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ABSTRACT 
Artificial Neural Networks (ANNs) have attracted increasing 

attention from researchers in many fields. One area in which 

ANNs have featured prominently is in the forecasting of 

TCP/IP network traffic trends. Their ability to model almost 

any kind of function regardless of its degree of nonlinearity, 

positions them as good candidates for predicting self-similar 

time series such as TCP/IP traffic. Inspite of this, one of the 

most difficult and least understood tasks in the design of ANN 

models is the selection of the most appropriate size of the 

learning rate. Although some guidance in the form of 

heuristics is available for the choice of this parameter, none 

have been universally accepted. In this paper we empirically 

investigate various sizes of learning rates with the aim of 

determining the optimum learning rate size for generalization 

ability of an ANN trained on forecasting TCP/IP network 

traffic trends. MATLAB Version 7.4.0.287’s Neural Network 

toolbox version 5.0.2 (R2007a) was used for our experiments. 

We found from the simulation experiments that, generally 

small learning rates produced consistent and better results, 

whereas large learning rates appeared to cause oscillations and 

inconsistent results. Depending on the difficulty of the 

problem at hand, it is advisable to set the learning rate to 0.1 

for the standard Backpropagation algorithm and to either 0.1 

or 0.2 if used in conjunction with the momentum term of 0.5 

or 0.6. We advise minimal use of the momentum term as it 

greatly interferes with the training process of ANNs. While 

experimental results cannot cover all practical situations, our 

results do help to explain common behavior which does not 

agree with some theoretical expectations. 
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1. INTRODUCTION 
Artificial Neural Networks (ANNs) have been used in many 

fields for a variety of applications, and proven to be reliable. 

Inspired by biological systems, particularly the observation 

that biological learning systems are built of very complex 

webs of interconnected neurons, ANNs are able to learn and 

adapt from experience. They have demonstrated to be one of 

the most powerful tools in the domain of forecasting and 

analysis of various time series [1]. Time Series Forecasting 

(TSF) deals with the prediction of a chronologically ordered 

variable, and one of the most important application areas of 

TSF is in the domain of network engineering. As more 

applications vital to today’s society migrate to TCP/IP 

networks it is essential to develop techniques that better 

understand and predict the behaviour of these systems.  

TCP/IP network traffic forecasting is vital for the day to day 

running of large/medium scale organizations. By improving 

upon this task, network providers can optimize resources (e.g. 

adaptive congestion control and proactive network 

management), allowing an overall better Quality of Service 

(QoS). TCP/IP forecasting also helps to detect anomalies in 

the network. Security attacks like Denial-of-Service (DoS) or 

even an irregular amount of SPAM can be detected by 

comparing the real traffic with the values predicted by 

forecasting algorithms, resulting in economic gains from 

better resource management.  

Literature from various authors has shown that unlike all other 

TSF methods, ANNs can approximate almost any function 

regardless of its degree of nonlinearity [2,3].  This positions 

them as good candidates for modeling non linear and self 

similar time series such as TCP/IP network traffic. Inspite of 

this huge advantage, ANNs are not completely absolved from 

any problems. One major issue that limits the applicability of 

ANN models in forecasting tasks is the selection of the 

optimal size of the learning rate. The learning rate also 

referred to as the step size parameter, determines how much 

the weights can change in response to an observed error on 

the training set. It is considered as a key parameter for a 

successful ANN application because it controls the size of 

each step toward the minimum of the objective function [4]. 

This has a profound influence on the generalization 

capabilities of the ANN [5]. Generalization is a measure that 

tells us how well the ANN performs on the actual problem 

once training is complete. Once the ANN can generalize well, 

it means that it is capable of dealing with new situations such 

as a new additional problem or a new point on the curve or 

surface.  

