding the overload

on Web servers.

In this paper, first, various graphs traversal methods are

reviewed in order to identify the best method to use in a Web

crawler module. The advantages and disadvantages of them

are analyzed. Then, based on the conducted experiments, the

best graph traversal method with the possibility of applying in

decision-maker module of the Web crawlers is selected and

introduced to recognize the efficiency of link importance that

prevents or lessen the content drift.

2. PROBLEM STATEMENT
The crawler section of a search engine is not a smart module.

It traverses the Web, follows any out-links and download Web

pages in order to make a repository of reasonable dimension.

In search engines, the responsibility of making decision on the

content authority of the pages and their quality regarding

different issued queries is on the shoulder of ranking and

analyzer modules. These modules in a tedious and offline

process, checks the quality of pages and index them according

to various content categories. If the crawler section does the

crawling process in a smart manner and instead of blindly

following out-link, follows the more promising links with less

content drift from the seed page, crawling queue will be full

of higher quality pages and the overall performance of search

engine will be optimized in a more timely and intelligent

manner. To do so, this paper aims at employing a conducted

experiment on using different graph traversal algorithms by

issuing different queries in order to check the quality of

resulted pages at leaf level regarding their less content drift to

the seed page.

3. GRAPH TRAVERSAL STRATEGIES
Web structure can be considered as a huge oriented graph

which contains nodes as Web pages and multiple connections

and links among pages as edges. Crawling strategies of the

Web can be classified in three general categories,

uninformed/blind search, informed/heuristic search and local

search.

3.1 Uninformed Search
In uninformed search strategy, the only existing information

defines the problem and the target state against non-target

state. Here there is no idea about how and in what paths the

target should be reached. As a result in blind methods the

overall search space has been traversed for finding the target.

Some methods like depth-first search (DFS), breadth first

search (BFS) and uninformed cost search (UCS) are examples

of uninformed search algorithms.

Depth first search (DFS) algorithm was introduced in 1994

and was applied in Web crawler as the best algorithm for

many years. The crawlers based on this search method follow

the links using a frontier as FIFO queue. Control unit of the

crawler determines a page as a starting point page for fetching

unit. After filtering links, control unit selects one of external

links of the page and introduces destination node to the

fetching unit. Movement process among the pages continues

until interested depth level is faced. When a node and its

offspring have been extended in that path, they are removed

from memory. Thus, this method have a linear memory and

space complexity of O(bm) in which b is the branching factor

or the maximum number of edges that goes out of a node and

m is the depth of the tree. In worst case, this method extends

all nodes of the search graph in which the time complexity

will be O(bm). Difficulty with high time complexity could be

faced in the indefinite path that the solution could not be

reached because of the false primary option damaging the

perfectness of the method. Against the fascinating simple

nature of this algorithm, many low quality pages regarding

their irrelevant content to the source page will be stored in

repository [7], [11].

In breadth first search (BFS) method, after specifying the seed

page, the control unit determines all nodes with same breadth

and introduces them to the fetching unit. After the crawler

visits all of the pages specified in that level, the unit control

goes to second breadth and reviews it. This method always

has been drawn attention in crawler literature and for software

designers because of its easier designing and implementation.

In this method because of the limitation in the number of out-

links, the size of repository will not increase impracticably. In

depth-first search, fetching unit reviews all links in a page up

to the defined depth and goes to the next page so receives

more information about an special subject. Figure 2 shows the

pseudo code of the breadth first search algorithm [5], [11].

Fig 2: A crawler with breadth first search strategy

Since complexity of this method is modal and high, this

method is not efficient. Assuming branching factor as b and in

worse case, target in depth of d, it extends all of nodes in

depth d. The number of expanded nodes up to the specified

depth is 1+b+b2+…+bd. When reaching d breadth, number of

expanded nodes is bd and therefore time complexity is O(bd).

Each node that expanded in this method should be saved in

the memory, as a part to generate other nodes. Thus the space

complexity of this method is same as its time complexity [13],

[14].

The optimized algorithm as uninformed cost search (UCS) is

based on breadth-first method in which the first node to

expand is the node with minimal cost. To implement this

traversal method, a priority based queue is employed. The

remarkable point about uniform cost search is that it finds

optimal solution if the costs of each step is properly elected.

