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ABSTRACT 

In this paper, the problem of hyper-chaos stabilization was 

discussed via Fuzzy Sliding Controller. The equation of a 

satellite is a six-Dimensional nonlinear system which includes 

some types of nonlinear behavior such as periodic trajectory, 

chaotic dynamics. A Fuzzy Sliding Controller is applied to 

regulate the state trajectory hyper-chaos satellite to the 

unstable equilibrium points. Using Lyapunov theory, the 

stability control system is proven. Simulation results show 

that the proposed controller can be chaotic satellite attitude in 

the presence of disturbance inputs and uncertainties will 

converge to the unstable equilibrium points. 
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1. INTRODUCTION 
Chaos is a common phenomenon in the natural. In 1963, 

Lorenz discovered the first chaotic system when he studied 

atmospheric convection [1]. A chaotic system dynamical 

behavior, such as depending sensitively on tiny variation of 

initial conditions, is having bounded trajectories in the phase 

space, etc. This complex behavior could be undesirable in 

many engineering applications. For this reason, it is often 

necessary to design control mechanisms that will force system 

to exhibit a desired dynamic, even intrinsically chaotic. In 

1979, Rossler reported the first hyper-chaotic system with two 

positive Lyapunov exponents [2]. A hyper-chaotic attractor is 

characterized as a chaotic attractor with more than on positive 

Lyapunov exponent. In recent years, the study of hyper-

chaotic systems has grown up in many field such as laser 

[3,4], nonlinear circuit[5], communication[6] and 

aerospace[7,8]. Especially recent decades of years, many 

techniques and methods have developed to control hyper-

chaotic dynamic, such as adaptive feedback control [9], Fuzzy 

[10], Sliding mode Control [11], feedback controller [12]. The 

research in [13, 14] was proven to be chaotic attitude motion 

satellite. Recently, various researches and publications 

introduced the chaotic dynamics of the satellites. Methods that 

have been introduced thus far include predictive control [15], 

impulsive control [16], and neural networks [17].  

The control of the satellite, on the other hand, is a stabilization 

problem. Due to the large dimensions and complexity of the 

satellite equations, requires a controller that can act quickly 

and appropriately. So in this paper, we investigate the stability 

of hyper-chaotic satellite that is including angular velocities 

and attitude angles, using the Fuzzy Sliding Mode (FSM) 

controller. The paper is organized as follows, after this 

introduction, the section 2 described satellite system with 

hyper-chaotic dynamic. section3, describe FSM controller 

design technique and section 4 presents simulation results to 

demonstrate the effectiveness of the proposed control method 

for stabilization hyper-chaotic satellite dynamics. Finally, 

section 5 draws conclusion. 

2. SATELLITE SYSTEM AND HYPER-

CHAOTIC DYNAMICS  
In this section, the satellite system and the hyper-chaotic 

dynamics are studied. The kinematic equation of a satellite or 

spacecraft can be written as: 
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The rotational motion for general rigid spacecraft acting under 

the influence of external torques is given by [14]. The 

dynamical equation of a satellite, similar to a rigid body can 

be expressed as:   

I I H U                                                              (3) 

Where I is the moment of inertia tensor,  is the angular 

velocity vector, U is the control torque, and H contains any 

external disturbance torques. The dynamical equations of a 

satellite are:  
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Where ,x yI I and zI are the principal moments of inertia, 

,x y  and z are the angular velocities of the satellite, 

,x yH H and zH are perturbing torques. Principal moments 

of inertia and perturbing torques such as: 
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This torques is chosen so as to force the satellite into chaotic 

motion. By changing the elements value of system matrices, 

many various dynamical behaviors could be observed. We 

consider the system (1) and (4) under perturbing torques (5) 

such as: 
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In equation (6) it is seen that the three coupled nonlinear 

relationship exists between the satellite dynamics. Thus, it can 

be seen in the attitude of the satellite is the most complex 

chaotic dynamics.  

