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ABSTRACT 

This paper describes the method that constructs low 

autocorrelation binary sequences (LABS) which have 

applications in various engineering domains. We use a meta-

heuristic search approach employing local search method 

known as Tabu Search, which solves mathematical 

optimization problems. Our paper is an extension to the 

existing one [1]. We were able to achieve new optimal 

solutions with our improved algorithm (especially for 

instances greater than 60 and less than 101) to that of the 

previous method [1].Instead of finding optimal solutions for 

odd skew- symmetric instances we found the optimal 

solutions for all the instances. We have conducted 

experiments over a large number of sequences thoroughly, for 

multiple times to ensure the results.  
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1. INTRODUCTION 
“LABS” is a Np hard combinatorial optimization problem. An 

optimal solution has to be found out from finite candidate 

solutions. In this problem, complete search of all possible 

solutions is not possible because of time and memory 

constraints. Labs have numerous applications in various fields 

especially in communication engineering, which brings the 

necessity to find the optimal labs for various instant sizes. In 

radars, labs are required for modulation in the process of pulse 

compression that enhances range resolution and also long 

range target detection capabilities [2]. 

Even in synchronization of communication systems, LABS is 

a requirement. Finding Labs for any instance is very difficult 

as it is similar to searching for a needle in a haystack. One of 

the complex problems of LABS is epistasis; change in one 

position affects several other positions. The complexity 

increases as instance size increases. The stochastic and 

evolutionary methods in the literature did not provide 

satisfactory approaches in solving this problem [3].Other than 

our Meta-heuristic approach, the time taken for other methods 

to obtain a solution to this problem proved to be extremely 

time-consuming. Some of the evolutionary methods in the 

literature are successful in obtaining near-optimal solutions 

[4-7]. We modified the Tabu search algorithm provided in 

[1].We obtained better results for some of the instances. Tabu 

Search is meta-heuristic approach that uses memory in search 

process and escapes from repeated patterns with the help of 

Tabu parameters [8]. The basic approach of local search 

strategy is to select randomly a candidate solution in the 

beginning and then look for better immediate neighbor. 

Obtaining the optimal solution is the goal, which would be the 

best possible solution. 

2. BACKGROUND 
The application of autocorrelation on binary sequences is 

described in this section, along with their fundamentals 

2.1 Low Autocorrelation Binary 

Sequences. 
Consider a binary sequence 𝐵  of length  𝐼  represented by  

𝑏1 , 𝑏2, … . 𝑏I with 𝑏𝑛 ∈ {−1, 1}𝐼  for 1≤ n ≤ I. The aperiodic 

autocorrelation of elements in sequence B with distance d is 

defined as  

                 Ad 𝐵  =  𝑏𝑛
𝐼−𝑑
𝑛=1 𝑏𝑛+𝑑   

The energy corresponding to sequence B is the quadratic sum 

of its correlations: 

                 𝑃 𝐵  =   𝐴𝑑
2𝐼−1

𝑑=1  𝐵  

Low autocorrelation problem for binary sequences with length 

B, represented as LABS (B), consists of finding a sequence of 

length I, with associated minimum energy. Consider an 

example. Labs instances are only determined by size of I. If 

we take an example for I=3, experimental results have shown 

that for this length the best binary sequences are 

  1, −1, −1 , −1,1,1 , −1, −1,1 ,  1,1, −1 .     The energy 

corresponding to these sequences is 1, which is the minimum 

for I=3.There is an important property for labs instances, 

Symmetry that is even if the sequence is reversed or 

complemented the result remains the same. For example if we 

take the example of 𝐼 = 3 and if we consider the sequence 
 1, −1, −1  and reverse it, we get  −1,1,1  which has the 

same energy as that of former one. With the help of symmetry 

finding at least one sequence for a length would give us a 

second sequence of same energy level. Each autocorrelation 

function contributes quadratically to the single energy P, a 

single large Ad can reduce the fitness of a sequence 

drastically. The Ad is not independent and therefore each 

change in the sequence leading to an improvement of certain 

Ad, will modify the other Ad as well. This is the feature of 

frustrated problem, characterized by a rough landscape where 

local maxima are many, steep and narrow [9]. 

