
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 7, November 2014

13

Rigorous Design of Moving Sequencer Atomic

Broadcast with Malicious Sequencer

Prateek Srivastava
Department of Computer
Science and Engineering
Sir Padampat Singhania

University
Udaipur, Rajasthan, India

Prasun Chakrabarti
Department of Computer
Science and Engineering
Sir Padampat Singhania

University
Udaipur, Rajasthan, India

Avinash Panwar
Department of Computer
Science and Engineering
Sir Padampat Singhania

University
Udaipur, Rajasthan, India

ABSTRACT
This article investigates a mechanism to tolerate malicious

nature of sequencer in moving sequencer based atomic broadcast

in distributed systems. Various mechanisms are already given

for moving sequencer based atomic broadcast like RMP [1],

DTP [2], Pin Wheel [3] and mechanism proposed by Srivastava

et al. [4]. But none of these mechanisms are efficient to tolerate

different failure. Scholarly observation is that, these algorithms

can tolerate only crash failure but not capable to tolerate

omission or byzantine (malicious) failure. This work proposes a

mechanism to tolerate byzantine failure (malicious nature) of

sequencer in moving sequencer based atomic broadcast. The

mechanism proposed in [4], has been considered as an abstract

model and design refined model in order to fulfill objective.

Since it relies on unicast broadcast hence it will introduce a very

less number of messages in comparison to previous mechanisms

[5]. B [6] formal technique has been used for development of

this model and Pro B [7] model checker tool for constraint based

checking to discover errors due to invariant violation and

deadlocks, thereby, validating the specifications. The models

have been verified for invariant violations, errors and deadlock

occurrence. The B machine animated through Pro B worked

very well. The Pro B managed to explore the entire state space

of the B-machine in few minutes and confirming the

specifications.

General Terms

Distributed Systems, Model Verification

Keywords
Broadcast, Atomic Broadcast, Total Order, Unicast, Sequencer,

Crash, Byzantine, Model Checking, B formal method.

1. INTRODUCTION
Atomic broadcast (also known as total order broadcast) is an

important abstraction in fault tolerant distributed computing [8].

It ensures that messages broadcasted by different processes are

delivered by all destination processes in same order [9]. Lamport

has proposed state machine replication [10] for implementing

fault tolerant services. Basically state machine replication is way

to achieve highly available system. These systems are available in

any case whether very high load or any failure. So the question

arises that what is the role of atomic broadcast in context to

highly available systems. To answer this question one has to

understand the functioning of state machine replication. A state

machine is set of state variable which implements its state and

commands, which transform its state [11]. The client interacts

with replicated servers by submitting same order of input

commands. The replicas are in same initial state, after receiving

input they will go through same state of execution and generate

same result and finally go to same final state. The voting will be

there for correctness of result and then correct result will be given

back to client. In Distributed environment it is very difficult to

achieve same order (or sequence) on input commands due to

lackness of global clock in distributed systems. To achieve this,

variety of algorithms have been given by different scholars.

Different scholars use to classify these algorithms on their own

assumptions and requirements. In result of this question that

“who is responsible for sequencing?” these algorithms can be

classified into following categories[5]: (a) fixed sequencer

atomic broadcast (b) moving sequencer atomic broadcast (c)

privilege based atomic broadcast (d) communication history

based atomic broadcast and (e) destination agreement based

atomic broadcast mechanisms. Fixed sequencer is the easiest,

where one dedicated process is there for sequencing of messages

but at high load or in case of sequencer failure the whole system

will suffer. Though mechanisms like, Amoeba [12], MTP [13],

Tandem [14], [15], Jia [16], ISIS [17], [18], Phoenix [19] and

Rampart [20, 21] are fixed sequencer based and can tolerate crash

but for any researcher it’s always a conundrum to face sequencer

failure and bad performance at high load. So to get rid of this

problem moving sequencer is a best option where not a fixed

process will be sequencer. RMP [1], DTP [2], pin wheel [3] and

mechanism proposed in [4] are based on moving sequencer and

tolerate crash failure but not capable to tolerate the byzantine

failure. So this work proposes a new mechanism to build atomic

broadcast that is based on moving sequencer and will tolerate the

byzantine failure of sequencer. Subsequently this mechanism can

apply to whole system in order to get byzantine resistant system.

