
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 3, November 2014

35

A Review of Studies on Change Proneness Prediction in Object

Oriented Software

Deepa Godara
Computer Science Engineering

Uttarakhand Technical University

Dehradun, India

R.K. Singh
Electronics and Communication Engineering

Uttarakhand Technical University

Dehradun, India

ABSTRACT

Predicting change prone class in software is a difficult

software engineering process. Selection of wrong effort

estimation can delay project completion and can incur

unnecessary cost also. The aim of this paper is to provide a

basis to improve the process of prediction of change prone

classes. This paper reports a systematic review of papers

published in journals and conference proceedings. The review

investigates methodologies for predicting change prone class

and fault prone class. The key findings of the review are: (1)

behavioural dependency has been widely used for prediction

of the change prone class, (2) there is need to develop a

framework comprising of more features to accurately predict

change prone class. This paper provides an extensive review

of studies related to change proneness of software. The main

goal and contribution of the review is to support the research

on prediction of change prone classes. In addition, we provide

software practitioners with useful estimation guidelines (for

e.g. classes predicted to be more change prone require more

effort).

General Terms
Object Oriented Software, Algorithms, et. al.

Keywords
UML diagrams, change prone class, behavioral dependency.

1. INTRODUCTION
Change-prone classes in software require more attention

because they require increased effort, development and

maintenance costs. Identifying such classes can enable

developers to focus preventive actions such as, peer-reviews,

testing, inspections, and restructuring efforts on the classes

that are sensitive and change prone. As a result, developers

can deliver higher quality products in a timely manner by

efficiently utilizing the resources.

Modification may be on account of diverse factors like

improvement, modification, perfect upkeep or do away with

drawbacks. Several elements of the software may be

susceptible to modifications than their counterparts. A proper

understanding of the classes which are change-prone is highly

advantageous as the change-proneness may be some sign of

particular fundamental quality issues [3]. Managing change is

one of the pivotal factors in the realm of software engineering.

Evolutionary growth has been suggested as a competent

method to tackle risks like modern technology and vague or

varying needs [15]. If a preservation method has the

competence to ascertain the components of the software

which are change-prone then explicit corrective steps can be

initiated. Therefore, a sound knowledge of the domain which

had maximum modification over a certain interval will go a

long way in spotting the crucial change-prone classes and

interactions, then it is easy for development procedure to

concentrate its attention on them [3]. Change-prone classes in

software call for meticulous attention as they need endeavor

and augment growth and preservation overheads. Recognizing

and typifying them enables developers to take remedial

measures like peer-reviews, testing, inspections, and

streamlining endeavors on the classes with the parallel traits

in the coming years. Consequently, developers are capable of

exploiting their wherewithal more professionally and dispense

superior quality products in an appropriate way [9]. If

defective classes are recognized in the initial stages of the

growth project’s life phase, extenuating remedies can be

considered including alert inspections. Forecast patterns by

means of plan metrics can be employed to recognize defective

classes in advanced stages [13]. The accuracy of the forecast

effect decides the accuracy of cost evaluation and quality of

project preparation [14]. To obtain behavioral reliance

measures between two disseminated objects, we undertake a

methodical scrutiny of messages sent between them in a group

of sequence diagrams (SDs) For example, when an object

sends a synchronous communication to another object and

waits for a reply, we say that the former object is behaviorally

reliant on the latter [7].

UML is now extensively acknowledged in the software

engineering circle as a general notational benchmark. It

extends a helping hand to object-oriented plans which on the

other hand promote module reprocess. It is competent to

furnish numerous outlooks of the system under blueprint [6].

The UML based plan enables us to execute prescribed

authentication and corroboration method [5]. The unified

modeling language (UML) is a graphical language for

visualizing, denoting, building, and recording software-

intensive techniques. UML offers a typical method of

scripting system plans, covering abstract things, classes

written in a definite programming language, database schemes

and reusable software components [2]. UML has appeared

assuming the role of the software industry’s leading language

and is, by now, an Object Management Group (OMG)

benchmark. It symbolizes a set of finest engineering exercises

that have been established as triumphant in the modeling of

mega and intricate techniques. OMG is now recommending

the UML pattern for global homogeny for information

technology [8]. As the application of object-oriented plan and

programming grows up in the industry, we see that legacy and

polymorphism are being utilized more often to perk up

internal reprocess in a system and to assist conservation [12].