The problem with this method is the development of

additional nodes that slow down finding the solution. The

time and space complexity of this method is O (b [c*/ɛ]) in

which c* is the estimated cost of the optimal path and ɛ is the

cost of each step.

3.2 Informed/Heuristic Search
In blind search methods, in the worst case, all nodes in the

state space should be inspected to reach the solutions,

however, if the number of nodes is very large, the underlying

methods do not reach to the intended target in a reasonable

time. To solve this problem, informed search methods are

Breadth-First (starting_urls) {

 foreach links (starting_urls) {

 Enqueue (frontier, link);

 }

 While (visited < MAX_PAGES) {

 Link: = dequeue_link (frontier);

 Doc: = fetch (link);

 Enqueue (frontier, extract_links(doc));

 if (#frontier > MAX_BUFFER) {

 dequeue_last_links (frontier);

 }

 }

 }

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.11, November 2014

15

developed. In these methods, in addition to defining the

problem, solutions are provided to achieve the target. In other

words, there is information about which none-target states are

more appropriate than others. In fact, the target in the

informed search is to find ways by which only a subset of

nodes is expanded instead of traversing all nodes in the stated

space. For this reason, the search strategy in the methods

using a heuristic function f(n) will expand the best node at

each step. So it can be concluded that informed search

methods include two general parts, the search strategy and the

function heuristic. Some of the most important informed

search strategies are best first search and A* search algorithms

[22].

There are various algorithms derived from the best-first

method definition which is employed in shark search, focused

crawlers, information spiders and so on. In the best-first

method, a page A makes out-link to another page B if B is

beneficial in A’s point of view. One of the measures in being

best is the employment of page ranking algorithms that based

on them, the control unit selects the pages according to the

rank of each page and sends them to the fetching unit [2], [3],

[5]. The crawlers using best-first method considers a page as

beneficial if:

• More links point to that page. Establishing more links to

a page shows importance of the page and its authority.

• Receiving links from more authorized pages lifts the

authority of the page itself [9], [10].

The rank of a page could be calculated via the formula (1) as

follows [20];

In formula (1), main page indicator is U, Fu indicates those

pages receive links from the page U and Bu indicates pages

links to the page U. R(V) is the rank of the pages establishing

links to the page U. Links are selected by simple calculations

using lexical similarity between keywords and source pages.

Therefore, the similarity between a page P and the keywords

is applied to estimate the relation of pages that were

referenced by P and an URL is chosen with the best

estimation for crawling. Also, the Cosine similarity is used

and the links with the lowest similarity scores are removed

from this range [18], [19].

Function Sim() in formula (2) returns Cosine similarity

between the query and the page in which q is the interested

query, p is the fetched page and fkp is the frequency of term k

in p.

Sim (q , p) =

The pseudo code of the crawler which applies a best-first

strategy is as shown in figure 3;

Fig 3: A crawler with best first search strategy

The best-known form of best-first search is A* search that is

one of the most complex search algorithms. A* search

method tries to keep minimum the total paid cost to the

current node and the remaining cost from current node to the

target. Estimation of remaining cost up to the target is known

as problem heuristic. Heuristic design of the problem in A*

search method is important and the optimization level of A*

method is highly affected with the problem heuristic. The

heuristics that does not meet this requirement is called

unacceptable heuristic. The evaluator function of A* method

is f(n)=g(n)+h(n). In fact, f(n) is the estimated cost of the

cheapest solution through n. According to above, it could be

stated that F is total cost of the node, G is cost to current node

and H is estimated cost to target node. In the A* search

method, the next node to expand is a node with the lowest

cost F among other unexpanded nodes. In the A* method,

always in an operating environment the leaf nodes that have

not been expanded are developed and studied. So all nodes are

saved in memory and some nodes may frequently be assessed

and evaluated [22], [23]. Therefore, the time and space

complexity of this method is modal and high as O(bm). Najork

and Weiner (2001) demonstrated in practice that considering

high cost and time of the ranking Web pages and the

instability nature of ranking process, the breadth-first method

acts better than the ranking method.

3.3 Local Search
Search algorithms that have been explained so far, are

designed in such a way that one or more paths are kept in

memory until the target is found. The path to that target will

be chosen as the solution. But in many issues, the path to the

target is not important but achieving the target is significant.