Although individual studies have been conducted and some 

form of heuristics provided for the selection of the size of the 

learning rate, none have been universally accepted as the 

results are largely contradictory. Some researchers such as 

Richards (1991) [6] suggest that the larger the learning rate 
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the better the ANN generalization whilst others such as 

Wilson and Martinez (2001) [7] are of the opposite view. In 

any case most of these studies have been conducted on 

synthetic datasets e.g. (Glass-Mackey time series) making the 

solutions thereof difficult to apply to real world problems. In 

fact, until a number of experiments have been done, it is 

unknown which size of the learning rate will provide optimum 

solutions. Hence new users of ANNs particularly in the 

forecasting of TCP/IP network traffic domain, usually blindly 

employ trial-and-error strategies to determine the optimal 

values for this parameter without any prior substantive 

guidelines. This results in the addition of more time to the 

already slow process of training an ANN. 

In this paper the effect of different sizes of learning rates on 

the generalization ability of ANNs is empirically investigated. 

Although the results presented in this paper are for a particular 

case study, they provide a valuable guide for engineers and 

scientists who are currently using, or intend to use ANNs.  

2. ARTIFICIAL NEURAL NETWORKS 
Haykin (1998) [8] defines ANNs as "physical systems which 

can acquire, store and utilize experimental knowledge". The 

basic unit of an ANN is a neuron. An artificial neuron acts in 

the same way as a biological neuron; each has a set of inputs 

and produces an output based on the inputs. A biological 

neuron produces an output by comparing the sum of each 

input to a threshold value. Based on that comparison it 

produces an output. In addition, it is able to differently weigh 

each input according to the priority of the input. The inputs 

and outputs of a biological neuron are called synapses and 

these synapses may act as inputs to other neurons or as 

outputs such as muscles. Thus it creates an interconnected 

network of neurons which combined produce an output based 

on a number of weights, sums and comparisons. One 

motivation for ANN systems is to capture this kind of highly 

parallel computation based on distributed representations. 

 

Fig 1: An artificial neuron (adapted from [8]) 

Fig 1 shows the typical structure of an artificial neuron, the 

inputs are denoted by 𝑥1 , 𝑥2 …𝑥𝑝  and weights are denoted 

by  𝑤𝑘𝑜 , 𝑤𝑘1 , 𝑤𝑘2 …𝑤𝑘𝑝 . The neuron calculates the 

weighted sum 𝑤𝑘 , 𝑥 as: 

𝑤𝑘 , 𝑥 =  𝑤𝑘𝑖𝑥𝑖
𝑝
𝑖=1                     (1)                                           

The output of the neuron is governed by the activation 

function, which acts as a threshold. The output is given by: 

𝑦𝑘  = 𝑓( 𝑤𝑘𝑖𝑥𝑖
𝑝
𝑖=1 + 𝑏𝑘)              (2) 

Where f is the activation function, (𝑏𝑘) is the bias and 𝑦𝑘  is 

the output signal.  

Among the various types of ANN models, Multilayer 

perceptron (MLP) is the most extensively applied to a variety 

of problems.  MLPs are formed by several neurons arranged 

in groups called layers. The most popular and the simplest 

MLP consist of three layers, an input layer, a hidden layer, 

and an output layer. The ANN thus has a simple interpretation 

as a form of input-output model, with the weights and 

thresholds (biases) being the free parameters of the model. 

The sliding time window approach is the most common MLP 

model for forecasting. It takes as inputs the time lags used to 

build a forecast and it is given by the overall formula: 

𝑋𝑝,𝑡 = 𝑤𝑜,0 +  𝑓   𝑋𝑠𝑡−𝐿𝑠𝑟
𝑤𝑠
𝑟=1

𝑘
𝑠=1

𝐼+𝐻
𝑖=𝐼+𝐻 𝑤𝑖 ,𝑗       (3) 

Where 𝑤𝑖 ,𝑗   is the weight of the connection from node 𝑗 to 𝑖 

(if 𝑗=0 then it is a bias connection), o denotes the output node 

and 𝑓 is the Logistic sigmoidal activation function. 

