
International Journal of Computer Applications (0975 8887)
Volume 105 - No. 7, November 2014

Mining Frequent Patterns with Optimized Candidate
Representation on Graphics Processor

Dharmesh Bhalodia
RK University
Rajkot, Gujarat

India

Chhaya Patel
RK University
Rajkot, Gujarat

India

ABSTRACT
Frequent itemset mining algorithms mine subsets of items that
appear frequently in a collection of sets.FIM is a key investigation
in numerous data mining applications, and the FIM tools are
among the most computationally demanding in data mining. In
this research paper we present a new approach to represent
candidate in parallel Frequent Itemset Mining algorithm. Our new
approach is extension of GPApriori, a GP-GPU version of FIM.
This implementation is optimized to achieve high performance
on a heterogeneous platform consisting of a shared memory
multiprocessor and multiple cores NVIDIA based Graphics
Processing Unit (GPU) coprocessor. An experiments compared
with the GPApriori on NVIDIA Kepler GPUs and observed 1.5X
to 2X required less memory and significant improvements in time
relative to GPApriori.

Keywords:
Association rule mining, CUDA, GPU computing, Frequent
itemset mining, Parallel computing

1. INTRODUCTION
Continuous and considerable growth of the digital data and size
of database make a persistent challenge for developing new data
mining techniques. New problems appear every day and due to
growing amount of data to be mined, emphasis on real-time
constraints and changes in memory and computational efficiency,
proven solutions tend to be insufficient and are in need of
modification. One of data mining problems that always requires
newer version which is fast and efficient mining of frequent
patterns, especially under real-time constraints.frequent pattern
mining was first defined by Agrawal and Srikant in [1] as Defined
by, Given a set of transactions, where each transaction consists
of a list of itemsets, and given a user-supplied minimum support
threshold (min support), frequent pattern mining is to find all
frequent subsequences whose frequency/occurrence is no less than
min support.
The goal of Frequent Itemset Mining (FIM) is to find frequently
occurs subsets within a database of sets. Many scientific and
industrial applications, including those in machine learning,
intrusion detection from fraud transaction detection, computational
biology from particular pattern matching, web mining from web
server log data mining, and e-business benefit from the use of

frequent itemset mining. Much of the literature in frequent itemset
mining highlights the development of algorithmic improvements
as contrasting to parallelizing existing algorithms. As such,
state-of-the-art FIM implementations are generally sequential and
there is relatively little effort devoted to mapping these algorithms
to high-performance platforms.
Frequent Itemset Mining is common in many commercial
applications. A model can be shown in the sales data analysis
of supermarkets .Take an example of super market. In that, each
transaction is collected and after getting large amount of data. Then
apply market basket analysis to find out the common patterns. The
discovered patterns are set of items that are frequently repeated in
database. Like ”Bread, Butter and Egg are most frequent items”.
Decision making person use this detail for identify the customer
buying habits. Like ”people who buy the Bread and Butter often
also buy the Egg”. Analysis of these patterns can be useful for
designing the layout of the super market goods, products usually
sold together can be placed near each other. So it will be the higher
probability of increase in sales.
The current advances architecture are transforming from traditional
high performance distributed platforms into multi-core and
many-core hierarchical environments. Thus, creating efficient FIM
algorithms that fully exploit this parallelism is a very important
contribution.
In addition, existing algorithms are unable to solve all frequent
pattern mining problems in real-time, therefore there is a need
for additional solutions. One of possible solutions is modification
of existing algorithms by treating sequential mining problems
as GPGPU (general-purpose computation on graphics hardware)
problems and accelerating existing algorithms with use of Graphics
Processing Units (GPUs).