Golay used Merit Factors to determine the quality of 

sequences [10, 11].Merit Factor is represented by the formula  

                         G 𝐵  = 
𝐼2

2𝑃 𝐵 
 

If 𝐺𝐼GI is assumed as the optimum value of the merit factor 

for sequences of length I, the LABS(I) problem can be 

alternatively defines as finding GI such that 

                    𝐺𝐼 =  maxB∈ −1,1 I G(B)                       

Ergodicity postulate is an assumption that estimates the 

asymptotic value for GI, namely GI 12.32 for I  ∞ 
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Merit factor is a qualitative measure for a sequence because it 

lends itself to better analytical treatment. It is also closely 

related to SNR used in signal processing [9]. LABS problem 

is a combinatorial optimization problem, the search space for 

the Labs(I) problem has the size 2I
, and the merit factor of the 

sequence computes  in time O(I2).We already discussed the 

epistasis  problem of LABS. Along with that there is another 

problem that we have to consider. Another difficulty is the 

presence small number of global optima for most values of I. 

It is a premise being taken after observing a large number of 

enumerated solutions. The corresponding search landscape 

has a large number of local minima. Global optima are not 

present in groups but are spread widely, which further 

increases the difficulty of the search. This problem has only 

one approach, which is to do implicit enumerative search 

among all 2I
   possible sequences. 

2.2  Related Work 

One of the most recent works done on labs problem is by 

S.D.Prestwich [12]. He uses four methods to improvise the 

branch and bound technique of mertens. Prestwich gave the 

optimal solutions for skew-symmetric sequences (length 73 to 

89). One of the other recent works is done by three people 

[13] (Steven Halim, Roland H.C. Yap, and Felix Halim). They 

designed an advanced Stochastic Local Search (SLS) 

algorithm for LABS problem. A white box visualization 

technique is used by them to determine the effectiveness of sls 

algorithms for LABS problem.  

They obtained solutions for instances up to 77.They 

mentioned that these solutions are not optimum, and they can 

be improved further. Jozef-Kratica designed an advanced 

electromagnetism (EM) approach for solving LABS problem 

[14].It uses a meta-heuristic population-based algorithm 

which shrinks the search space in no time. With attract-

repulse phenomenon, the candidate solutions are projected 

towards local optima. After that, local search is implemented 

along with scaling technique, by doing this the sample points 

converges to the nearest local optima. In local search, the 

highest priority is given to improvement strategy. Kratica has 

yielded optimal solutions up to instance size of 40. 

 Kratica designed an another model in which labs problem is 

treated as mixed integer quadratic programming problem 

(MIQP) [15].The algorithm used here is the first of its kind, 

and it is completely not defined. The search space is 

minimized with general optimization techniques. With the 

help of existing programming package, the LABS problem is 

modeled. The validity of MIQP analysis is also proved. With 

the help of MIQP technique, optimal solutions are obtained 

for skew-symmetric sequences in normal runtime. Kratica 

gave optimal solutions up to n=60. 

In [1], near optimal solutions were provided for odd skew-

symmetric sequences up to instance size of 201. In [2], 

Abhisek Ukil used number theory-based analysis for 

minimum energy levels, Barker codes. He proposed a theorem 

that states that  there are finite numbers of possible energy 

levels, which are equally spaced at period four, for the given 

binary sequence of a given length. There is an assumption that 

only when N 13 barker sequences exist, this is true in the 

case of all N.This is been supported by further analysis, done 

in the literature. 

By comparing all the previous techniques used in the 

literature, it becomes clear that the linear search is not feasible 

for this problem. For example, Golay stated in [10] that 

Lindner had executed a vast linear search and obtained the 

optimal solutions for N≤32.Mertens developed the famous  

branch and bound technique[16].In Mertens technique, the 

search tree will be pruned  to speed up the backtracking 

search. He solved instances up to L = 48.The two former 

methods lacked scalability, and they cannot complete the 

search for larger instance sizes with limited resources namely 

time and computing power (that is memory).Even simulated 

annealing [17] and evolutionary methods [18-20] have been 

produced poor results. Militzer obtained the optimal solutions 

for very large instances [9] using a (µ, lambda)- Evolutionary 

Search algorithm. The process of recombination is not 

performed to obtain an offspring. Blind mutation operators are 

not selected, and problem solving is advanced with a heuristic 

known as pre-selection technique. Large aperiodic 

autocorrelation values are diminished with pre-selection 

technique. At first, the procedure is that a small set of y 

autocorrelations will be randomly picked from this set, the 

largest z correlations are selected. After that random flipping 

of bits will take place for n > 1.The obtained candidate 

solution is selected only if all z auto-correlations in the second 

set have been decreased. Otherwise, the method is repeated 

until an acceptable solution is obtained, or the trial limit is 

reached 

3. META HEURISTICS FOR THE LABS 

PROBLEM  
LABS is not a decision problem. Hence, the solution is 

determined by an objective function, and the idea is to obtain 

the least objective function values. The objective function 

value, also called solution quantity, of all candidate solutions, 

has to be determined. Labs problem is a minimization 

problem because the objective function is to be minimized.  