 

Fig 2: Sliding time window MLP (adapted from [8]) 

In the vast majority of papers that deal with the prediction and 

forecasting of TCP/IP traffic, Feedforward networks 

optimized with the aid of the Backpropagation (BP) algorithm 

have been used. According to Haykin (1998) [8], “this is 

because BP is easy to implement and fast and efficient to 

operate”. The BP process is commenced by presenting the 

first example of the desired relationship to the network. The 

input signal flows through the network, producing an output 

signal. The output signal produced is then compared with the 

desired output signal and the errors propagated backwards in 

the network. In this work we have adopted the BP sliding time 

window approach for our ANN models. 

3. METHODOLOGY 
In our approach for the study we used experimental method 

which is a proven method for testing and exploring cause and 

effect relationships. The benefit of using this method is that it 

allows the control of variables thereby enabling the isolation 

of a particular variable to observe the effects due to that 

variable alone. In this case our interest was on the effects of 

the size of the learning rate on ANN generalization. The 

software used for the purposes of this study is Matlab Version 

7.4.0.287 (R2007a). Matlab is an application software and 

programming language with interfaces to Java, C/C++ and 

FORTRAN.  In this study, Matlab provides an environment 

for creating programs with built-in functions for performance 

metrics and forecasting using its Neural Networks toolbox 

Version 5.0.2 (R2007a). The computer used to conduct this 

study is an Intel(R) Core(TM) 2CPU6300@1.86GHz. The 

data was collected from the South African Tertiary 

Institutions Network (TENET) website (www.TENET.ac.za). 

We analysed network traffic data which comprised inbound 

traffic in (bits/ sec) from the University of Fort Hare VC Alice 
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Boardroom 101 – Fa 0/1 router. The data spanned from the 1st 

of March 2010 from 02:00 hours to the 21st of September 

2013 02:00 hours in daily intervals, equating to 700 

observations. As in all practical applications the data suffered 

from several deficiencies that needed to be remedied before 

use for ANN training. Preprocessing was done which included 

Linear interpolation to fill in missing values, which amounted 

to 7 such observations. Matlab Neural Network toolbox has a 

built-in function, mapminmax which scales the data down 

before training so that it has 0 mean and unity standard 

deviation and then scales it up again after training, so as to 

produce outputs with 0 mean and unity standard deviation. 

The data was partitioned into training and testing sets. 547 

samples were allocated to the train set whilst 182 were 

allocated to the test set.  

To investigate the effect of the learning rate on the 

generalization ability of ANNs in predicting TCP/IP network 

traffic trends, various layered, fully connected ANNs with a 

single input neuron, Logistic sigmoid activation function in 

the hidden layers and a Linear output neuron were examined. 

We carried out investigations on both single and double 

hidden layer ANNs. A supervising script was written to 

compute the ANN inputs and targets. On visual inspection of 

the time series a sliding time window of size 150 was 

arbitrarily chosen.  Training was stopped after 1000 epochs 

and the generalization performance of the ANNs tested by 

presenting the unknown test set to the ANNs and calculating 

the Root Mean Squared Error (RMSE) between the actual and 

predicted values. RMSE is a dimensionless value calculated to 

compare ANN performance. The RMSE on the test set 

(𝑀𝑆𝐸𝑡𝑒 ) was calculated using the following equation:     

𝑅𝑀𝑆𝐸𝑡𝑒 =  ( 𝑑𝑝 − 𝑜𝑝)
𝑃𝑡𝑒
𝑝=1 ²            (4) 

where 𝑑𝑝  is the desired output for each input pattern and 𝑜𝑝  is 

the actual output produced by the ANN. In order to minimize 

the random effect of the initial weights on results, for each 

experiment conducted, 4 training runs were made and the 

results averaged. We also ensured that all other variables that 

could potentially affect the quality of results remain constant. 

Hence throughout the duration of our investigations the size 

of the training set was fixed at 547 samples and of the test set 

at 182 samples, weights were randomly initialised in the range 

of  [-0.5, 0.5],  the BP (trainlm) training rule was the weight 

updating algorithm and the momentum was fixed at 0.2 

(unless stated otherwise). 