The control problem hyper-chaotic is to suppress the chaos 

and regulate the state trajectory of this system to a desire fixed 

point or around the equilibrium point is unstable or:  

 * * * * * * 0 0 0 0 0 0
T T

x y z       
 
Hence, the proposed controller will be described in the next 

section. By changing the equation (6) to form: 
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. Equation (6) with unknown input can be rewritten such as: 
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Where ,i 1,2,3,4,5,6iU  , control inputs should be 

designed, and i  is
y z
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The error states are defined as
*

i i ie x x  . The state error is 

of the form: 

 

 

Fig.1 Angular Velocities 

 

Fig.2 Attitude Angles 
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In order to control the system (7) to the unstable equilibrium 

point  0 0 0 0 0 0
T

,  

3. FSM CONTROLLER DESIGN  
The control input of the system (7) determined using the 

Fuzzy Sliding Mode controller; the sliding surface can be 

defined as,  

0

( ) 1,2,...,6

t

i i i iS e e d t i          (9)                      

Where i  is constant. The existence of the sliding-mode 

requires the following conditions to be satisfied [18], 

0

( ) 0 1,2,...,6

t

i i i iS e e d t i         (10)               
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Fig.3 Phase Portraits of Hyper-Chaotic Satellite 

And  

0 1,2,...,6i i i iS e e i                                      

(11) 

The controls ,i 1,2,...,6iU   of the dynamic system (7) are 

designed to ensure that the error states the sliding surfaces. 

Therefore: 
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Fig.4 Inputs Membership Function ( ,S S ) 

 
Fig.5 Output Membership Function 

Where , (i 1,2,...,6)ik  are positive constant and 

(S,S)FSM  represents the functional characteristics of the 

fuzzy logic decision scheme. Fig.4 shows the membership 

functions of input. They are decomposed into five fuzzy 

partitions, which are negative big (NB), negative small (NS), 

zero (ZE), positive small (PS), and positive big (PB). The 

fuzzy rules of FSM are: 
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The crisp FSM is calculated using a weighted average 

defuzzification method: 
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Where i the premise membership is function value of the 

ith-rule and iu  is the singleton control vector in the ith-rule. 

 
Fig.6 State variables of the hyper-chaotic satellites with 

controller proposed 

Theorem1. The hyper-chaotic satellite with FSM controller 

proposed in the (12), the error state trajectory then converges 

to zero, if all initial condition 0
nx  , and all satellite 

dynamics is measurable. 

Proof1. Let the Lyapanov function candida is:  

2 2 2 2 2 2
1 2 3 4 5 60.5( )V S S S S S S                           (14) 

Differentiating the Lyapunov function equation (14) with 

respect to time yields,  
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Fig.7 Error Controller 

 
Fig.8 FSM Controller proposed 
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Substituting ,i 1,2,3,4,5,6iU  into V yields, 
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This is a negative definite function.  Hence, by Lyapunov 

stability theory, it is immediate that the error dynamics (8) is 

globally asymptotically stable for all initial conditions

(0) ne R . Complete the proof. 

4. SIMULATION RESULT 
In this section, the fourth-order Runge-Kutta integration with 

step time 
310h  method is used to solve the satellite 

system (7). Initial values of the hyper-chaotic system are

0 [3 3 3 3 3 3]Tx  . The time responses of state 

variable of the hyper-chaotic satellite are show in Fig.1 and 

Fig.2. Phase Portraits of hyper-chaotic satellite is represented 

in Fig3. In the simulation, the parameters of the control inputs 

given by Eq. (12) are set to: 

5  ,  [0.05 0.05 0.05 0.05 0.05 0.05]Tk  . 

Fig.4 and Fig.5 shows the Membership functions of the input–

output variables for FSM controller proposed. The controller 

is active at time t = 70(sec) the state variables are controlled to 

the equilibrium point unstable.  Fig6 and Fig.7 presents state 

variables of the hyper-chaotic satellites with controller 

proposed and error, respectively, these errors converge 

asymptotically to zero. The simulation results demonstrate 

that the proposed Fuzzy Sliding Mode controller is effective 

in the to the equilibrium point unstable. The proposed 

controller does not chattering, means that the controller can be 

implemented in the real world. (See Fig.8) 

5. CONCLUSION 
The attitude equation of a satellite, includes kinematic and 

dynamic equations of a satellite, is a six-dimensional 

nonlinear system which includes some types of complex and 

nonlinear dynamical behaviors. The object of the attitude 

control system is to regulate the angular angles and angular 

velocities of a rigid-body in the space.  In this paper, was 

introduction a Fuzzy Sliding Mode control design method for 

stabilization of the hyper-chaotic satellite.  Using Lyapunov 

theory, the stability control system is proved. The numerical 

simulation results show that the proposed FSM controller the 

system could hyper-chaotic motion of satellites converge to 

the unstable equilibrium points. According to Fig.7, the 

controller after the applying the chaotic dynamics of satellites 

quickly forced the move towards a stable equilibrium points. 
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