
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 5, November 2014

21

Two Queue based Round Robin Scheduling Algorithm

for CPU Scheduling

 Srishty Jindal Priyanka Grover
 FET, MRIU FET,MRIU
 Faridabad Faridabad

ABSTRACT
Multitasking and multiuser operating system’s performance

depends on the efficiency of scheduling algorithm. Most

commonly used Round Robin scheduling algorithm may not give

optimal result if the burst time of processes is very high as

compared to the time quantum of Round Robin algorithm. In this

case, context switching and turnaround time of processes is very

high. In this paper, a two queue based Round Robin Scheduling

Algorithm is proposed. In the proposed approach two queues are

used. One queue is exclusively used for CPU intensive processes

and other queue is used for I/O intensive processes. This reduces

the waiting time and turnaround time when there are less or equal

numbers of I/O intensive processes. Performance Analysis

depending upon CPU intensive and I/O intensive processes shows

that it provides better results.

Keywords
Scheduling, Round Robin Algorithm, Context Switching, CPU

Burst time, I/O Burst time

1. INTRODUCTION
Operating systems use scheduling algorithm to provide services to

user on performing different tasks. These Scheduling algorithms

are used when the multiple processes compete for the CPU at the

same time & the scheduler then allocates the job to the CPU for

execution according to the algorithm. There are several

scheduling algorithms such as First Come First Serve(FCFS)

Scheduling[1], Shortest Job First(SJF) Scheduling, Priority

Scheduling, and Round Robin Scheduling[2]. Each Scheduling

algorithm has some advantages and some disadvantages. Round

Robin Scheduling algorithm is however widely used.

2. ROUND ROBIN SCHEDULING

ALGORITHM
The round robin scheduling algorithm is designed especially for

time-sharing systems. It is similar to FCFS scheduling, but

preemption is added to switch between processes. A small unit,

called a time quantum is defined. A time quantum is generally

from 10 to 100 milliseconds. The ready queue is treated as

circular queue. The CPU scheduler goes around the ready queue,

allocating the CPU to each process for a time interval of up to 1

time quantum.

To implement RR scheduling, we keep the ready queue as a FIFO

queue of processes. New processes are added to the tail of the

ready queue. The CPU scheduler picks the first process from the

ready queue, sets a timer to interrupt after 1 time quantum, and

dispatches the process. One of the two things happens:

1) The process may have a CPU burst of less than 1 time

quantum.

2) If it doesn’t finish within the time slice, place it at the

end of the queue, and choose the next item from the queue.

It Provides some sort of fairness (since all jobs are treated

equally), but takes a long time to finish everything because

each job gets very little time on the CPU (so the average

turnaround time is high).RR allocates the CPU uniformly

(fairly) across participants.

3. RELATED WORK
Sanpawat Kantabutra, Parinya Kornpitak, and Chengchai

Naramittakapong[5] discussed dynamic clustering-based

Round-Robin scheduling algorithm (DCBRRSA) for two

processor system. In which one processor is exclusively for

CPU-intensive processes and the other processor is

exclusively for I/O-intensive processes. This scheduling

algorithm uses an approximation of K-means clustering

algorithm to group processes of the same kinds together and

dispatches them to appropriate processors. Simulations

have been done and comparisons are made between the uni-

processor and two processor systems using the original

Round-Robin algorithm and the two-processor system.

Their results show that the average execution time of a

process that uses the DCBRRSA is significantly less than

that of the other two scheduling methods.

Richard Roehl and Brian Johnson [2] developed a new

algorithm based on Round robin Scheduling and Priority

Scheduling. This scheduling algorithm can be applied for to

Operating system that implements a Round Robin

Scheduler.

In this, tasks which have consumed or consume more CPU

than their peers get equal scheduling priority on the CPU.

By implementing a priority queue in the scheduler one can

easily improve the performance of processes that require

short bursts of CPU while continuing to service the

processes with higher usage demand.

In this algorithm three queues are implemented. One queue

is for kernel task, second queue for device driver task and

third queue for user processes. Out of which highest

priority is given to kernel tasks & lowest priority is given to

user process. Each queue is processed until it is empty.

Highest priority queue is executed first then execution

continues according to their priorities.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 5, November 2014

22

H.S. Behera and Brajendra Kumar Swain[7] proposed a

precedence based Round Robin with dynamic time quantum

Scheduling Algorithm for soft real time system. In this algorithm,

processes are given precedence according to their burst time and

priority, then Round Robin algorithm is applied on it with

dynamic mean time quantum. This algorithm performs better than

other algorithms in terms of reduced context switching, waiting

time and turnaround time.

Aashna Bisht, Mohd.Abdul Ahad and Sielvic Sharma[8]

discussed a dynamic time quantum for round robin process

scheduling algorithm which directly effect the turnaround time,

waiting time and number of context switches. Time quantum is

calculated dynamically on the basis of burst time of processes

waiting in the ready queue.