1.1 General Purpose Computing with Graphics
Processing Unit

In the last five years, two factors stimulated a renewed attention
respectively in distributed and parallel methods for data mining,
and in particular for high performance Frequent Pattern Mining
methods. The first is the wide availability of commercial, Elastic
and Distributed computing facilities, such as the Amazon Elastic
Compute Cloud; the second is the Microprocessors with increasing
number of cores availability, for example the recent NVIDIA
Kepler microprocessor, the one used in GeForce GTX 770
and GeForce GTX 780 cards. Features 2880 core with 6GB

1



International Journal of Computer Applications (0975 8887)
Volume 105 - No. 7, November 2014

total Global Memory[2]. These innovations open new scalable
opportunities on the one hand and demand for further care to handle
their peculiarities on the other. Thus, to effectively utilize these
opportunities, there is a need for a new generation and modification
of the existing data mining algorithms, it is suited for coherent
and predictable memory access, in able to exploit this particular
General- Purpose computing paradigm on Graphics Processing
Units (GP-GPU: http://gpgpu.org). This is due to the fundamentally
different architecture programming model and design of many core
GPUs with respect to traditional multi-core CPUs.
CUDA is a massively parallel computing platform and as well
as programming model developed by NVIDIA Corporation,
increasing computing performance for parallel problems with use
of Graphics Processing Units. It also provides low and high level
APIs (application programming interfaces) with debuggers, shared
memory access, scattered reads and fast read backs. NVIDIA
CUDA platform come with C programming extension and C++
integration too. Recently NVIDIA CUDA releases CUDA 6.0
which enable unified memory, in other word developers are free
from manualy memory copy(CudaMemcpy) from host to device
and visa versa. Now CUDA support such complex data structure
like link list and tree.[3]
In this paper, we propose a new approach to represent candidate
itemset in FIM algorithm that is optimized for a heterogeneous
platforms consisting of GPUs. This allows for efficient utilization
of the computational and memory resources of the GPU
coprocessors. We have also redesigned and optimized the memory
allocation strategy to improve the memory utilization of the
algorithm. The experimental results demonstrate the performance
benefit of our technique as compared to well known GPApriori a
GP-GPU version of FIM

2. RELATED WORK
The research activity in the domain of association rule mining has
been primarily focused on defining efficient algorithms to perform
the frequent itemset mining task. This problem can be defined as
follows. Let I be a set of items where I = {i1, i2, ..., in}. A
database D is a collection of transactions, where each transaction t
is a set of items in I . An itemset I is a set of items, characterized
by its frequency of occurrence into D, that frequency called as
support. Given a minimum support threshold as minsup, frequent
itemset is the extracted from D of the complete set of itemsets
which having larger support or equal to minsup.
While itemset mining is computationally concentrated, a number
of articles have been proposed to parallelizing frequent itemset
mining task. The earliest work on parallelizing itemset mining was
based on Apriori like algorithms [4]. One step towards to more
efficient parallel itemset mining algorithms has been proposed
based on FP-Tree with prefix-tree-like structures [5]. Even multi
tree algorithm has been proposed in [6] where Each thread analyzes
a horizontal segment of the database then builds its own FP-tree
and performs the mining process on individual segment. At final
step a merge operation is required to join together the individual
candidate pattern base. This approach is seems to be efficient and
may achieve good scalability in performance. On the other hand a
large amount of main memory and large number of threads when
traversal of redundant node could be required. The work done on
multi-core processor architecture to improve the frequent itemset
mining task [7] to utilize the vacant hardware resources. Further
enhanced in FP-Tree based method by path tilling technique [8].
This technique is retrieve the data from higher memory level
by improving temporal locality access.In our previous work we