In these problems, another set of search algorithms under the

name of local search is used. In these methods, rather than

considering multiple paths, decision and action are only based

on the current state. In this kind of algorithm, after moving

from the current state to another, the state will be shifted to its

neighbors. The paths are taken in the search, are not saved in

memory. Local search algorithms, in addition to finding the

target are suitable for solving optimization problems where

the objective is to find the best state based on an objective

function. Hill climbing search, local beam search, simulated

annealing search (SA) and threshold acceptance algorithm

(TA) are some of the most important local algorithms.

In hill-climbing algorithm (HC) at first, a solution to the

problem is generated randomly and then in a loop manner

until the stop condition of the algorithm has not been

established, a number of neighbors of the current state are

generated frequently. Among neighbor, the best is chosen and

replaced by the current state. Implementation of the hill

(1)

(2)

BestFirst (topic, starting_urls) {

 foreach links (starting_urls) {

 Enqueue (frontier, link);

 }

 While (visited < MAX_PAGES) {

 Link := dequeue_top_link(frontier);

 Doc := fetch(link);

 Score := sin(topic, doc);

 Enqueue (frontier, extract_links(doc), score);

 if (#frontier > MAX_BUFFER) {

 dequeue_botton_links(frontier) ;

 }

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.11, November 2014

16

climbing method requires two functions, objective and

neighbor functions. Objective function determines the

optimization level of the solution and neighbor function

generates current state neighbors. The following pseudo-code

in figure 4 shows the algorithm of the hill climbing algorithm

[21];

Fig 4: A crawler with hill climbing search strategy

Another search method based on hill-climbing search is called

local beam search that has much power than the hill-climbing

search in resolving the problems. In this method, unlike the

hill-climbing method, at first, K solutions is generated to the

problem. Then, for each of the K state, it produces its

neighbors and among all neighbors, K neighbors are selected

as best neighbors that the process continues until achieving

the stop condition. Choosing K more efficient solutions

among all generated neighbors solution prevents the solutions

similarity to each other. Local beam search algorithm is

shown in figure 5;

Fig 5: A crawler local beam search strategy

Simulated annealing search (SA) method is another search

method that its idea has been originated from gradual cooling

of metals in order to strengthening them more. As in hill-

climbing method, in this method, the problem is started from a

state space like S. By transition from one state to another, it

closes to the problem optimal solution. The starting state

selection can be done randomly and can be chosen based on

the initial state rule. Objective function calculates the

optimization level of the current state and neighbor generates

the neighbor state to the current state. It is important how to

generate neighbor state. The general method is that in each

iteration, the SA algorithm generates a neighbor state like S’

based on a probability, the problem goes from state S to state

S' or stays within the same state S. This process is repeated

until a relatively optimal solution is obtained or the maximum

number of iterations is reached. In this algorithm, it was stated

that generated neighbor state acceptance is done based on a

probability. Function P(e,e',T) determines the probability of

acceptance of neighbor state. Optimization level of current

state is e and optimization level of neighbor state is e'. If the

neighbor state is worse than the current state, the parameter T

determines the probability of solution acceptance [21]. At the

beginning, the value T has been chosen so that most of

neighbor states are accepted. The parameter T is the

temperature indicator and the value of this parameter is

gradually reduced. Parameter value T is chosen so that before

the maximum number of iterations, its value becomes almost

zero. The evidences for the SA algorithm show that, at first it

is better to determine the value of T such that 80% of the

solutions will be accepted by the algorithm. Simulated

annealing search algorithm is shown in figure 6;

Fig 6: A crawler local beam search strategy

Threshold Acceptance algorithm (TA) method is like SA

method with the only difference in the acceptance of non-

optimal solutions.

TA algorithm accepts the solutions that are not much worse

than the previous solutions. Like what temperature does in SA

algorithm, temperature in the algorithm must be chosen in

such a way that most optimal solutions initially are accepted

by the algorithm.