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 3, November 2014

36

We are of the opinion that a lion’s share of the software

metrics appraise the grade of object-orientation or calculate

immobile traits of the plan, which do not appear to be

advantageous in finding a key to the perplexing dilemma

regarding the existence or otherwise of high-quality in regard

to a explicit plan. While attempting to face such an issue, an

expert would evaluate the conformance of the plan to well

recognized rules of thumb, heuristics, and doctrines [10].

Behavioral Dependency Analysis (BDA) estimates the scope

to which the functionality of one system unit is reliant on

other units. According to the mine of data used to execute a

BDA, we can segregate the BDA methods into three groups

such as code-based, execution-trace-based, and model-based.

This paper summarizes empirical results related to change

proneness of a class. The primary goal and contribution of the

paper is to support the research on change proneness

prediction through an extensive review of relevant papers, a

brief description of the main results of these papers, and the

use of these results to validate change prone classes. Although

primarily aimed at other researchers, we believe that most of

the paper, in particular the validated features, are useful for

software practitioners, as well. The following research

questions are addressed here in this paper:

 RQ1: What is the contribution of literature in the

field of predicting change prone classes?

 RQ2: What are the methodologies for selecting

features for finding change prone class?

 RQ3: What are the techniques used for predicting

change prone classes?

 RQ4: What are the change proneness prediction

criteria?

Change Proneness Prediction can be formulated as multiple

criteria decision making problem. The goal of the CP

prediction is:

o To help programmers identify change prone class so

that they can focus on such classes

o To help developers deliver higher quality products

in a timely manner by efficiently utilizing the

resources.

o To help developers focus preventive actions such as,

peer-reviews, testing, inspections, and restructuring

efforts on the classes that are sensitive and change

prone

The remainder of this paper is organized as follows. Section 2

describes the research method applied in this review. The

paper is concluded in Section 3.

2. RELATED RESEARCH

2.1 Inclusion Criteria
The main criterion used for including a paper in this review is
that paper should describe research in the field finding change

prone classes. Only papers that describe: (i) methodology for
finding changes, and/or (ii) UML diagrams that helps in
finding attributes to predict changes and/or (iii) Change
Prediction Technique and/or (iv) System/ tool to assist
decision makers in evaluating changes are included in this
review. The paper excludes pure discussion or opinion papers.
There were examples of papers describing the same study in
more than one journal paper. Fortunately, the number of such
cases was small and would not lead to important changes in
the outcome of the analysis. Therefore such papers are also
excluded for that reason.

2.1.1 Contribution of Literature in the Field of

Predicting Change Prone Classes
Change-proneness prediction is associated with change impact
analysis. The former predicts which classes are likely to
change in the future (i.e., change over successive versions),
whereas the latter predicts which classes may be impacted by
a given change. During the development and maintenance of
object-oriented (OO) software, the information on the classes
which are more prone to be changed is very useful.
Developers and maintainers can make more flexible software
by modifying the part of classes which are sensitive to
changes. Traditionally, most change-proneness prediction has
been studied based on source codes. However, change-
proneness prediction in the early phase of software
development can provide an easier way for developing stable
software by modifying the current design or choosing
alternative designs before implementation. A major challenge
in software development process is to advance error detection
to early phases of the software life cycle. For this purpose, the