4. THE EXPERIMENTS 
The first set of experiments involved several single hidden 

layer ANNs trained on various learning rates on separate 

occasions. The ANNs selected for examination had 20, 40, 60 

and 80 hidden neurons. These were selected based on stability 

times during preliminary investigations. The learning rates 

were varied according to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9 and 1. The choice of the learning rates was purely done on 

an arbitrary basis. Fig 3 shows the results of those 

experiments. 

 

Fig 3: Generalization errors (RMSE) for the different 

learning rates at various network architectures. 

In the second set of experiments, we trained a single hidden 

layer ANN of network architecture of 60 hidden neurons, at 

learning rates of 0.2, 0.4, 0.6, and 0.8 for a different number 

of epochs in order to ascertain how the impact of learning rate 

on generalization ability varies with an increase in number of 

training iterations. The choice of the values of the learning 

rates was motivated by a similar case study by Attoh-Okine 

(1999) [4] who utilised the same values of the learning rates 

for his experiments. The reason a 60 hidden neuron ANN was 

selected for investigation was because it exhibited better 

generalization performance than other network architectures 

during preliminary experiments conducted prior to these 

investigations. Fig 4 shows the generalization errors from the 

experiments. 

Fig 4: Generalization errors (RMSE) for the different 

learning rates at various training iterations. 

In the third set of experiments, we assessed the performance 

of two hidden layer architecture. After conducting several trial 

runs on various ANN architectures from preliminary 

experiments a two hidden layer ANN of architecture (5, 35) 

i.e. 5 first hidden layer neurons and 35 second hidden layer 

neurons, was chosen as the bases for conducting these 
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investigations. The bases for arriving at the chosen 

architecture was the fact that the (5, 35) network architecture 

exhibited better generalization performance amongst all the 

two hidden layer architectures examined in the preliminary 

experiments. We trained the ANN on two different learning 

rates of 0.1 and 0.01 on separate runs. The results of the 

generalization performance are shown in Fig 5. 

 

Fig 0: Generalization errors (RMSE) for different      

learning rates at various training iterations for (5, 35) 

ANN. 

Finally, in order to make fair conclusions additional 

experiments were conducted using different combinations of 

learning rates and momentum values so as to assess whether 

the effect of different learning rates is the same regardless of 

momentum. These 2 parameters have been suggested to be 

quite closely related in literature [4]. We trained as in the 

previous case, the same ANN of network architecture (5, 35) 

using different heuristics of learning rates and momentum 

combinations provided in literature. The generalization errors 

are shown in Fig 6.  

 
Fig 6: Generalization errors (RMSE) for different 

learning rates and momentum combinations at various 

training iterations for (5, 35) ANN. 

 

5. RESULTS AND DISCUSSIONS 
In this section we discuss the empirical results on experiments 

regarding the relationship between ANN generalizations and 

learning rate. We begin our analysis by examining the results 

in Fig 3, which depict the generalization errors of various 

single hidden layer ANNs trained on various learning rates. 

From Fig 3, it would appear that indeed selecting the optimum 

learning rate for a given problem is a complex task. From the 

results, we note that the best performing ANN is architecture 

of 60 hidden neurons, trained on a learning rate of 0.9. We 

note that for many of the ANNs examined the lowest 

generalization errors occurred at lower learning rates mostly 

between 0.2 to 0.6, although it is difficult to pinpoint a single 

universal value which we can safely conclude to be effective 

in all cases. However, in many cases a learning rate of 0.6 

seems to give the most reasonable generalization errors. Our 

results indicate that the smaller ANNs performed badly in 

these experiments, especially the 20 hidden neuron and 40 

hidden neuron architectures. These two architectures also 

displayed the most erratic behaviour, whether trained on 

smaller or larger learning rates, indicating the intrinsic 

relationship between learning rate and network architecture, 

emphasizing the sensitivity of smaller ANNs to learning rate. 

Generally small learning rates produced consistent and better 

results, whereas large learning rates appeared to cause 

oscillations and inconsistent results. 