presented AprioriDP [9] algorithm with Dynamic programming
approach which shows 100x speed up for large itemset of size 1
and 2 compare to traditional Apriori.
Recent trend for frequent itemset mining toward to parallelize
the algorithm with massive power of General Purpose Graphical
Processing Unit (GP-GPU). We known Apriori algorithm
implementation on GPU, was first time addressed in [10]. In
this case, two kinds of their GPGPU implementation, one based
on the ”pure bitmap” representation and another based on the
”trie-based bitmap” representation were proposed. These approach,
the candidates and vertical transactions are coded into bitmaps and
handled by GPU. Their dataset is represented as a binary matrix
of M×N where M is number of items present in database and
N is total number of transaction in database divide by size of
integer. Calculating the transactions that support a given item set
just requires to intersect rows of the matrix . The great advantage
given by the adoption of a vertical bitmap representation, is
that the expensive support counting is achieved with fast bitwise
intersection and population count of bit-vectors.
Another Apriori based FIM algorithm for GPU is presented
In GPApriori [11] and achieved higher magnitude in speed up
ration with compare to CPU base algorithm. They also presented
”Frontier Expansion” Eclat [12] and FP-Growth [13] based
implementation on GPU in [14], experimental results shows that
they got sufficient improvement.
The TreeProjection approach is used by [15], based on the
algorithm described in [16]. This work signify a significant
improvement with respect to the parallel version of the Apriori
algorithm. However, TreeProjection is not a state of the art
algorithm for FIM, as it is outperformed by FP-Growth. Another
state of art algorithm for FIM is Dynamic itemset counting
[17] was implemented by [18] on GPU, they apply various
techniques like transaction and candidate wise parallelism to
improve the performance. Recently we conducted survey on
recognized GP-GPU versions of FIM [19] , which thoroughly
described comparative analysis on predefine parameters.

3. APRIORI ALGORITHM INTRODUCTION
In this section, we introduce the fundamental concepts of FIM
algorithms. We discuss basic concepts in FIM algorithm design.
The initial solution to find frequent itemsets would be to generate
all the k, k ∈ {1, ...N} subsets of the universe of m items, count
their support by scanning the database, and export candidate those
meeting minimum support condition. The initial method exhibits
exponential Complexity , because it requires the computation of the
power set of m items, for example

∑n

i=1
= 2n − 1, is impossible.

The earliest solution, as formulated by the Apriori algorithm, is
based on the rule support monotonicity that an item set is frequent
if all its sub itemsets are frequent. Using this rule, the search space
can be reduced by joining iteratively from smaller itemsets to larger
ones of frequent itemsets and pruning candidates with infrequent
subsets. The Apriori algorithm intensively study after first being
published. Improvements are made in critical candidate generation
and support counting steps of FIM. Candidate generation is used
to generate k + 1 candidates from k frequent itemsets. Assume
that the number of k itemsets are N , a complete join from the N
itemsets expands candidate set size by O(N2). clustering itemsets
can be use to decrease the cost of complete join operation by
Appling Equivalent Class Clustering (ECC) [12] , which prevents
the creation of redundant candidates in each new generation. ECC
is able to generate candidate in O(δN) instead of quadratic time,
where δ is the expectation of the equivalent class size.

2



International Journal of Computer Applications (0975 8887)
Volume 105 - No. 7, November 2014

Support counting step is performed after the new candidates
are generated. The minimum threshold value that is support
value of the candidates, decides which of them frequent itemsets
and removes infrequent candidates are. There are two ways
to represent transactions in support counting step, those are
horizontal representation and vertical representation. The most
straightforward way is the horizontal representation in that each
transaction ID is associated with a list of item IDs. Instead,
the vertical representation associates each item ID with a list
of transaction IDs. When using horizontal representation, in
Apriori, support counting is performed by matching each candidate
itemset against the sorted transactional database using a binary
search. While using the vertical representation, the support of
new candidates is computed by intersecting the vertical list of
the previous generation with the vertical list of the item that has
been added to form the new candidate. The vertical representation
speeds up support counting by saving the occurrence information
for the counted candidates but in the other hand consumes more
memory. Figure 1 shows the horizontal and vertical transaction
representation. Figure 1 (b) shows two forms of the corresponding
vertical transaction lists: tidset and bitset. A tidset records itemset’s
occurrence information as an array of the transaction IDs, and a
bitset represents the same information with a bit mask.