Verification and Validation (V&V) of UML diagrams play a
very important role in detecting flaws at the design phase. It
has a distinct importance for software security, where it is
crucial to detect security flaws before they can be exploited. .
A powerful change prediction tool can improve maintenance
and evolution tasks in software projects in terms of cost and
time factors. The vast majority of research works have
focused on determining ―where‖ the most change-prone
entities are, and ―how‖ the change will be propagated through
a system. Finding Proneness of software is necessary to
identify fault prone and change prone classes at earlier stages
of development, so that those classes can be given special
attention. Also to improves the quality and reliability of the
software. For corrective and adaptive maintenance we require
to make changes during the software evolution. As such
changes cluster around number of key components in
software, it is important to analyze the frequency of changes
in individual classes and also to identify and show related
changes in multiple classes. Early detection of fault prone and
change prone classes can enables the developers and experts
to spend their valuable time and resources on these areas of
software. Predicting changes in software entities (e.g. source
files) that are more likely to change can help in the efficient
allocation of the project resources. Identifying change-prone
classes can enable developers to pay more attention to classes
with similar characteristics in the future and thus test
resources and time can be used more effectively. Predicting
change prone classes are active key researches is in the field
of software engineering. Contribution of literature in the field
of predicting change prone classes is given in Table 1.

2.1.2 Methodologies for Selecting Features for
Finding Change Prone Class
Authors have used the behavioral dependency measure
(BDM) which helps to predict change-proneness in UML 2.0
models. Behavioral Dependency Analysis (BDA) estimates
the scope to which the functionality of one system unit is
reliant on other units. UML diagrams provide communication
between the customer, system analysts and programmers, who
write the source code. So, it acts as a mediator or information
provider to find out the features. For advance error detection
in early stages of software life cycle PROMELA structure is
used that provides a precise semantics of most of the newly
UML 2.0 introduced combined fragments, allowing the
execution of complex interactions. Many authors used matrix
and list method, for finding the proneness and dependency of
classes. A set of static metrics and change data at class level
from an open-source software product, Datacrow can be
collected. With this data, Pareto’s Law is validated and found

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 3, November 2014

37

that about 80% of the lines changed are located in only 20%
of the classes. Most of the applications of object oriented
software used complex inheritance relationship and

polymorphism

Table 1. Software studies on software change prediction

No References Design of studies Results

1 [16] Proposed a systematic method for estimating

the behavioral dependency measure (BDM)

which enables proper forecast of change-

proneness in UML 2.0 brand.

The anticipated measure is estimated on a

multi-version medium size open-source

project namely JFreeChart. The outcomes

clearly exhibited the fact that the BDM is a

functional pointer and is competent to be

harmonizing to current OO metrics for

change-proneness forecast.

2

[17] Proposed a novel method to forecast

modifications in an object-oriented software

mechanism

The estimation of change-proneness of

components of a software mechanism is an

energetic theme in the arena of software

engineering. Such evaluation may be

profitably used to forecast modification to

diverse classes of a system from one version

to the next.

3 [18]

offered a formal Verification & Validation

method for one of the most admired UML

diagrams viz. sequence diagrams to predict

inaccuracy in the initial stages of the software

life span.

Verification and Validation (V&V) of UML

diagrams undertake a very significant

function in identifying defects at the

planning stage itself. It has a discrete

relevance for software safety, where it is

highly essential to spot safety faults before

they can be subjugated.

4 [19] invention of innovative Neural Network based

Temporal Change Prediction (NNTCP)

structure for recognizing the probable location

of occurrence of alterations called hot spots

Outcomes established that an awareness of

probable time of occurrence of

modifications will motivate managers and

developers to design their preservation

functions with superior proficiency.

5

6

[20]

 [21]

a novel a method of employing class hierarchy

technique

Investigated two methods, matrix and list

method, employed for estimating the proneness

and reliance of classes.

The new model has successfully spotted

change-prone classes and change-proneness

of classes and fault-prone classes and

fault-proneness of classes. Recognizing

the change-prone and inaccuracy prone

classes earlier can help concentrating

interest on these classes.

Intelligently focused on locating reliance of

software that may be obtained by assessing

the proneness of Object Oriented Software.

Two major kinds of proneness were linked

with OO software namely Fault Proneness

and Change Proneness. In the earlier

methods, all needed data was taken

manually and from UML diagrams.

7 [22] gathered a group of static metrics and

modification data at class level from an open-

source software product, Datacrow

Using this data, Pareto’s Law is

authenticated. It is also observed that about

80% of the lines transformed are situated in

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 3, November 2014

38

only 20% of the classes.