 1    2  3 

 

   4     

 

1                              𝑏1𝑏2  𝑏2𝑏3 𝑏3𝑏4 𝑏4𝑏5 

 2 𝑏1𝑏3 𝑏2𝑏4 𝑏3𝑏5  

 3 𝑏1𝑏4 𝑏2𝑏5   

 4 𝑏1𝑏5    

H(B) 

 

1 𝑏1𝑏2 +  𝑏2𝑏3  +  𝑏3𝑏4  + 𝑏4𝑏5 

2 𝑏1𝑏3 +  𝑏2𝑏4  +  𝑏3𝑏5 

3 𝑏1𝑏4 +  𝑏2𝑏5  

4  𝑏1𝑏5 

 

A(B) 

Figure. 1 

The above two tables represent the data structures used to 

efficiently recomputed fitness for a sequence of length 5. B = 

(b1, b2, b3, b4, b5). 

H 𝐵  is used to store the products of elements separated by 

distance d efficiently. For each row the distance between the 

symbols which have to be multiplied and taken as pairs 

increases by one. A 𝐵  just performs addition of all the 
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products of H 𝐵  row wise.This kind of implementation is 

very useful to get the optimum solution. 

3.1 Neighborhood structure 
The major limitation of iterative improvement is that it gets 

stuck in local minima of the corresponding evaluation 

function. A large neighborhood has to be taken to solve this 

problem. The capability of any sls algorithm depends on the 

capacity of neighborhood and its relation. The idea is that, as 

the neighborhood size increases, the probability for obtaining 

good candidate solutions increases, so the probability of 

finding improvised steps in local domain increases. So 

selection of neighborhood relation is crucial. 

In this case of LABS, we consider the neighborhood of a 

solution B, whose length is I .Neighborhood is obtained by 

flipping exactly one symbol in the sequence. This 

Neighborhood can be expressed constructively as 

N 𝐵  =  𝑓𝑙𝑖𝑝 𝐵, 𝑛  𝑤ℎ𝑒𝑟𝑒 𝑛 𝜖  1,2, . . , 𝐼   

Where flip  𝑏1𝑏2 . . 𝑏𝑛…𝑏𝐼 , 𝑛  =𝑏1𝑏2. . −𝑏𝑛…𝑏𝐼. 

The optimum value for a given move has to be obtained, in 

other words, in local search; accurate re computation of the 

fitness function should take place for every move. 

 

1 : 

function ValueFlip(B, n, H , A)    

f := 0       

2 : for p := 1 to I - 1 do     

3 :         v := AP       

4 :         if p  I - n then v := v – 2Hpn end if  

5 : 

 

if 

p < n then v :=          v 

- 

2 Hp (n-

p) 

end if  

6 : 

 2    

f := f + v      
 

7 : end for      
 

8 : return f      
 

 end function      
 

        
 

Figure. 2 

Whenever the function valueflip is called with the arguments 

provided, the energy value or the optimum function value is 

returned. The complexity of evaluation of this function is 

O(I^2). A new structure that completely reevaluates the 

solution after flipping one element in the sequence B would 

be rather unfit. A superior structure  can be obtained by saving 

all computed products in a (I -1) × (I - 1) table H (B ), such 

that H (B)i j =bjbi+j for j ≤ I-n, and storing the values of the 

various correlations in a I - 1 dimensional vector A (B ), 

defined as A 𝐵 d = Ad 𝐵   for 1 ≤ d  I-1. By observing that 

flipping a single symbol bn multiplies by -1 the values of all 

cells in H (B ) where bn is present, the  fitness of sequence  

flip (B,n) can be effectively recomputed in time O(I) as the 

output of the funtion Value Flip(B,n,H (B ),A (B )), defined in 

Fig.2. 