We then trained a 60 hidden neuron ANN at different learning 

rates of 0.2, 0.4, 0.6, and 0.8 for a different number of epochs 

in order to ascertain how the impact of learning rates on 

generalization ability varies with an increase in the number of 

training iterations. The results of that endeavour are shown in 

Fig 4. From Fig 4 note that the best generalization 

performance is attained when the ANN is trained on a 

learning rate of 0.6. It is evident from the results that the 

generalization ability of the ANN increases as the size of the 

learning rate increases, however this is only true up to a 

certain threshold, beyond which any further increment in 

learning rate results in adverse effects. This is true judging by 

the generalization errors incurred in Fig 4. From Fig 4, note 

that the ANN performs the worst and is mostly erratic at a 

learning rate of 0.2, when the learning rate is increased to 0.4, 

the generalization ability of the ANN dramatically improves, 

at a learning rate of 0.6, the ANN is at its best in terms of 

generalization ability, however at a learning rate of 0.8, 

instead of following a similar antecedent, the generalization 

ability of the ANN decreases.  

It is also quite interesting to note that for all the (learning rate-

number of iterations) combinations the ANN performs the 

best in terms of generalization ability at 750 epochs. 

Additionally, training time was fast for learning rates of 0.2 

and 0.4, and reasonably fast for rates of 0.6 and 0.8. Note that 

larger learning rates take many epochs to reach their 

maximum generalization ability, which is ultimately poor 

anyway. The small learning rates take longer to reach the 

same accuracy, but yield no further improvement in accuracy.  

We now turn our discussions to the results shown in Fig 5 

which show the generalization performance of a 2 hidden 

layer ANN of network architecture (5, 35). The results in Fig 

5 indicate that for the task of forecasting a TCP/IP network 

traffic time series, a 2 hidden layer ANN is more sensitive to 

smaller leaning rates than larger ones. The generalization 

errors show that the ANN has significantly better 

generalization ability when trained on a learning rate of 0.01 

than 0.1, this is more pronounced at an epoch size of 500. 

Although a learning rate of 0.1 outperforms the 0.01 learning 
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rate between 750 to 800 epochs, we cannot not read much into 

this as it is largely short-lived 

To conclude with the discussions we examine the results of 

different combinations of learning rates and momentum 

heuristics given by various authors. The reason for such was 

to ascertain whether the effect of different learning rates on 

generalization ability is the same regardless of momentum. 

The experiments were conducted on a (5, 35) network 

architecture. The results of this assessment are given in Fig 6. 

Several conclusions can be deduced from these results 

regarding the effect of different learning rates and momentum 

combinations on the generalization ability of the ANNs.  

From the results, for the case study considered we note that 

the 0.1-0.9 (learning rate-momentum) combination given by 

Foody et al. (1996) [9] fails to produce satisfactory 

generalization ability. We note extensive oscillatory 

behaviour in terms of  generalization errors at those values of 

the learning rate and momentum, this as stated by Kavzoglu 

(1999) [10] could be attributed to the fact that the use of  large 

momentum term increases the effect of oscillations by 

extending the steps taken in faulty direction or perhaps the 

ANN could have been stuck in a local minima resulting from 

the  large momentum term. 

 It can be seen from Fig 6 that the lowest generalization errors 

are produced by  small learning rate and momentum 

combinations, such as 0.25-0.2 of  Swinger (1996) [11] and 

0.1-0.3 of Ardö et al. (1997) [12]. Another important 

observation is that the addition of the momentum term to the 

training considerably slowed down the learning process. 

Although the selection of an appropriate combination of the 

learning rate and momentum is a mammoth task, it appears 

that a very small learning rate, roughly 0.1 and a moderately 

high momentum term between 0.2–0.4 provided neo-optimal 

solutions for forecasting TCP/IP traffic trends.  