8 [24] a model for capturing the fine grained Source

Code Changes (SCC) and their semantics. Also

explored prediction models for whether a

source file will be affected by a certain type of

SCC. Static source code dependency graph,

social network centrality measures and object-

oriented metrics are used for predicting details

of changes

The results show that Neural Network

models can predict categories of SCC types.

Proposed model output a list of the

potentially change-prone files ranked

according to their change-proneness, overall

and per change type category.

9 [25] a novel approach to predict changes in an object

oriented software system. The technique uses

dependencies generated from the UML

diagrams and data obtained from source code of

several releases of a software system using

reverse engineering. For experimental

evaluation a multi-version medium size open

source project namely JFlex, the fast scanner

generator for Java is used

Result predicts the changes early in the life

cycle of the software.

10

11

12

13

[26]

 [4]

[1]

[3]

model constructed using network analysis on

dependency graph. The dependencies are

considered as a low level graph of the entire

system.

Empirical studies to predict to which extent the

existing source code can be used to predict

change prone java interfaces. Study of

corelation between metrics and number of fine-

grained source code changes in interfaces of 10

Java open-source systems

industrial case study predicting impact of

architectural design changes on system quality.

PREDIQT model

Change prone architecture considering different

attributes such as friend functions, coupling,

methods over ridden, direct child classes, no of

descendants

Evaluation on Windows Server 2003, results

that the recall for models built from network

measures is by 10% points higher than for

models built from complexity metrics. Also

experimental studies shows that, network

measures could identify 60% of the binaries

that the Windows developers considered as

critical—twice as many as identified by

complexity metrics.

Results show that the external interface

cohesion metric exhibits the strongest

correlation with the number of changes in

source code.

Results shows that PREDIQT model can be

used practically in industries with limited

resources and efforts

The method was applied to commercial,

embedded real time software to identify and

visualize classes and class interactions that

are most change prone.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 3, November 2014

39

14

15

16

17

18

19

20

[7]

[27]

[28]

[29]

[31]

[12]

[30]

Behavioral dependency analysis of distributed

objects using UML sequence diagrams. To

visualize dependencies a hierarchical

dependency graph is generated.

Proposed method indicates low level quality

parts of a software change frequently

Derived metrics as potential indicators of the

changes prone classes from on release to

another

Presented an empirical study to predict roles

that are more change-prone than others and

whether there are changes that are more likely

to occur to certain roles.

Applied statistical meta-analysis techniques to

investigate the ability of 62 OO metrics to

predict change-proneness

Derived reports on the construction and

validation of fault proneness prediction models

in the context of an object-oriented, evolving,

legacy system.

Presented a novel approach that helps to

identify the critical components in the software

based on Criticality Analysis

set of measures are applied to a case study

to show its usefulness in predicting

behavioral dependencies based on UML

models

Empirical results of the study used to find

change prone classes and which class should

be tested first.

Results show more accurate prediction of

class change-proneness is achieved when

the evolution-based metrics are combined

with product metrics

The results are obtained from the source

code repositories of three different systems

(JHotDraw, Xerces, and Eclipse-JDT) and

from 12 design patterns. Results obtained

confirm the intuitive behavior about

changeability of many roles in design

motifs.

Results from random-effect models reveal

that: (1) size metrics exhibit moderate or

almost moderate ability in discriminating

between change-prone and not change-

prone classes; (2) coupling and cohesion

metrics generally have a lower predictive

ability compared to size metrics; and (3)

inheritance metrics have a poor ability to

discriminate between change-prone and not

change-prone classes

A cross-validated classification analysis

shows that the obtained model has less than

20% of false positives and false negatives,

respectively. Results show that when this

model is applied to predict faults in a new

release, the estimated potential savings in

verification effort is about 29%. In contrast,

the estimated savings in verification effort

drops to 0% when history data is not

included.

Used several components such as fan in, fan

out, information flow, weightage of

methods,weakness of methods, ratio of pure

inherited methods to calculate criticality.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 3, November 2014

40

3. CONCLUSION AND FUTURE

RESEARCH
In this paper we present systematic review on prediction of

change prone classes in object oriented systems. Related to

our research questions we have identified that:

RQ1: What is the contribution of literature in the field of

predicting change prone classes?