3.2 Local Search Strategies 
The meta-heuristic that we have used is Tabu search. This 

selection is based on [1].We have modified the pseudo-code 

presented in [1]. Tabu search is a general sls method that 

methodically uses the memory for directing the search 

mechanism. Tabu search consistently utilizes a best 

improvement technique to pick the finest neighbor of the 

present candidate solution for each and every search step. In 

the case of a local optimum, this strategy results in worsening 

or reaching a plateau if local search steps does not change the 

evaluation function value, it has reached a plateau. In the 

process called cycling, the local search immediately returns to 

the previous candidate solution which is already visited. To 

avert cycling Tabu search restricts search steps to previously 

visited search locations. This restriction can be achieved by 

accurately memorizing earlier candidate solutions and seeing 

that no search step will yield back those values gain. More 

frequently, reversing the latest search steps is averted by 

prohibiting the reestablishment of solution factors that have 

just been eliminated from the present solution. The particular 

condition under which the Tabu parameters are neglected is 

known as aspiration criteria. A frequently used condition of 

aspiration criteria reverses the Tabu restriction on steps that 

result in advancement of necessary candidate solution. Tabu 

restrictions will be applied on search steps for a specific 

period known as tabu tenure.The developed step function is 

the basis of the Tabu mechanism. It utilizes appropriate 

neighbors for the function to determine whether the neighbors 

of present candidate solutions are Tabu or not, but satisfy the 

aspiration criteria. In the next level, a maximally enhancing 

step is randomly picked from this subset of appropriate 

neighbors. Tabu tenure is a major factor which affects the 

capability of Tabu search mechanism; it has to be taken 

appropriately. A very small Tabu tenure leads to search 

stagnation, whereas a very large value leads to restriction of 

the search path, and even good-grade solutions may be 

ignored. Tabu tenure setting can be obtained by empirical 

analysis, or the tenure can be dynamically adapted according 

to the conditions of the search mechanism. 

In our case Tabu search uses the search history to adjust the 

Tabu tenure dynamically during the search. Because same 

candidate solutions are repeatedly encountered in LABS 

problem, so Tabu tenure is increased if no repetitions are 

found for a long period or the Tabu tenure can be gradually 

decreased. Moreover, an escape strategy is utilized to avert 

the search mechanism based on a chain of random alterations, 

to escape from getting trapped in specific search space region. 

For example, consider the pseudo-code given in [1].It is a 

mechanism to escape from local optima. For this reason, they 

have used an I-dimensional vector M as an adjunct memory 

based on the previous step.  So that if Mn = d, flipping the nth 

symbol in the present sequence is prohibited till the d-th 

iteration of the search process. The best optimal solution 

obtained in the present step  of the  search process is improved 

by the selected aspiration criterion, which restricts certain 

Tabu steps. The actual pseudo-code of this procedure is 

shown in Figure 3.  For each iteration, the search moves to the 

best sequence in the present neighborhood that is not Tabu, 

and the respective flipped element is restricted for a random 

number of repetitions.  

Function TabuSearch (B, H, A) 

1: Mn: = 0; for 1  n   I 

2: minTabu: = maxIters/10 

3: extraTabu: = maxIters/50 

4: B*  ∶= B; f* =  𝐴𝑑
2𝐼−1

𝑑=1  

5: for n: = 1 to maxiters do 

6:  f˦ := ∞ 

7: for n:= 1 to I do 

Figure  3 
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4. EXPERIMENTAL RESULTS  
The Tabu search algorithm runs on different instant sizes. We 

conducted the experiment for 61 instances that is between 40 

and 100. The termination criterion for execution was finding 

the optimal solution. We did not keep any time limit for 

execution termination. At the same time, we have used 61 

independent machines; all run independently to get the results. 

For each instance whose size is greater than 66, the run time 

for each machine was more than 72 hours. All experiments 

were performed on a 2.2 GHz core two duos PC under 

windows operating system. 

4.1 Instances with Known Optima. 
For instance size up to 60 the optimal solutions are already 

known, but to confirm that, we conducted experiments for 

instances between 40 and 60.we found the same energy levels 

as that in [1].The execution time was however reduced to a 

greater extent. There are two particular reasons for the speed 

that we have achieved. One reason is the algorithm that we 

have implemented and the restart strategies and intensification 

strategies that we have applied. Second reason is the kind of 

machines that we have used; as their speed was more than 

those used in [1].Figure 4 gives the information regarding 

energy levels of various instances between 40 and 60 instance 

sizes. 