Fig. 1. Comparison of (a) horizontal representation and (b) vertical
representation of transactions

4. ALGORITHM AND IMPLEMENTAION
In this section we describe our new approach to represent
candidate itemset on GPU. The novelty of our approach is compact
candidate size and fine-grain parallelization of the support counting
algorithm.

4.1 Dataset Representation
Accelerating FIM with a GPU comprises careful attention of the
vertical transaction representation. Whereas, Tidsets are linear
ordered arrays, and to traverse them during the support counting
operation it leads to poor performance due to unpredictable
instruction branching behavior. The tidset representation is
compact nevertheless join operations on Tidsets are highly
dependent and difficult to parallelize. On the other hand, the Bitset
representation is more suitable for designing a parallel set join
operation but it requires more memory space compare to Tidsets.
Bitsets is better suited for GPU, Joining two bitset transactions can
be performed by a bitwise AND operation between the two bit rows.
Below figure 2 shows memory access pattern difference between
Tidsets and Bitsets representation Figure 2 (b) represents that Bitset
memory access pattern is coalescing, which means all threads in a
warp execute a load instruction, the hardware detects whether the
threads access consecutive memory locations. The most favorable
global memory access is achieved when the same instruction for
all threads in a warp accesses global memory locations. In this

Fig. 2. Comparison of Tidsets and Bitsets intersection

favorable case, the hardware coalesces all memory accesses into
a consolidated access to consecutive DRAM locations. If thread 0
accesses location n, thread 1 accesses location n+1, . . . thread 31
accesses location n+31, then all these accesses are coalesced, that
is combined into one single access. The CUDA C Best Practices
Guide gives a high priority recommendation to coalesced access to
global memory [20]

4.2 Candidate Representation
In order to explain our new candidate set representation, we first
introduce the concept of ”Equivalent Class”, which can be defined
by a set of candidates which share the common k + 1 prefix. For
example, (1,2,3), (1,2,4) and (1,2,5) are in the same equivalent class
(1,2, x). But (1,2,3) and (1,3,4) are not in the same class because
they have the different k − 1 prefix (1,2,x) and (1,3,x).
In GPApriori, candidate representation is based on Traditional
Apriori, where candidates with size k and total number of candidate
l consume k × l memory. Instead we can represents candidate
set using equivalent class. For that we require two lists, one list
will store equivalent class candidate, in other word we store those
candidate of size k − 1 which shared by kth candidates. And in
second list we store kth candidates from equivalent class. i.e. if
we take 50% support count on dataset shown in figure 1 we get 5
candidate of size 2 shown in figure 3, it demonstrate the two ways
to represent the candidate sets in cuda. In figure 3(a) one to one

Fig. 3. Candidate Representations

mapping of k− 1 candidate to kth candidate. Alternatively we can
represent those candidates by one to many relation, as shown in
figure 3 (b). in one to one mapping k − 1 candidates are repeated
until next equivalent class. In contrast we represent k−1 candidate
once for the same equivalent class. In figure there are 3 equivalent
classes so only three k−1 candidates are required. But in traditional
GPApriori require 5 candidates of size k − 1.
Here we address the critical problem when there are large number

3



International Journal of Computer Applications (0975 8887)
Volume 105 - No. 7, November 2014

of candidates with size k require redundant k − 1 candidates,
it requires more GPU global memory, which is limited in size.
Another problem is k − 1 bitsets intersections. Those intersection
performs on GPU global memory so it leads to higher global read
penalty.

4.3 Support Counting
Once candidate generation step completes, two lists of candidates
are transfer to the GPU global memory. The CUDA kernel structure
consists of threads, blocks and grids. Where group of Threads
called Block and group of Blocks called Grid. In each Thread,
inherited parameter blockIdx and threadIdx for identify unique
Block and Thread respectively. 32 threads within the same block
called warp will be grouped on to the same SIMD stream processor,
each stream processor is assigned to a set of warps, only one or
more warps will be active at a time depend on compute capability,
and the stream multiprocessor rotates between warps [21].