The failure may be different types as (i) Crash failure; where

process gets crashed at all and not responding. (ii) Omission

failure; where process is omitting to do some work. (iii) Timing

failure; it is due to time out. It occurs in synchronous system and

(iv) Byzantine failure; where process is behaving completely

maliciously. It means there is no fix pattern of its behavior. Even

in case of failures the system must be efficient enough to tolerate

any failure such that availability and reliability should be

maintained. This work focuses on byzantine nature of sequencer.

2. CONTRIBUTION OF THE PAPER
The paper contributes a tranche in direction to achieve the fault

tolerant systems. It presents a mechanism that tolerates

byzantine nature of sequencer in moving sequencer based atomic

broadcast. The B [6] formal method is used to design this model.

Pro B [7] model animator and checker tool is used to verify this

model for any deadlock, constraint violations, error and

inconsistencies. The results are obtained in sequential steps.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 7, November 2014

14

3. SYSTEM MODEL
This work assumes an asynchronous system composed of n

processes belongs to a set π = {P1, P2 ... Pn}. For simplicity, this

model considers a set of three processes as: Process belongs to π

and Process = {P0, P1, P2}. The processes communicate by

message passing over reliable channels. Message is a set of

messages, for simplicity, this model considers a set of three

messages as: Message = {M1, M2, M3}.

Since this work is an extension of [4] hence, Network is reliable,

uses unicast broadcast (UB) variant of fixed sequencer atomic

broadcast, based on moving sequencer and by default crash

tolerant.

3.1 Agreement Problem
The agreement problem considered in this paper is presented

below.

3.1.1 Atomic Broadcast
Atomic broadcast problem is defined by primitive [8]

a_broadcast and a_delivers, the processes have to agree on a

common order on a set of messages. Formally atomic broadcast

(uniform) can be defined by four properties [5];

Validity: if a correct process a_broadcast any message m then it

eventually a_delivers m.

Uniform agreement: If a process a_delivers m then all the

correct processes a_deliver m.

Uniform integrity: For any message m, every process p,

a_delivers m at most once and only if m was previously

a_broadcast.

Uniform total order: If some process, a_delivers m before m'

then every process a_delivers m' only after it has a_delivered m.

3.1.2 Sequencer based Algorithms
The sequencer based atomic broadcast [3] is simplest one and

provides best delivery time (in absence of failure) while the

protocols based on privilege provide best stability time in system

where logical ring is formed and message is passed along with

token. This work relies on sequencer based approach where any

process can be elected as sequencer.

4. RELATED WORK
There is lot of work have been done since 25 years in area of
atomic broadcast. The RMP [1], DTP [2], Pin Wheel [3] and
mechanism proposed in [4, 22] are the various mechanisms to
achieve moving sequencer based atomic broadcast. In moving
sequencer mechanisms, there must be some process that is
responsible for sequencing. But this sequencer will not be fixed
for whole time. Each process will be a sequencer in a rotation
manner. It is somewhat easier that privilege based atomic
broadcast mechanisms. All these mechanisms help to build
atomic broadcast but they can tolerate only crash failures.

Different authors have given various mechanisms base on
communication history (where sender processes are itself
responsible for sequencing) to build atomic broadcast but most of
these algorithms can only tolerate crash failure. Quick-S [23] (for
synchronous system) can tolerate crash, omission and Byzantine
failures.

A variety of algorithms are also given for atomic broadcast based
on destination agreement where the destination processes are
responsible for arranging the messages before delivery. But only
Quick-A [23] (for asynchronous system) is capable for tolerating
byzantine failure.

Rampart [20, 21] is based on fixed sequencer and can tolerate
crash, omission and byzantine failures.

Scholarly observation of these algorithms is that, there is still a

space to achieve byzantine tolerance in case on moving

sequencer atomic broadcast. This work focuses on mechanism

proposed in [4] and presents a mechanism to tolerate byzantine

nature (malicious nature) of sequencer.

5. ARCHITECTURE OF PROPOSED

WORK
This work relies on incremental approach (see fig. 1) to design

a model of atomic broadcast. The work that has been done in [4]

will be used as abstract model. This work is a refinement of

abstract model [4] that tolerates byzantine failure (malicious

nature) of sequencer.