 Ms. Rashmi A. Dhumal, Ms. Tabassum A. Maktum and Ms. Lata

Ragha[9] discussed a dynamic quantum based Genetic Round

Robin algorithm in order to improve the performance. In this

paper, time quantum is calculated dynamically by using Genetic

approach as it provides the optimal solution for a problem.

Initially, the time quantum is the median of all the processes burst

time, then genetic algorithm is used to calculate fittest

chromosome i.e. one with minimum average waiting time.

4. PROPOSED TWO QUEUE BASED

ROUND ROBIN SCHEDULING

ALGORITHM
In this proposed algorithm, Round-Robin scheduling algorithm is

chosen because it is one of the most popular scheduling

algorithms. In scheduling processes it is a good idea to schedule

CPU-intensive processes separately from I/O-intensive processes

[3,4,5]. It can reduce response time significantly for interactive

I/O processes. Processes are executed in 1:1 ratio.

Likewise, CPU-processes also benefit from having less

accumulated context switch time occurring with I/O processes and

can generally run until they complete their time quantum. Thus, it

is expected that more processes will be completed on average. In

this scheduling algorithm we can use an approximation of the

well-known K-means clustering algorithm [6] to classify the

processes into two groups of CPU-intensive and I/O-intensive

process.

In this algorithm two ready queues are maintained. One queue is

solely dedicated to CPU-bound processes and another queue is

used to store I/O bound processes. Processes may arrive at any

time. These processes are classified in two classes. The two

classes are CPU intensive processes & I/O intensive processes.

One processor is responsible for execution of CPU intensive

processes; second processor is responsible for I/O intensive

processes. CPU intensive processes are those Processes in which

there is more than 50% processing. Processes that spent more than

50% (of their burst time) in waiting queue are I/O intensive

processes. Two queues are maintained one for each type of

processes. Queue for CPU intensive processes is called Queue1

and the queue for I/O intensive processes is called Queue2. All

the processes are sent to ready queues accordingly. On both of the

ready queues Round Robin Algorithm is applied. These queues

are updated as soon as any process arrive or completes its

execution. T is assigned as the arrival time of first process. Each

time the process enters, first its type is determined whether it is

CPU bound or I/O bound. Whenever the burst time of a process is

more than the time quantum, then the processes is inserted

at the end of that queue with its remaining burst time.

Processes which are arrived in-between are inserted first,

and then the remaining part of previous process is inserted

in the queue. This algorithm executes the processes in 1:1

ratio with CPU and I/O bound process. It means one

process is executed from queue1 and one process from

queue2.

4.1 Algorithm
Pseudo code: Enter the name nm, number no, type c,

arrival time ar, burst time bt of n number of processes. I2 is

the counter which will count the number of processes

completed. M is the time quantum of algorithm and t is the

total time.

two-queues(nm,no,c,ar,bt)
1) assign t=p[i].ar;

2) while(i<n)//while input queue is empty

3) {

4) if(p[i].c==1)

5) Put the values nm,no, ar,bt of that

process in q1

6) else

7) Put the values nm,no, ar,bt of that

process in q2

8) while((i2<n)&&((j<n1)||(k<n2))){/*j is the

counter of array q1 and k is the counter of array

q2*/

9) if(n1>j) {//If there are processes in queue q1

10) if(q1[j].bt<=m) //If burst-time is less than

m the process is completed.

11) Compute the waiting time & burst time

of the process.

12) else //If Burst-time is more than m it is to

be put in queue q1

13) Check if more processes have come in

between put them into queues.

14) Put the incomplete process in the end of

the queue q1.

15) }

16) if(n2>k){//If there are processes in queue q2

17) if(q2[k].bt<=m)//If burst-time is less than

m the process is completed

18) Compute the waiting time & burst time

of the process.

19) else //If Burst-time is more than m it is to

be put in queue q2

20) Check if more processes have come in between

put them into queues.

21) Put the incomplete process in the end of

the queue q2.}

22) }

23) }

24) Print the contents of queue1, queue2, and p.

5. RESULTS
Following are the three cases considered to analyze the

actual efficiency of the algorithm. These three cases are

taken according to the type of process we are taking our

examples.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 5, November 2014

23

Case-1: Almost equal CPU bound and I/O bound

Processes
In this case number of CPU bound processes is almost equal to

the number of I/O bound processes. Results in this case are shown

in table 1.

Table 1: Average waiting time results for case 1.

No. of

Processes

Avg. Waiting

time in Double

Queue(in ms)

Avg. Waiting

time in single

Queue(in ms)

10 56 57.7

15 86 92.46

20 118.2 125.5

30 138.5 144.8

Fig 1: Comparison of average waiting time for case 1

Case-2: Less CPU /More I/O
In this case, the number of CPU bound processes is less than the

number of I/O bound processes. Results in this case are shown in

table 2.