Kernel 1: Bitset Pattern Cache
Input: Candidate array of K − 1 items
Output: Bitset pattern of K − 1 item in BitsetCache
tid=ThreadID.X × BlockID.X +BlockDim.X;
if (tid � Bitset width ) then

Break;
end
for j = 1 to candidate width - 1 do

BitsetCache[tid] = BitsetCache[tid] &
Bitset[Candidate[j]×width+ tid] ;

end

Our GPU support counting kernels computes the Bitset intersection
and calculate the support value for each candidate. kernel 1 passed
with first equivalent class candidate of size k-1, i.e. ”1” in figure 3,
which perform the intersection or AND operation with Bitset and
store in BitsetCache. BitsetCache is temporary array with length
equal to Bitset width. Now Kernel 2 performs intersection between
Bitset of kth candidates and BitsetCache.

Kernel 2: Support Counting

Input: BitsetCache and Candidate array of Kth item
Output: Support Count of each candidate in support
can = Candidate[BlockID.X];
for tid = 1 to Bitset width do

temp = BitsetCache[tid] & Bitset[can × width+ tid] ;
sup[tid]+= popc(temp) ;

end
support[BlockID.X] = Parallel Reducation();

Here BitsetCache array act as caching mechanism for k − 1
candidate and hide computation overhead and redundancy. Another
advantage is only one intersection, of candidate size of k − 1,
required within an equivalent class. Where as in GPApriori does
same work very time it intersects for candidate size of k − 1.
The Bitset representation is better suited for GPU-based support
counting than the tidset representation. The width of the Bitset
equals the number of the transaction in the database divide by 32.
Because each thread will read 32 bit data. Each 0 or 1 represents
whether the corresponding transaction contains the candidate or

not. Intersection of two bit-represented transaction lists can be
performed by a ”bitwise AND” operation between BitsetCache and
Bitset.
Once we get local count of ”1” for each 32 bit data in sup, we
need global count for entire transaction of candidates. Figure 4
demonstrates how Kernel 2 support counting is computed on the
GPU, same process done by Fang et al.[14] . Each candidate
intersections will be count by one Thread Block. Threads in the
Block will process intersections of a word-length subset(32 or 64
bit). The width of Bitset is rounded to be the multiple of 64 bytes
to ensure coalesced memory reads. The intersection results of each
thread are stored in a 32-bit integer, and the number of ”1” present s
in the integer is counted by CUDA in-built popc (Population Count)
function and stored in shared memory. The parallel summation
reduction algorithm [21] is used to add all the values in shared
memory recursively into its first position of array sup[0]. The
support count for the candidate is then written back to an output
buffer on GPU memory and transferred back to host memory or
CPU memory. The upper half of the figure 4 intersect and give
the local count of candidates and lower half give global count by
parallel reduction algorithm

5. EXPERIMENTS
In this section, we describe the performance of our new approach,
and we analyze the experimental results. Our results are tested and
collected on a Intel core 2 dual PC with GeForce GTX 680. The
code was written in C++ and compiled with CUDA 5.0. In this
section when we use the term ”GPU” as Graphics device itself,
which in our case contains 8 ”streaming multiprocessor” cores,
with each of these containing 192 scalar cores, for a total of 1536
GPU cores.
In our results we compare the performance of our new approach
with GPApriori [11] algorithms code collected from Zhang et al.,
repository. According to their experimental result it clearly proven
that GPApriori outperform Borgelt Apriori and achieve 4X - 10X
speed up on most modern datasets. So in this experiment we
analyze the performance between our new approach and GPApriori.
The synthetic datasets , T10I40D100k and T40I10D100k, are
generated by IBM Market-Basket Synthetic Data Generator from
Paolo Palmerini’s DCI website [22]. The real datasets, Retail,
Chess and Mushroom, are collected from UCI Data Mining
Repository. To generate large amount of candidates we set lower
support count ratio to demonstrate the memory requirement of
algorithms. The characteristic of the datasets found in Table 1.
We executed each experiment five times and collect the mean
results. The whole GPApriori computation is comprised of three
parts: initialization on GPU, candidate generation, and support
counting on GPU. We do not analyze the initialization and
candidate generation part because we follow the GPApriori method,
in that approach initialization of the GPU memory with the input
dataset and this dataset remains in the GPU global memory until
entire execution is completed. In our experiment we analyze the
global memory occupied by total number candidates transfer to
GPU Global memory and Bitset.