 Figure 1 Architecture of proposed work

6. ABSATRACT MODEL
An abstract model represents the basic functionality of any

system. This became more accurate when refines in next

versions. Here, [4] has been considered as an abstract model (it

is based on unicast broadcast (UB) variant of fixed sequencer

and tolerates crash failure in order to build moving sequencer

based atomic broadcast) and introduced refined version that will

tolerate byzantine failure (malicious nature) of sequencer process.
Table 1 represents the various B symbols used in model.

Table 1. B symbols used in model

B symbols Description
: Element of

/: Not element of

<: Subset

/<: Not subset of

! For every

X Cartesian product

POW Power Set

<-> Relation

+-> Partial function

--> Total Function

R~[A] Relational Inverse

\ / Set union

/ \ Set intersection

: = Assignment

| | Parallel substitution

PRE Pre-condition

BOOL Boolean

NATURAL1 Non zero natural number

Card Cardinality

Ran Range of realtion

Dom Domain of Relation

The following section presents the informal definition of

different events given in abstract model [4]. The B model is

build up with sets, constants, variables, Invariant and events. The

fig. 2 summarizes all the abstract machine variables with their

corresponding initial values and constraints (or invariant).

First Refined Model

(Concrete model)

Abstract Model

(Basic functionalities)

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 7, November 2014

15

6.1 Events
This section presents informal definition of different events
given in [4].

6.1.1 Sequencer Selection Event
The sequencer selection event will elect any process as

sequencer. This event will ensure that no crashed process will

participate in election.

6.1.2 Check Sequencer’s Heartbeat Event
This event is used by all processes (except sequencer) to decide

sequencer is crashed or alive.The processes will check heartbeat

of sequencer and cast their vote for sequencer to confirm

whether sequencer is alive or crashed.

6.1.3 Voting for Sequencer Event
After casting of vote for sequencer this event comes into
existence. Based on votes it decides whether sequencer is alive or
not.

If more processes are casting their vote for alive nature of
sequencer than crash nature then it will be a trusted sequencer
and ready to accept messages.

6.1.4 Unicast Event
If any process (except sequencer) needs to broadcast any message
then at first it will use unicast event to unicast its message to
sequencer.

6.1.5 Acknowledgement by Sequencer Event
After receiving the message sequencer will send an
acknowledgement to sender.

6.1.6 Check Heartbeat Event
Before any broadcast sequencer will check heartbeat of all the
processes (receivers) such that it can prepare list of alive and
crashed receivers.

6.1.7 Broadcast Event
Broadcast event will be used by trusted sequencer to broadcast

all acknowledged messages with proper sequence number to all

alive processes.

6.1.8 Deliver Event
This event will occur at every alive process to deliver the

messages. The messages will deliver in same order and this

order is specified by follow variable.

6.1.9 Crash Event
This event is used to introduce crash nature of processes. Any

process can be crash due to system shutdown, network

disconnection or due to some other temporary reasons.

If any process has been crashed then it is not suppose to send or

receive any message.

6.1.10 Get Alive Event
This event is used to recover any crashed process. As any crash

process get recover it will intimate sequencer (if exists) about its

recovery, and ask to sequencer for all previously broadcasted

messages. If it founds any difference between its receiving list

and sequencer’s “sent message” list then it will deliver all old

messages, if there is no difference in messages then still it will

work as usual.

Figure 2 Variables, Invariants and their initial value in

abstract model

7. REFINED MODEL
The different events, variables and invariants discussed in

section VI constitute moving sequencer atomic broadcast (see

fig. 2) that tolerates crash failure. In refined version solution for

byzantine sequencer has been given. For this purpose some

variables and invariants have been taken (see fig. 3).