Now, to answer the question: How does the use of a 

momentum term affect the way in which an ANN responds to 

the learning rate? From Fig 6, we see that the generalization 

errors obtained in those tests where various combinations of 

learning rate and momentum values were tried out, were in 

essence not that significantly different from the generalization 

errors  obtained when a momentum value of 0.2 was used as 

in  the previous experiments. However, the behaviour of the 

ANNs was less controlled with increasing momentum, as a 

result of the larger steps taken in weight space. In fact, when a 

momentum value of 0.8 was used in conjunction with a 

learning rate of 0.2 and when a momentum value of 0.9 was 

used in conjunction with learning rates of 0.1, the steps taken 

in weight space were too large and divergent behaviour 

occurred during training. Discussions on the sizes of training 

epochs as a function of the network architecture and  the 

resultant effect upon the learning rate and momentum  needs 

further insight so that a more generalized result can be 

proposed. It is also important to note that during these 

experiments, the ANNs did not show any signs of overfitting. 

6. CONCLUSIONS AND FUTURE 

WORK 
The experimental results regarding the relationship between 

the learning rate and network generalization are discussed in 

section 5. We note that for a single hidden layer network, a 

learning rate of 0.6 gave the most reasonable generalization 

errors, particularly at an epoch size of 750, and a 2 hidden 

layer ANN was more sensitive to larger learning rates than 

smaller ones. We also noted that smaller learning rates 

decreased the training time quite significantly.  

With regards to the impact the momentum term has on the 

relationship between the learning rate and generalization 

ability of ANNs, we discovered that a very small learning 

rate, roughly of about 0.1 and a moderate momentum between 

0.2–0.4 provided neo-optimal solutions for the task 

considered. However, the behaviour of the ANNs became less 

controlled with increasing momentum, as a result of the larger 

steps taken in weight space. We conclude that the degree of 

effects of learning rate and momentum on the model differ as 

stated by Wilson and Martinez (2001) [7]. The learning rate is 

more powerful than momentum, as when a large learning rate 

and small momentum are achieved, the result is more precise 

than the opposite. 

For researchers in this domain seeking simply for the learning 

rate that produces the fastest convergence should probably 

settle on a learning rate of 0.4. However, doing so would 

mean sacrificing generalization ability, which could be more 

efficiently achieved by using a larger learning rate, therefore 

trade-off between these two variables is an ardent necessity. 

Unfortunately for these experiments we did not require the 

training process to converge, rather, the training process is 

used to perform a direct search of a model with superior 

generalization performance. 

We also advise, depending on the difficulty of the problem at 

hand to set the learning rate to 0.1 for the standard 

Backpropagation algorithm and to either 0.1 or 0.2 if used in 

conjunction with the momentum term of 0.5 or 0.6,its 

important not to set the momentum term too large as it would 

cause the ANN to be greatly unstable. If possible we advise 

minimal use of the momentum term as it greatly interferes 

with the training process of ANNs. 

As with almost any area of research, progress leads toward 

more questions. Based on the research carried out in this 

study, our results suggest considerable potential for future 

work. We plan in extending our investigations to new self-

similar and chaotic time series and to other ANN models and 

learning parameters. In addition, more testing is needed to 

evaluate the applicability of our guidelines to other datasets to 

be able to make claims about their robustness and to validate 

the effectiveness of the conclusions reached in this research.  

In order to improve and extend the investigations reported in 

this work, in addition to constant learning rates, the use of 

adaptive learning rate strategies could be examined and their 

effects on ANN generalization ability compared to those 

produced by their counterparts. Another issue which we can 

possibly look at is using a variable momentum value. A 

variable momentum value is currently being researched and 

its impact upon the generalization ability is not exactly known 

to date. 

As this study was limited to Feed-forward ANN learning 

problems with the Backpropagation learning algorithm, it 

could be also beneficial to investigate the effects of the size of 

the learning rate on the performance and generalization ability 

of other ANN models, including Self Organizing Maps 

(SOM) and Learning Vector Quantization (LVQ), with the 

aim of deriving some general conclusions that can be used to 

construct some guidelines for users in the design of these 

particular network models. 
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