5.1 Performance analysis on Real datasets
Figure 5 demonstrate the performance result with respect to
minimum support count ratio on Retail dataset. To obtain clear
understanding on how memory occupancy requirement affected
by both the algorithm we set lower minimum support ratio. As
shown in figure, proposed method require less memory compare

4



International Journal of Computer Applications (0975 8887)
Volume 105 - No. 7, November 2014

Fig. 4. Support counting process on GPU [14]

Table 1. Synthetic and Real dataset characteristic

Name Total No. of Transactions Item Avg. Trans. Len Density Type

Chess 3196 75 37 0.37 Real

Retail 88163 16470 10 0.1 Real

Mushroom 8125 119 25 0.25 Real

T10I4D100K 100000 1000 10 0.10 Synthetic

T40I10D100K 92113 943 40 0.40 Synthetic

to GPApriori. At 5% and 4% support count we get difference of
more than 100 MB memory requirement.

Fig. 5. Performance comparison between our new proposed approach and
GPApriori with varying minimum support on Retail dataset .

Figure 6 demonstrate the performance result of time require to
complete the support counting step on GPU. We used two different
Graphics Processors for portability purpose. In figure (a) execution
time of support counting step on GTX 680 Card, and in (b)
GTX 420 Card. As shown in both the figure we achieved 2X
speed up ratio. Figure 7 demonstrate the performance result of
achieved memory transfer bandwidth throughput with respect to
minimum support count ratio. As shown in figure, throughput is
inversely correlated to minimum support count ratio. At higher
threshold count there is a less memory requirement and higher
throughput. For this performance also we used two different
Graphics Processors, same used in previous one. On both the
results we achieved higher throughput in bandwidth. Our proposed
algorithm maximum achieved bandwidth is more than 1 GB/s,
where as in GPApriori maximum bandwidth is 800 MB/s, on both
the Graphics Processors. These Bandwidth calculated by NVIDIA
Visual Profiler Tool.
Figure 8 demonstrate the performance result of memory occupancy
requirement with respect to minimum support count ratio, on Chess
and Mushroom datasets. As shown in figure, on both real datasets
our new approach require less amount of memory with compare

5



International Journal of Computer Applications (0975 8887)
Volume 105 - No. 7, November 2014

Fig. 6. Performance comparison between our new proposed approach and GPApriori with varying minimum support on Retail dataset (a) GeForce GTX 480
and (b) GeForce GTX 680.

Fig. 7. Performance comparison between our new proposed approach and GPApriori with varying minimum support on Retail dataset (a) GeForce GTX 480
and (b) GeForce GTX 680.

to GPApriori. Chess dataset is dance compare to Mushroom, So
Chess dataset will generate large number of candidates at lower
threshold count and some time it is limitation of hardware to store
all candidate in main memory. to demonstrate performance analysis
on this dataset we kept minimum threshold or support count ratio
as we can.

5.2 Performance analysis on Synthetic Datasets
Figure 9 show the performance study of our proposed algorithm
on two different Synthetic datasets. In figure (a), after 35% support
count, our proposed algorithm requires 2X less memory compare
as to GPApriori. And in figure (b), which is dense dataset compare
to (a), after 5% support count proposed algorithm require 1.5X less
memory as compare to GPApriori.
And now, some more datasets generated by IBM Market-Basket
Synthetic Data Generator from Paolo Palmerini’s DCI website [22].
The characteristic of these datasets are listed in Table 2, where

average Transaction size is very. we taken four different datasets
to analyze the performance with respect to density of datasets.