4. EXPERIMENTAL RESULTS
As stated before regarding the large number of Web pages,

the crawler should download a fraction of them that this

fraction selection could not be done randomly. So, the crawler

should be smart enough to be able to download the most

promising pages in order of priority and importance regarding

their content. The importance diagnosis algorithms are the

responsibility of the crawler decision maker module. In this

section the carried out test is described with the aim of

selecting a comprehensive algorithm to detect importance of

the links in order to download the fraction of Web pages with

least content drift regarding the source node. In this test, the

depth-first methods, breadth-first, hybrid of the depth-first and

breadth-first methods in three forms of H1, H2 and H3, best-

first and hill climbing (HC) algorithm have been evaluated by

issuing different queries. For representing the results of issued

queries five of them have been selected as Q1: “Computer

networks”, Q2: “Artificial Intelligence”, Q3: “Web crawler”,

Q4: “Cloud Computing” and Q5: “Search engine”. While the

obtained results from other queries support the results of these

five queries that are described in continue. The queries have

been issued to Google search engine and then the quality of

result set has been evaluated to determine the best traversing

algorithm. Due to non-optimal feature of other search

methods regarding their high time and space complexity,

employing of them is avoided in this test. Also, in some

search methods always a node is considered as the target node

that this assumption could not be used in Web traversal. Such

algorithms are uniform cost search)UCS), A*, local beam

search, simulated annealing search and Threshold Acceptance

method that are omitted from the test.

The CPU used to carry out the test is Intel core i7, Q720

1.60 GHz with 4GB of Memory. The crawl has been done in

time period from June 29th 2014 till September 10th 4102. The

number of crawled and analyzed Web pages for each of

queries in different search methods has been shown in table 1.

Procedure HillClimbing
 Generate a solution)S ')
 Best = S '
 Loop
 S = Best
 S' = Neighbors)S(
 Best = SelectBest)S ')
 Until stop criterion satisfied
End

Procedure Simulated Annealing

 C = Choose an initial solution

 T = Choose an initial temperature

 REPEAT

 S' = Generate a neighbor of the solution C

 ΔE = objective(S') – objective(C)

 IF (ΔE > 0) THEN // S' better than C

 C = S'

 ELSE with probability EXP(ΔE/ T)

 C = S'

END IF

Procedure LoaclBeamSearch

 Generate K solution

 Do

 For each solution generate its neighbors

 Select K best solution from whole neighbors

 Replace current solutions by selected solutions

 Loop until stop criterion satisfied

End

http://www.mshams.ir/blogs/1389/09/%d8%ac%d8%b3%d8%aa%d8%ac%d9%88%db%8c-%d9%85%d8%ad%d9%84%db%8c-%d9%be%d8%b1%d8%aa%d9%88-local-beam-search
http://www.mshams.ir/blogs/1389/09/%d8%ac%d8%b3%d8%aa%d8%ac%d9%88%db%8c-%d9%85%d8%ad%d9%84%db%8c-%d9%be%d8%b1%d8%aa%d9%88-local-beam-search

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.11, November 2014

17

The limited number of crawled pages in best first search

algorithm originated from the nature of this method that

specifies the authority of pages and then follows the

authorized links.

Table 1. Number of crawled and analyzed Web pages for

each of queries in different traversal algorithms

 BFS DFS H1 H2 H3 Best HC

Q1 4056 6081 6450 5910 5910 300 2217

Q2 3890 4975 5512 4782 4125 246 1758

Q3 1970 2730 3100 2800 2500 170 900

Q4 3200 4505 4824 3917 3754 235 1475

Q5 2476 2970 3300 2940 2754 220 1100

First of all, the seed pages must be selected at first. Our

measure for selecting seed pages is the number of related

external links. After the search on first query (“Computer

networks”) through reviewing all pages, three pages were

selected as seed pages as S1, S2 and S3 that have more number

of associated external links. Then the test continues as

described below:

In the breadth first method, all the external out-links related to

the first seed page are extracted and called a1, a2 , . . . , an. At

this breadth considering five levels the result of 90/90% is

obtained. At the second breadth, all external out links from a1

, a2 , . . . , an is extracted and called b1 , b2 , . . . , bn in a way

that a1b1, …, a1bn, a2b1, …, a2bn, ….anb1, … anbn. At this

breadth, the relevance percentages of the pages are calculated

for each bi and the relevance of pages are obtained as 33.83%.