I P(B) G(B) ACTUAL LABS OBTAINED 

 IN RUN LENGTH 

40 108 7.41 111211211343143131312 

41 108 7.78 112112182222111111343 

42 101 8.73 211211211343143131313 

43 109 8.48 1132432111117212112213 

44 122 7.93 525313113111222111211121 

45 118 8.58 82121121231234321111111 

46 131 8.08 73235111112132122112121 

47 135 8.18 111221111111211222224924 

48 140 8.23 1211211222123412381111113 

49 136 8.83 1121212111112131223137333 

50 153 8.17 11211211123111111312224527 

51 153 8.50 23432111141313116212112121 

52 166 8.14 111141111333713221321212121 

53 170 8.26 26522313111221215141112111 

54 175 8.33 121111111222211212141522653 

55 171 8.85 11221221111111121142114A232

3 

56 192 8.17 111221211231111142321132216

7 

57 188 8.64 112122122111121721111136232

33 

58 197 8.54 2112342311212418312321311111 

59 205 8.49 6132123121111113112341221121

242 

60 218 8.26 1111112111153117142112412224

221 

Figure  4 

4.2 Large instances (61-77) 
From instance size of 61, the necessity of Tabu search can be 

seen. It is a large factorial and takes lot of time even with 

local search strategy. If a normal linear search is applied for 

these larger instances, it is almost impossible to find the 

optimal solution. For instances between 61 and 79, the 

obtained results can be considered as optimum solutions. We 

have run the machines for almost 72 hours for each instance 

for multiple times to check if there is any other optimum. It is 

possible to achieve optimum results if the algorithm is further 

modified. 

 Figure 6 gives the information regarding energy levels of 

various instances between 61 and 77. 

Figure 5 

4.3 Large Instances (80-100) 

We achieved in obtaining new optimal solutions in this range. 

Unlike several other works in the past which only concentrate 

on odd skew-symmetric sequences, we tried to achieve energy 

levels to all instances in this range. The execution time for 

each sequence is more than 72 hours .we did not put any time 

limit on the runs. We manually terminated the program when 

the same values are repeating for a large period. It is possible 

to achieve lower energy levels than this, but algorithmic 

approach has to be different.  

   

  I 

 

P(B) 

 

G(B) 

 

ACTUAL LABS IN RUNLENGTH  

61 226 8.23 33211112111235183121221111311311 

62 235 8.18 112212212711111511121143111422321 

63 207 9.59 2212221151211451117111112323231 

64 208 9.85 223224111341121115111117212212212 

65 240 8.80 132323211111711154112151122212211 

66 265 8.22 24321123123112112124123181111111311 

67 241 9.31 12112111211222B2221111111112224542 

68 250 9.25 11111111141147232123251412112221212 

69 274 8.69 111111111141147232123251412112221212 

70 295 8.31 232441211722214161125212311111111 

71 275 9.17 241244124172222111113112311211231121 

72 300 8.64 1111114111444171151122142122224222 

73 308 8.65 1111112311231122113111212114171322374 

74 349 7.85 11321321612333125111412121122511131111 

75 341 8.25 12122132121211211111131111618433213232 

76 338 8.54 111211112234322111134114212211221311B11 

77 366 8.10 111111191342222431123312213411212112112 
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Instant 

 size 

 our 

energy 

value  

Our merit 

factor 

Beenker 

[21] 

80 404 7.92 - 

81 400 8.20 7.32 

82 425 7.91 - 

83 377 9.14 7.81 

84 438 8.05 - 

85 442 8.17 7.03 

86 471 7.85 - 

87 452 8.39 7.46 

88 512 7.56 - 

89 484 8.18 7.56 

90 517 7.83 - 

91 477 8.68 7.13 

92 582 7.27 - 

93 503 8.61 7.23 

94 603 7.32 - 

95 479 9.42 7.15 

96 534 8.62 - 

97 536 8.78 7.35 

98 673 7.13 - 

99 578 8.49 7.28 

100 673 7.42 - 

Figure 6 
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5. CONCLUSIONS  
We have achieved a good range of merit factors for large 

instances, by modifying Tabu search algorithm provided in 

[1].A very small change in algorithm leads to major 

differences in results. We modified the algorithm, by 

analyzing the LABS fitness landscape structure and Tabu 

search behavior. Graphs are plot between the parameters 

instance size and energy (2D graph 1 and 2D graph 2). We 

have drawn a histogram comparison plot between merit 

factors of ours and Beenker  [21], in almost every case the 

merit factors were high for odd values (2D graph 1).At last, 

the top ten merit factors with their corresponding instances are 

plotted(2D graph 2). 
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