MACHINE Abstract1

SETS

Process= {P1, P2, P3}; Message={M1, M2, M3}

VARIABLES

selected_sequencer,sequencer_selection, unicast_message,

temporary_receive, follow, sent, seq_no, receive,

msg_with_seq_no, acknowledged_message

INVARIANT

selected_sequencer : POW(Process)

sequencer_selection : BOOL

unicast_message : Process <-> Message

temporary_receive : Process <-> Message

follow : NATURAL1<->NATURAL1

sent : (Process<->Message)<->NATURAL1

seq_no : NATURAL1

receive : (Process <-> Message)<-> NATURAL1

msg_with_seq_no :Message<-> NATURAL1

acknowledged_message:Process<->Message

crash_list:POW(Process)

alive_list:POW(Process)

crash_list /\ alive_list={}

trusted_sequencer:POW(Process)

Receiver_is_Crashed:POW(Process)

Receiver_is_OK:POW(Process)

Receiver_is_OK /\ Receiver_is_Crashed={}

received_msg:Process<->Message

Heart_Beat_Check: Process<->Process

Re_Unicasted_msg:Process<->Message

Crash_Recoverd_Ack : POW(Process)

Message_diff:Process+->INTEGER

check_seq_heartbeat:Process+->(Process<->BOOL)

vote_for_sequencer:INTEGER

Positive_vote_for_sequencer:INTEGER

Negative_vote_for_sequencer:INTEGER

Start_unicast:BOOL

Sequencer_heart_beat_check_is_over:BOOL

voting_at_final_stage_for_process:POW(Process)

INITIALISATION

selected_sequencer :={} ||sequencer_selection :=FALSE ||

unicast_message :={} || temporary_receive :={} ||

follow :={} || sent :={} seq_no :=1 ||receive :={}||

msg_with_seq_no :={}||crash_list:={}|| alive_list:=Process ||

trusted_sequencer:={} ||Receiver_is_Crashed:={} ||

Receiver_is_OK:={} ||received_msg:={}||

Heart_Beat_Check:={} ||Re_Unicasted_msg:={} ||

Crash_Recoverd_Ack:={} ||Message_diff:={} ||

check_seq_heartbeat:={} ||vote_for_sequencer:=0 ||

Positive_vote_for_sequencer:=0

|| Negative_vote_for_sequencer:=0 ||

Start_unicast:=FALSE||

Sequencer_heart_beat_check_is_over:=FALSE ||

voting_at_final_stage_for_process:={}

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 7, November 2014

16

Variable non_deletable_ack_msg_log contains the list of

acknowledged messages at sequencer. Variable

process_delivered_message_with_sequence_no contains the list

of all sequence numbers that have been delivered to some

process. Variable just_previously_delivered contains the

sequence number that has been just delivered at some process.

This work assumes following malicious cases that a sequencer

can show:

i) Malicious sequencer can broadcast different

messages with same sequence number.

ii) A malicious sequencer can broadcast same

message with different sequence numbers.

iii) A malicious sequencer can broadcast any message

with some jumping sequence number (sequence

number must increase by one but if it is increasing

by more than one then It is jumping. Sequence

number is also not allowed in decreasing order).

Since it has been assumed that sequencer will broadcast the

messages with unique and increasing sequence number

(increasing by one only) hence occurrence of any of the above

case will report for malicious nature of sequencer. Then

immediately a new correct process will be elected as sequencer.

After election heartbeat of sequencer will check by every correct

process and cast their vote in order to elect a trusted sequencer.

After election of trusted sequencer it will broadcast all such

messages for which previous sequencer was reported as

malicious.

Figure 3 Variables, Invariants and their initial value in first

refined version

7.1 Procedure TO Tolerate Byzantine

Nature of Sequencer
In moving or fixed sequencer based atomic broadcast sequencer
is a very important component. If this is incorrect then whole
system will suffer. This work assumes that sequencer can be
malicious and can introduce problems into the system. But
receivers are so smart that they can understand that whether
sequencer is malicious or not. If they found sequencer is
malicious then they will not deliver such messages and report for
malicious nature of sequencer. Subsequently new sequencer will
be elected. As any new correct process will be elected as
sequencer then heartbeat check for it will happen by all correct
processes and subsequently voting will be done in order to elect a
trusted sequencer. Now new trusted sequencer will broadcast all
those messages for which previous sequencer has been reported
as malicious.

To introduce malicious nature of sequencer one new event

faulty_broadcast has been added. And for re broadcast of

messages for which previous sequencer was reported as faulty a

new event (named as re_broadcast) has been introduced. The

receivers have been strengthened such that they can identify

malicious sequencer. In this way Sequencer can introduce errors

into the system but receivers can tolerate this.