In the third breadth, as well as other breadths, the external

out- links from b1, b2, . . ., bn are addressed as c1 , c2 , . . . , cn

respectively. At this breadth, the number of relevant pages is

reduced and is dropped to zero. In next breadths of fourth and

fifth that called d1, d2, d3 , . . . , dn and e1, e2, e3 , . . . , en, third

breadth result is repeated. The traversed path has been

depicted in figure 7. Therefore, the average of total relevant

pages for S1, S2 and S3 using breadth first method is 33.16% .

The content relevance percentage in BFS method for the five

queries has been depicted as the first column in figures 9 to

13. The same path is traversed for other queries in breadth

first manner.

In experimenting with the depth-first method, first the search

depth is fixed at 5. In most search engines, the depth level is

defined by the control unit. After searching and examining up

to the fifth depth, the results of this method is compared with

the breadth-first method In this method, first starting from the

seed pages one by one and considering their first out-link as

a1, its relevance to the interested content of S1 is examined.

Then going to the second depth, first the out links of ai as bi is

extracted. Then out-links extracted from each bi is ci and the

relevance of ci to the interested content is calculated. In the

fourth and fifth depths, the action is like the previous depths,

as these extracted out- links is called di and ei. Finally the

relevance average of the five depths is calculated. The first

step of the test is shown in figure.

Level 0 S1, S2 , S3

Level 1 (S1 . a1  . . .  S1 . an)

Level 2
(S1.a1.b1  . . .  S1.a1.bn) + …+ (S .an.b1 . . .  S1 .

an.bn)

Level 3

(S1 . a1.b1 .c1  . . .  S1 .a1.b1 . cn) + (S1 . a1.b2 .c1  . .
.  S1 .a1.b2 . cn)+ … (S1 . a1.bn .c1  . . .  S1 .a1.bn .

cn)+ (S1 . a2.b1 .c1  . . .  S1 .a2.bn. cn)

Level 4

(S1.a1.b1 .c1.d1  . . .  S1.a1.b1 .c1 .dn) + (S1.a1.b1 .c2. d1

 . . .  S1.a1.b1.c2.dn)+ … (S1 . a1.b1.cn .d1  . . . 
S1 .a1.b1 .cn.dn) + (S1. a1.b2 .c1. d1  . . .  S1 .a1.bn. cn.

dn)+ …

Level 5

(S1.a1.b1 .c1.d1 .e1  . . .  S1.a1.b1 .c1 .d1.en) + (S1.a1.b1

.c2. d2.e1  . . .  S1.a1.b1.c1.d2.en)+ … (S1. a1.b1.c1

.dn .e1  . . .  S1 .a1.b1 .c1.dn.en) + (S1. a1.b1 .c2. d1.e1 

. . .  S1 .a1.bn. cn. dn.en)+ …

Fig 7: The traversed path in breadth first method for five

levels.

Fig 8: Beginning of the path in depth first method

Considering figure 8, the relevance average of pages for sees

page of S1, is 10.08 %. In this test it can be seen that in the

depth-first-movement, a more and unnecessary detailed view

of the content is provided to the user. By comparing the

results of employing the two methods of BFS and DFS started

from S1 related to query of “Computer networks”, it can be

seen that in the breadth-first the relevance of the pages is

more than depth first method. By observing the obtained

values, it can be concluded that in all levels of S1, the breath-

first method acts better than the depth-first method so the user

faces more relevant pages. The content relevance percentage

in DFS method for the five queries has been depicted as the

second column in figures 9 to 13.

In this paper, in order to achieve better and more related and

authorized results, a hybrid method of breadth first and depth

first is used by following each seed pages. This test is done in

three different combination levels in a way that in the first

combination (H1) form, the breadth-first for one level is

implemented and for other four levels the DFS is employed.

In the second combination (H2) form, both first and second

breadths are traversed as BFS while third, fourth and fifth

levels are traversed as DFS. In third combination (H3) form,

the first, second and third breadths are traversed by BFS and

fourth and fifth levels by DFS.

Tables 2 and 3 show the content relevance of pages using any

of BFS, DFS, and hybrid method and the best-first and hill

climbing methods for all tested queries and figures 9 to 13

shows the relevance percentage of the result set for each of the

queries with BFS, DFS, H1, H2, H3 and hill climbing.