RQ2: What are the methodologies for selecting features for

finding change prone class?

RQ3: What are the techniques used for predicting change

prone classes?

RQ4: What are the change proneness prediction criteria?

We have identified some basic problems in the change

proneness prediction method. Review shows that UML

diagrams also play a vital role in change proneness prediction.

Future works for the research community is to (1) focus more

on dynamic parameters rather than on static. (2) Consider

more parameters in calculation of change proneness

prediction (3) focus attention on where the changes will occur

rather than when.

4. REFERENCES
[1] Aida Omerovic, Anette Andresen, Havard Grindheim,

Per Myrseth, Atle Refsdal, Ketil Stolen, and Jon Olnes,

"Idea: a feasibility study in model based prediction of

impact of changes on system quality", In Proceedings of

the Second international conference on Engineering

Secure Software and Systems, pp. 231-240, 2010.

[2] Mario Kušek, Saša Desic, and Darko Gvozdanović,

"UML Based Object-oriented Development: Experience

with Inexperienced Developers", In Proceedings of 6th

International Conference on Telecommunications, pp.

55-60, June 2001.

[3] James M. Bieman, Anneliese A. Andrews, and Helen J.

Yang, "Understanding Change-proneness in OO

Software through Visualization", In Proceedings of the

International Workshop on Program Comprehension,

2003.

[4] Daniele Romano, and Martin Pinzger, "Using Source

Code Metrics to Predict Change-Prone Java Interfaces",

In Proceedings of 27th IEEE International Conference on

Software Maintenance, pp. 303-312, 2011.

[5] András Pataricza, István Majzik, Gábor Huszerl and

György Várnai, "UML-based Design and Formal

Analysis of a Safety-Critical Railway Control Software

Module", In Proceedings of the Conference on Formal

Method for Railway Operations and Control Systems,

2003.

[6] Kathy Dang Nguyen, P.S. Thiagarajan, and Weng-Fai

Wong, "A UML-Based Design Framework for Time-

Triggered Applications ", In Proceedings of 28th IEEE

International Symposium on Real-Time Systems, pp. 39 -

48 , 2007.

[7] Vahid Garousi, Lionel C. Briand and Yvan Labiche,

"Analysis and visualization of behavioral dependencies

among distributed objects based on UML models", In

Proceedings of the 9th international conference on Model

Driven Engineering Languages and Systems, pp. 365-

379, 2006.

[8] Kleanthis C. Thramboulidis , "Using UML for the

Development of Distributed Industrial Process

Measurement and Control Systems", In Proceedings of

IEEE Conference on Control Applications, pp. 1129-

1134, September, 2001.

[9] A. Güneş Koru, and Hongfang Liu, "Identifying and

characterizing change-prone classes in two large-scale

open-source products", Journal of Systems and Software,

Vol. 80, No. 1, pp. 63-73, January, 2007.

[10] Nikolaos Tsantalis, Alexander Chatzigeorgiou, and

George Stephanides, "Predicting the Probability of

Change in Object-Oriented Systems", IEEE Transactions

on Software Engineering, Vol. 31, No. 7, pp. 601-614,

July 2005.

[11] M.K. Abdi, H. Lounis, H. Sahraoui, ―A probabilistic

Approach for Change Impact Prediction in Object-

Oriented Systems‖, In proceedings of 2nd Artificial

Intelligence Methods in Software Engineering

Workshop, 2009.

[12] Erik Arisholm, Lionel C. Briand, and Audun Føyen,

"Dynamic Coupling Measurement for Object-Oriented

Software", IEEE Transactions on Software Engineering,

Vol. 30, No. 8, pp. 491-506, August 2004.

[13] Daniela Glasberg, Khaled El Emam, Walcelio Melo, and

Nazim Madhavji, "Validating Object-Oriented Design

Metrics on a Commercial Java Application", National

Research Council, September 2000.