7.1.1 Strengthening of Acknowledgement by

Sequencer Event
As sequencer will acknowledge any message it will also update

a list non_deletable_ack_msg_log. For this a new action has

been introduced:

Action 1:

 non_deletable_ack_msg_log:=non_deletable_ack_ms

g_log \/ {m}

7.1.2 Faulty Broadcast Event
By this event (see fig. 4) sequencer can introduce errors into the

system like, it can broadcast different messages with same

sequence number, re broadcast same message with different

sequence number or broadcast with jumping sequence number.

Figure 4 Faulty broadcast event.

7.1.3 Strengthening Deliver Event
There are some more capabilities have been provided to

receivers such that before any delivery they will decide whether

message is coming with correct sequence number or not. For this

purpose some conditions have been applied to check before any

delivery.

Condition 1: card(receive)=0 & sequence_num /=1

Condition 2: (p:dom(just_previously_delivered)& ((num-
just_previously_delivered(p) >1) or(num-
just_previously_delivered(p)<0))

Condition 3: (p|->m): received_msg

Condition 4:
 (sequence_no:process_delivered_message_with_sequence_n
o[{p}])

REFINEMENT Refine2_Byzantine_Tolerant

REFINES Abstract_Moving_Sequencer_Atomic_Broadcast

VARIABLES

non_deletable_ack_msg_log, just_previously_delivered,

process_delivered_message_with_sequence_no

INVARIANT

non_deletable_ack_msg_log:POW(Message)

process_delivered_message_with_sequence_no:Process<-

>NATURAL1

just_previously_delivered:Process+->NATURAL

INITIALISATION

non_deletable_ack_msg_log:={}||

process_delivered_message_with_sequence_no:={}||

just_previously_delivered:=Process*{0}

faulty_broadcast(p,m,number)=

PRE p:selected_sequencer & m/:ran(temporary_receive) &

number: NATURAL1 & p:trusted_sequencer &

m:ran(acknowledged_message) &

card(Receiver_is_OK) + card(Receiver_is_Crashed) =

card(Process) &

number /: ran(sent) & m/:ran(final_updated_msg_list)

THEN

temporary_receive:=temporary_receive\/{p|->m}

||sent:=sent\/{{p|->m}|->number} ||

follow:=follow \/{number} * ran(sent)||

msg_with_seq_no:=msg_with_seq_no\/{m|->number}

acknowledged_message:=acknowledged_message-{p|->m} ||

IF card(acknowledged_message)-1=0

THEN

sequencer_selection:=FALSE ||

trusted_sequencer:={}||

Sequencer_heart_beat_check_is_over:=TRUE ||

check_seq_heartbeat:={}||

unicast_message:={}

END

END

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 7, November 2014

17

Condition 1 provides capability to receivers to not deliver such
message that is very first message to deliver and sequence
number not equal to one, Condition 2 provides capability to
receivers to not deliver any new message having jumping
sequence number, Condition 3 provides capability to receivers to
not deliver any new message that has been already delivered (It
means old message is again coming with some different sequence
number) and Condition 4 provides capability to receivers to not
deliver any new message that is coming with some old sequence
number (It is the case of new message coming with some old
sequence number).

If any of above condition will found true then for such
message delivery will not happen and sequencer will reported as
malicious and new sequencer will be elected.

Action 1:
 process_delivered_message_with_sequence_no:=process_de
livered_message_with_sequence_no\/{p|->num}

Action 2: just_previously_delivered(p):=num

Action 3:
 non_deletable_ack_msg_log:=non_deletable_ack_msg_log-
{m}

Action 1 maintains a list of sequence numbers that have been

delivered to some process, Action 2 maintains immediate

delivered sequence number at different processes and Action 3

maintains a list of such messages that have been broadcasted but

not delivered. This list will helpful in case of re broadcast of

messages.

7.1.4 Re Broadcast Event
As sequencer reported as malicious new sequencer will be

elected. After election all other processes will check heartbeat of

sequencer and cast their vote. Finally there will be a new trusted

sequencer. Now this trusted sequencer will broadcast all those

messages for which old sequencer was reported as malicious

(see fig. 5). The question arises, how sequencer comes to know

that which messages need to re broadcast? For this purpose

sequencer will check non_deletable_ack_msg_log list (see

deliver event) that keeps those messages for which previous

sequencer was reported as malicious.