As depicted in figures 9 to 13, the best result is related to the

best first search method. But considering the space and time

complexity of this method and the tedious process of filtering

and determining the most authorized pages, this method could

not be applied in search engines. The second best result

according to the conducted experiment and based on the

results of searching different queries belongs to the first

hybrid method of H1. Since the basis of this method is the

simple DFS and BFS methods, it could be applied in crawler

module to fill the crawler queue with pages with higher

quality.

S1 a1  S1a1 b1  S1a1b1 c1  S1a1b1c1 d1  S1a1b1c1 d1

e1

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.11, November 2014

18

 Fig 9: Relevance percentage of the pages in “Computer

networks” query (Q1)

 Fig 10: Relevance percentage of the pages in “Artificial

Intelligence” query (Q2)

 Fig 11: Relevance percentage of the pages in “Web

crawler” query (Q3)

Table 2. The relevance of pages in search methods of BFS,

DFS, best first and hill climbing

BFS

DFS

Best First

Search

Hill-

Climbing

Q1 33.16 11.37 77.45 11.94

Q2 25.44 7.18 73.76 7.93

Q3 21.04 7.26 75.36 9.11

Q4 24.02 11.03 72.85 13.47

Q5 18.68 8.17 70.28 11.25

Table 3. The relevance of pages in hybrid search methods

 Hybrid

(1)

Hybrid

(2)

Hybrid

(3)

Q1 46.55 31.19 25.72

Q2 38.69 33.68 16.78

Q3 27.26 19.12 14.14

Q4 39.95 37.82 21.01

Q5 30.64 29.47 13.98

Fig 12: Relevance percentage of the pages in “Search

engine” query (Q4)

 Fig 13: Relevance percentage of the pages in “Cloud

Computing” query (Q5)

33.16

11.37

46.55

31.19
25.72

77.45

11.94

0

10

20

30

40

50

60

70

80

90

100

25.44

7.18

38.69
33.68

16.78

73.67

7.93

0

20

40

60

80

100

21.04

7.26

27.26

19.12
14.41

75.36

9.11

0

20

40

60

80

100

24.02

11.03

39.95 37.82

21.01

72.85

13.47

0

20

40

60

80

100

18.68

8.17

30.64 29.47

13.98

70.28

11.25

0

20

40

60

80

100

International Journal of Computer Applications (0975 – 8887)

Volume 106 – No.11, November 2014

19

5. CONCLUSION
In order to have a crawler queue with pages of higher quality

regarding the authority of Web pages and no or less content

drift to the seed page, search engines should employ more

intelligent crawler module. This paper uses different graph

traversal approaches and hybrid methods based on them to

yield the result set for issued queries. Then the quality of

obtained pages has been checked regarding the level of

content drift. Based on our experimental results, the best first

search method is the search algorithm which produces the

highest quality pages. But regarding its time, space and cost

complexity, the second best result which is the hybrid level

one of breadth first and depth first methods is proposed as the

best applicable search algorithm for search engines. The

future work of this paper seeks an optimized algorithm based

on best first search method in combination with the hybrid

level one in some extent to produce better quality pages in

comparison to the findings of this paper.

6. REFERENCES
[1] Ahmadi-Abkenari, F., Selamat, A. 2012. “An

Architecture for a Focused Trend Parallel Web Crawler

with the Application of Clickstream Analysis”,

International Journal of Information Sciences, Elsevier,

Vol. 184, pp. 266-281.

[2] Ahmadi-Abkenari, F., and Selamat, A. 2013.

“Advantages of Employing LogRank Web Page

Importance Metric in Domain Specific Web Search

Engines”. JDCTA: International Journal of Digital

Content Technology and its Applications. Vol. 7, No. 9.

pp. 425-432.

[3] Ahmadi-Abkenari, F., and Selamat, A. 2012. “LogRank:

A Clickstream-based Web Page Importance Metric for

Web Crawlers”. JDCTA: International Journal of Digital

Content Technology and its Applications. Vol. 6, No.1.

pp. 200-207.

[4] Arastoo poor ,sh. 2008. “The Crawler and Web

structure” information and library journal, Vol. 9, No. 2,

pp. 4-15.

[5] Baeza-Yates R., Castillo C., Marin M., and Rodriguez A.

2005. “Crawling a country: Better strategies than

breadth-first for Web page ordering”. In Proceedings of

the 14th international conference on World Wide Web /

Industrial and Practical Experience Track, Chiba, Japan,.