Table 2. Synthetic Datasets characteristic

Name # Trans. # Items. Avg. Trans Density

T15I10D100K 1,00,000 1,000 15 15
T20I10D100K 1,00,000 1,000 20 20
T25I10D100K 1,00,000 1,000 25 25
T30I10D100K 1,00,000 1,000 30 30

Finally, figure 10 demonstrate the Performance comparison
between proposed approach and GPApriori with varying Density of
the Synthetic datasets. We observe that at higher Density Memory
Consumption reduce by 50% to 75%. Here we kept higher support
count (60%), but at even lower support count, we may observe large
different between both implementations.

6



International Journal of Computer Applications (0975 8887)
Volume 105 - No. 7, November 2014

Fig. 8. Performance comparison between our new proposed approach and GPApriori with varying minimum support on (a) Chess Dataset and (b) Mashroom
Dataset.

Fig. 9. Performance comparison between our new proposed approach and GPApriori with varying minimum support on (a) T10I4D100K dataset and (b)
T40I10D100k Dataset.

Fig. 10. Performance comparison between our proposed approach and
GPApriori with varying Density and Fixed Support Count Ratio 60 %

6. CONCLUSIONS
In this research paper we described our new approach to represent
the candidate itemsets, consisting of GPU kernels for FIM support
counting based on Bitset representation. We also conducted a
detailed analysis of the algorithm’s performance on two different
Graphics Processors. And compare with well known GPApriori
GP-GPU version of FIM. We evaluated this approach for real
datasets and synthetic datasets by varying the target support
threshold. Our results indicate that our new approach require less
memory compare to state-of-the-art GPU implementation. And, in
general, using the GPU for computing the support of candidate
patterns, gives clear advantages.
In the future we plan to improve the our new proposed algorithm in
several directions. The most recent version of GPU based Apriori
does not take advantage of available resources like multi-core CPU.
We plan to extend proposed algorithm in order to exploit these
additional resources, using a parallelization approach similar to
candidate wise and transaction wise parallelism. The single host
can have more than one device (GPU). The algorithm we proposed

7



International Journal of Computer Applications (0975 8887)
Volume 105 - No. 7, November 2014

in this research paper makes use of a only GPU. However, we can
exploit more parallelism with more than one GPU.

Acknowledgment
We are very thankful to Prof. Amit M. Lathigra, HOD, School
of Engineering, RK University, Rajkot, Gujarat, for proving base
resources and grant for experimental work under CUDA Teaching
Center and moral supports as and when required while research
work. Also we would like to express deep gratitude to staff
members of M.Tech for giving their continuous courage and
motivation to publish research work.

7. REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining association
rules between set of items in large databases,” ACM
SIGMOD International conference on management of data,
pp. 207–216, May 1993.

[2] NVIDIA Kepler GK110 Architecture
Whitepaper(White Paper), january 2013. [Online].
Available: http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[3] NVIDIA CUDA TOOLKIT VERSION 6.0
RELEASE NOTE, Feb. 2014. [Online].
Available: http://developer.download.nvidia.com/compute/
cuda/6 0/rc/docs/CUDA Toolkit Release Notes.pdf

[4] M. J. Zaki, “Parallel and distributed association mining:
A survey,” IEEE Concurrency, vol. 7, no. 4, pp. 14–25,
Octomber 1999.

[5] J. P. J. Han and Y. Yin, “Mining frequent patterns without
candidate generation,” in SIGMOD, pp. 1–12, 2000.

[6] M. E.-H. O. R. Zaiane and P. Lu, “Fast parallel association
rule mining without candidacy generation,” no. 1, 2001, pp.
665–668.