Guard 1: p: selected_sequencer

Guard 2: p: trusted_sequencer

Guard 1 and 2 ensures that sequencer must be trusted. It means

all the correct processes in the system have checked sequencer’s

heartbeat and casted their votes. Any sequencer can be trusted

only if it has secured more positive votes in comparison to

negative votes.

Guard 3: number: NATURAL1

Guard 4: number/: ran (sent)

Guard 3 and 4 ensures that sequencer will broadcast a sequence
number that must be positive and unique natural number.

Guard 5: m: non_deletable_ack_msg_log

Guard 5 ensures that new trusted sequencer will broadcast all

those messages for which sequencer were reported malicious.

Figure 5 Re broadcast event

8. RESULT
The models have been verified by Pro B [7] model checker and

animator tool. No invariant violations, errors and deadlock have

been found. The B machine animated through Pro B worked very

well. The Pro B managed to explore the entire state space of the

B-machine in few minutes, covering 2265 states and 2623

transitions. The values of sent and receive list obtained after

covering all the operations are:

sent = {({(p4|->m1)}|->2),({(p4|->m2)}|->3),({(p4|->m3)}|-

>1),({(p4|->m4)}|->4)}

receive = {({(p1|->m1)}|->2),({(p1|->m2)}|->3),({(p1|->m3)}|-

>1),({(p1|->m4)}|->4),({(p2|->m1)}|->2),({(p2|->m2)}|-

>3),({(p2|->m3)}|->1),({(p2|->m4)}|->4),({(p3|->m1)}|-

>2),({(p3|->m2)}|->3),({(p3|->m3)}|->1),({(p3|->m4)}|-

>4),({(p4|->m1)}|->2),({(p4|->m2)}|->3),({(p4|->m3)}|-

>1),({(p4|->m4)}|->4)}

The sent list specifies that sequencer p4 has broadcasted m3 with

sequence number 1, m1 with sequence number 2, m2 with

sequence number 3, m4 with sequence number 4. The receive list

specifies that all the processes in system have received all

messages in the same order (as broadcasted) without any

invariant violation, error or deadlock; confirming to definition of

total order.

9. CONCLUSION
This paper presents mechanism to tolerate byzantine failure

(malicious nature) of sequencer in moving sequencer atomic

broadcast. Since this paper is an extension of [4] hence it rely

upon unicast broadcast (UB) variant of fixed sequencer to build

moving sequencer atomic broadcast and also tolerates crash

failures. For any message loss one can also use negative and

positive acknowledgement [24] to recover it. Pro B [7] model

checker and animator tool has been used for modeling and step

by step checking. This model has been checked for invariant

violation or for any deadlock occurrence. The B machine

animated through Pro B worked very well. On injecting a subtle

fault into the specifications, to verify the model, Pro B captured

them automatically thereby substantiating the results.

10. ACKOWLEDGMENT
We are grateful to Dr. Divakar singh yadav for his valuable

guidance. It gives us immense pleasure to express our deep sense

of gratitude to Dr. S. L. Srivastava for encouragements during

work. Last but not the least; we extend our heartiest gratefulness

to our parents and all family members.

Re_broadcast(p,m,number)=

PRE p: selected_sequencer & p: trusted_sequencer &

number: NATURAL1 & m:non_deletable_ack_msg_log

& number/:ran(sent)

THEN

temporary_receive:=temporary_receive\/{p|->m} ||

sent:=sent\/{{p|->m}|->number} ||

follow:=follow \/{number} * ran(sent) ||

msg_with_seq_no(m):=number ||

seq_no:=seq_no+1

END

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 7, November 2014

18

11. REFERENCES
[1] Jia, W., Kaiser, J., and Nett, E. 1996. RMP: Fault–Tolerant

GroupCommunication. Micro, IEEE, Oxford, Clarendon,

16(2) , 59 – 67.

[2] Kim, J., and Kim C. 1997. A total ordering protocol using

a dynamic token-passing scheme. Distributed System

Engineering. 4(2), 87–95.