ACM Press, pp. 864– 872.

[6] Esmaeeli, m. tavakoli,m, hashemi majd, s, 2013. “The

Web crawler” APA professional laboratory in context of

information and communication technology security,

document number, APA_FUM_W_WEB_0111, pp. 5-

28, bahman.

[7] Hafri Y, and Djeraba C. 2004. “High performance

Crawling system”. In Proceedings of the 6th ACM

SIGMM Int. Workshop on Multimedia Information

Retrieval pp. 299–306.

[8] Junghoo Cho, 2002. “Parallel Crawlers”. In proceedings

of WWW2002, Honolulu, Hawaii, USA, May 7-11.

ACM 1-58113-449-5/02/005.

[9] Junghoo Cho, Hector Garcia-Molina, and Lawrence.

1998. “Efficient Crawling through URL Ordering Page”.

In Proceedings of the 7th World-Wide Web Conference.

pp. 161-171.

[10] Kumar G., Duhan N., and Sharma A.K. 2011. “Page

Ranking Based on Number of Visits of Links of Web

Page”. International Conference on Computer &

Communication Technology (ICCCT)-2011, IEEE, pp.

11-14.

[11] MENCZER F and SRINIVASAN P. 2004. “Topical Web

Crawlers: Evaluating Adaptive Algorithms”, ACM

Transactions on Internet Technology’. Vol. 4, No. 4, pp.

378–419.

[12] MENCZER, F., PANT, G., RUIZ, M., AND

SRINIVASAN, P. 2001. “Evaluating topic-driven Web

Crawlers”. In Proceedings of the 24th Annual

International ACM SIGIR Conference on Research and

Development in Information Retrieval, D. H. Kraft, W.

B. Croft, D. J. Harper, and J. Zobel, Eds. ACM Press,

New York, NY, pp .241–249.

[13] M. Kurant, A. Markopoulou, and P. Thiran. 2010. “On

the bias of BFS (Breadth First Search)”. In arXiv: 1004.

1729.

[14] Najork, M., Wiener, J.L. 2001. “Breadth-First Search

Crawling Yields High-Quality Pages”. In WWW’01,10th

International World Wide Web Conference. pp. 114-118.

[15] Olston Ch, and Najork M. 2010. “Web Crawling’.

Foundations and Trends in Information Retrieval”. Vol.

4, No. 3, pp .175–246.

[16] Onn Brandman, Junghoo Cho, and Hector Garcia-

Molina. 2000. “Crawler Friendly Servers”. In

Proceedings of the Workshop on Performance and

Architecture of Web Servers (PAWS). Santa Clara,

California.

[17] Pant G. and Menczer F. 2003. “Topical Crawling for

Business Intelligence”. In Proc. 7th European

Conference on Research and Advanced Technology for

Digital Libraries (ECDL 2003), Norway.

[18] Pant G., Srinivasan P., and Menczer F. 2002.

“Exploration versus Exploitation in Topic driven

Crawlers”. In WWW02 Workshop on Web Dynamics,

Hawaii.

[19] Pant G., Srinivasan P., and Menczer F. 2004. “Crawling

the Web”. Web Dynamics, pp. 153-178.

[20] Tyagi N., and Sharma S. 2012. “Weighted Page Rank

Algorithm Based on Number of Visits of Links of Web

Page”. International Journal of Soft Computing and

Engineering (IJSCE) , Vol. 2, Issue-3.

[21] Hoffmann, J. 2000. “A heuristic for Domain Independent

Planning, and its Use in an Enforced Hill-Climbing

Algorithm”. 12th International Symposium on

Methodologies for Intelligent Systems (ISMIS-00),

Springer, pp. 216–227. Berlin.

[22] Stern, R., Kulberis, T and Felner, A. 2010. “Using

Lookaheads with Optimal Best-First Search”.

Proceedings of the Twenty-Fourth AAAI Conference on

Artificial Intelligence (AAAI-10). pp. 185-90.

[23] Reid, M and Korf, R.E. 1998. “Complexity Analysis of

Admissible Heuristic Search”. American Association for

Artificial Intelligence (AAAI-98), pp. 1-6.

IJCATM : www.ijcaonline.org