 Table 2: Average waiting time results for case 2.

No. of

Processes

Avg. Waiting

time in Double

Queue(in ms)

Avg. Waiting

time in single

Queue(in ms)

10 45.2 46.2

20 103.85 114.75

30 158.03 167.16

Fig 2: Comparison of average waiting time for case 2

Case-3: More CPU /Less I/O
In this case, number of CPU bound processes is more than

the number of I/O bound processes. Results in this case are

shown in table 3.

 Table 3: Average waiting time results for case 3.

No.of

Processes

Avg. waiting time

in Double Queue

(in ms)

Avg. waiting

time in Single

Queue (in ms)

10 34.3 33.3

20 81.1 79.3

30 123.5 120.7

 Fig 3: Comparison of average waiting time for case 3

6. CONCLUSION AND FUTURE

SCOPE
Two-queue based Round Robin scheduling algorithm has

been discussed. Three examples are taken to analyze its

effectiveness. Results are compared with single queue. The

following are the observations.

1. Two-queue algorithm is more efficient in terms of

waiting time & turn around time in case when

number of CPU bound processes are less than or

equal to I/O bound processes.

2. As the number of processes increases, the average

waiting time in single queue algorithm increases

& the average waiting time in two-queue

algorithm decreased as compared to single queue

algorithm i.e. the gap between their waiting time

increases. Hence, efficiency increases as number

of processes increases.

3. As seen in the examples, when single queue

algorithm is applied, some processes get access to

the CPU after a long time while in case of two-

queue algorithm more number of processes get

access to the CPU in less time. Hence it gives

better response time.

General observation is that two-queue algorithm

results in less waiting time, turnaround time &

response time. Multi-Queue Round Robin algorithm

can be extended in the following directions.

0

20

40

60

80

100

120

140

160

10 15 20 30

no. of Processes

A
v
g

.
W

a
it

in
g

 T
im

e

Double Queue

Single Queue

0

20

40

60

80

100

120

140

160

180

10 20 30

no. of Processes

A
v
g

.
W

a
it

in
g

 T
im

e

Double Queue

Single Queue

0

20

40

60

80

100

120

140

10 20 30

no. of processes

a
v
g

.
w

a
it

in
g

 t
im

e

Double queue

single queue

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 5, November 2014

24

1. Two-queue Round Robin algorithm can be implemented

in several ratios with CPU & I/O bound process.

2. If the process is near completion, then extra CPU time

quantum may be given to that process.

3. Process scheduling with multi-row concept can be

implemented.

4. This can be extended to Real time Operating System

environment to improve the efficiency.

7. REFERENCES
[1] Kantabutra Sanpawat, Kornpitak Parinya, and

Naramittakapong Chengchai; “Dynamic Clustering based

Round Robin Scheduling Algorithm”:The Theory of

Computation Group, Department of Computer Science

Chiang Mai University Chiang Mai,2003.

[2] Bradley P.S.,Fayyad U.M., “Refining initial points for K-

means clustering”: Proc. Of 15th international conference on

Machine Learning(ICML 98),pp 91-99,1998.

[3] Roehl Richard, Johnson Brian;”Designing a fairer Round

robin Algorithm”:31st Annual International Conference of

The Computer Measurement Group, Inc., Orlando Florida

USA, pp 1-8,2005.

[4] Silberschatz A. and Galvin P.B.; Operating System

Concepts:Addison Wisley Publishing Company, New

York, 1994.

[5] Andrew S. Tanenbaum. Modern Operating System.

Prentice Hall, New Jersey,1992.

[6] E.G. Coffman and L. Kleinrock. Feedback queuing

models for time-shared systems. Journals of the ACM,

vol.15,549-576, October 1968.

[7] H.S. Beher and Brajendra Kumar Swain; “A New

Prposed Precedence based Round Robin with

Dynamic time Quantum Scheduling Algorithm for

Soft Real Time Systems”; International Journal of

Advanced Research in Computer Science and

Software Engineering, Vol 2, Issue 6, June 2012.

[8] Aashna Bisht, Mohd. Abdul Ahad and Sielvic Sharma;

”Calculating Dynamic Time Quantum for Round

Robin process Scheduling Algorithm”, International

Journal of Computer Application, Vol 98, November

21, 2014.

[9] Ms. Rashmi A. Dhumal, Ms. Tabassum A. Maktum,

and Ms. Lata Ragha; “ Dynamic Quantum based

Genetic Round Robin Algorithm”, International

Journal of Advanced Research in Computer and

Commnication Engineering, Vol 3, Issue 3, March

2014.

IJCATM : www.ijcaonline.org