[3] Cristian, F., Mishra, S., and Alvarez, G. 1997. High

performance asynchronous atomic broadcast. Distributed

System Engineering 4(2), pp. 109-128.

[4] Srivastava, P., Lakhtaria, K., Panwar A., and Jain, A. 2014.

Rigorous design of moving sequencer crash tolerant atomic

broadcast with unicast broadcast. IEEE International

Conference on Recent Advances and Innovations in

Engineering – ICRAIE, Rajasthan, India.

[5] D´efago, X., Schiper, A., and Urb´an, P. 2004. Total order

broadcast and multicast algorithms: Taxonomy and survey.

ACM Comput. Surv. 36(4), 372– 421.

[6] Abrial, J., R. 1996. The B-book: assigning programs to

meanings Cambridge University Press New York. USA,

ISBN:0-521-49619-5.

[7] Leuschel, M., Butler, M. 2003. Pro B: A model checker for

B. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME.

Springer, Heidelberg, LNCS, 2805, 855-874.

[8] Ekwall, R., and Schiper, A. 2011. A Fault-Tolerant Token-

Based Atomic Broadcast Algorithm. Dependable and

Secure Computing, IEEE Transactions. 8(5), 625–639.

[9] Hadzilacos, V., and Toueg, S. 1993. Fault-Tolerant

Broadcasts and Related Problems. Distributed systems (2nd

Ed.), ACM Press/Addison- Wesley Publishing Co., New

York, USA, 97-145.

[10] Lamport, L., 1978. The Implementation of Reliable

Distributed Multiprocess Systems. Computer Networks.

2(2), 95–114.

[11] Schneider., and F. B. 1990. Implementing fault tolerant

services using the state machine approach: a tutorial. ACM

Computing Survey. 22(4), 299-319.

[12] Kaashoek, M. F. and Tanenbaum, A. S. 1996. An

evaluation of the Amoeba group communication system. In

Proceeding of 16th International Conference on Distributed

Computing Systems (ICDCS-16). Hong Kong, 436–447.

[13] Armstrong, S., Freier, A., and Marzullo, K., 1992.

Multicast transport protocol. Network working group. RFC

1301, IETF.

[14] Carr, R., 1985. The Tandem global update protocol.

Tandem Systems Review. 74–85.

[15] Garcia-Molina, H. and Spauster, A. 1991. Ordered and

reliable multicast Communication. ACM Trans. Comput.

Syst. 9(3), 242–271.

[16] Jia, X. 1995. A total ordering multicast protocol using

propagation trees. IEEE Trans. Parall. Distrib. Syst. 6, 617–

627.

[17] Birman, K. P., Schiper, A., and Stephenson, P. 1991.

Lightweight causal and atomic group multicast. ACM

Trans. Comput. Syst. 9(3), 272–314.

[18] Navaratnam, S., Chanson, S. T., and Neufeld, G. W. 1988.

Reliable group communication in distributed systems. In

Proceeding of 8th International Conference on Distributed

Computing Systems (ICDCS-8). San Jose, CA, USA, 439–

446.

[19] Wilhelm, U. and Schiper, A. 1995. A hierarchy of totally

ordered multicasts. In Proc. 14th Symp. on Reliable

Distributed Systems (SRDS), Bad Neuenahr, Germany,

106–115.

[20] Reiter, M. K. 1994. Secure agreement protocols: Reliable

and atomic group multicast in Rampart. In Proceeding of

2nd ACM Conference on Computer and Communications

Security (CCS-2). 68–80.

[21] Reiter, M. K. 1996. Distributing trust with the Rampart

toolkit. Communications of the ACM. 39(4), 71–74.

[22] Srivastava, P.,Lakhtaria, K., Jain, A. 2013. Rigorous design

of moving sequencer atomic broadcast with unicast

broadcast. In Proceeding of International Conference on

Advances in computer science. Elsevier. 484-491.

[23] Berman, P., and Bharali, A. A. 1993. Quick Atomic

broadcast. Springer Berlin Heidelberg. LNCS. 725, 189-

203.

[24] Chang, J. M., and Maxemchuk, N. F. 1984. Reliable

broadcast protocols. ACM Trans. Comput. Syst. 2(3), 251–

273.

IJCATM : www.ijcaonline.org