[7] Y. Z. L. Liu, E. Li and Z. Tang, “Optimization of frequent
itemset mining on multiple-core processor,” 2007, pp.
1275–1285.

[8] S. P. D. K. A. N. Y. K. C. A. Ghoting, G. Buehrer
and P. Dubey, “Cache-conscious frequent pattern mining
on modern and emerging processors,” The VLDB Journal,
vol. 16, no. 1, pp. 77–96, 2007.

[9] P. K. M. Bhalodiya Dharmesh and P. C., “An efficient way to
find frequent pattern with dynamic programming approach,”
in Engineering (NUiCONE), 2013 Nirma University
International Conference on, Nov 2013, pp. 1–5.

[10] X. X. B. H. Q. L. Wenbin Fang, Mian Lu, “Frequent
itemset mining on graphics processors,” Proceedings of the
Fifth International Workshop on Data Management on New
Hardware DaMoN2009, 2009.

[11] Y. Z. Fan Zhang and J. Bakos, “Gpapriori: Gpu-accelerated
frequent itemset mining.” In 2011 IEEE International
Conference on Cluster Computing (CLUSTER), no. 3, pp.
590–594, March 2011.

[12] P. S. Zaki MJ, “New algorithms for fast discovery of
association rules.” Menlo Park: AAAI Press, 1997, pp.
283–286.

[13] P. J. Han J, “Mining frequent patterns without candidate
generation: a frequent-pattern tree approach,” Data Mining
Knowl Discov, no. 8, pp. 53–87, 2004.

[14] Y. Z. Fan Zhang and J. Bakos, “Accelerating frequent
itemset mining on graphics processing units,” Journal of
Supercomput, no. 66, pp. 94–117, February 2013.

[15] W. M. J. George Teodoro, Nathan Mariano and R. Ferreira,
“Tree projection-based frequent itemset mining on multicore
cpus and gpus.” Washington, DC, USA: IEEE Computer
Society, March 2010., no. 3.

[16] C. C. A. Ramesh C. Agarwal and V. V. V. Prasad, “A tree
projection algorithm for generation of frequent item sets,”
Journal of Parallel Distributed Computing, no. 3, March
2001.

[17] R. Agrawal and J. Shafer, “Parallel mining of association
rules,” In IEEE Trans. on Knowledge and Data Engg, no. 8,
pp. 962–969, 1996.

[18] F. V. C. S. Salvatore O., Universit a Ca, “Exploiting gpus
in frequent itemset mining,” 20th Euromicro International
Conference on Parallel, Distributed and Network-based
Processing, pp. 416–425, 2012.

[19] B. Dharmesh and P. Chhaya, “Comparative study of
frequent itemset mining techniques on graphics processor,”
International Journal of Engineering Research and
Applications, vol. 4, no. 1, pp. 159–163, April 2014.

[20] CUDA C BEST PRACTICES GUIDE, July 2013.
[Online]. Available: http://docs.nvidia.com/cuda/pdf/CUDA
C Best Practices Guide.pdf

[21] NVIDIA CUDA compute unified device
architecture programming guide, February 2014.
[Online]. Available: http://docs.nvidia.com/cuda/pdf/CUDA
C Programming Guide.pdf

[22] B. G, Frequent itemset mining dataset repository, 2004.
[Online]. Available: http://fimi.ua.ac.be/data/

8

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://developer.download.nvidia.com/compute/cuda/6_0/rc/docs/CUDA_Toolkit_Release_Notes.pdf
http://developer.download.nvidia.com/compute/cuda/6_0/rc/docs/CUDA_Toolkit_Release_Notes.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://fimi.ua.ac.be/data/

	Introduction
	General Purpose Computing with Graphics Processing Unit

	Related Work
	Apriori Algorithm Introduction
	Algorithm and Implementaion
	Dataset Representation
	Candidate Representation
	Support Counting

	experiments
	Performance analysis on Real datasets
	Performance analysis on Synthetic Datasets

	Conclusions
	References