[14] Mikael Lindvall, "Measurement of Change: Stable and

Change-Prone Constructs in a Commercial C++ System",

In Proceedings of IEEE 6th International Software

Metrics Symposium, pp. 40-49, 1999.

[15] Erik Arisholm, Dag I.K. Sjøberg, "Towards a framework

for empirical assessment of changeability decay", The

Journal of Systems and Software, Vol. 53, No.1, pp. 3-

14, 2000.

[16] Ah-Rim Han, Sang-Uk Jeon, Doo-Hwan Bae, and Jang-

Eui Hong, "Behavioral Dependency Measurement for

Change-Proneness Prediction in UML 2.0 Design

Models", In Proceedings of 32nd Annual IEEE

International Conference on Computer Software and

Applications, pp. 76-83, 2008.

[17] Ali R. Sharafat and Ladan Tahvildari, "Change

Prediction in Object-Oriented Software Systems: A

Probabilistic Approach", Journal of Software, Vol. 3, No.

5, pp. 26-40, May 2008.

[18] V.Lima, C. Talhi, D. Mouheb, M. Debbabi, L. Wang,

and Makan Pourzandi, "Formal Verification and

Validation of UML 2.0 Sequence Diagrams using Source

and Destination of Messages", ELSEVIER Electronic

notes in Theoretical Computer Science, Vol. 254, pp.

143-160, 2009.

[19] Mehdi Amoui, Mazeiar Salehie, and Ladan Tahvildari,

"Temporal Software Change Prediction Using Neural

Networks", International Journal of Software

Engineering and Knowledge Engineering, Vol. 19, No. 7,

pp. 995–1014, 2009.

[20] Malan V. Gaikwad, Akhil Khare, and Aparna S. Nakil ,

"Finding Proneness of S/W using Class Hierarchy

Method", International Journal of Computer

Applications, Vol. 22, No. 6, pp. 34-38, May 2011.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 3, November 2014

41

[21] Malan V.Gaikwad, Aparna S.Nakil, and Akhil Khare,

"Class hierarchy method to find Change-Proneness ",

International Journal on Computer Science and

Engineering, Vol. 3 No. 1, pp. 21-27, Jan 2011.

[22] Xiaoyan Zhu, Qinbao Song, and Zhongbin Sun,

"Automated Identification of Change-Prone Classes in

Open Source Software Projects", Journal of Software,

Vol. 8, No. 2, pp. 361-366, February 2013.

[23] Nachiappan Nagappan, Andreas Zeller ,Thomas

Zimmermann, Kim Herzig and Brendan Murphy,

"Change Bursts as Defect Predictors", In proceedings of

IEEE 21st International Symposium on Software

Reliability Engineering, pp. 309-318, November 2010.

[24] Emanuel Giger, Martin Pinzger and Harald C. Gall, "Can

We Predict Types of Code Changes? An Empirical

Analysis", In Proceedings of 9th IEEE Working

Conference on Mining Software Repositories, pp. 217-

226, 2012.

[25] Ali R. Sharafat and Ladan Tahvildari, "A Probabilistic

Approach to Predict Changes in Object-Oriented

Software Systems", In Proceedings of IEEE 11th

European Conference on Software Maintenance and

Reengineering, pp. 27-38, 2007.

[26] T Zimmermann, N Nagappan, ― Predicting defects

using network analysis on dependency graphs‖, In

Proceedings of the 30th international conference on

Software engineering,pp 531-540,2008

[27] S Eski, F Buzluca, ―An empirical study on object-

oriented metrics and software evolution in order to

reduce testing costs by predicting change-prone classes‖

In Proceedings of IEEE Fourth International Conference

on Software Testing ,Verification and Validation.,2011,

pp-566-571

[28] Mahmoud O. Elish, Mojeeb Al-Rahman Al-Khiaty ―A

suite of metrics for quantifying historical changes to

predict future change-prone classes in object-oriented

software‖ in proceedings of Journal of Software:

Evolution and Process Volume 25, Issue 5, pages 407–

437, May 2013

[29] Di Penta, M., Cerulo, L.,Guéhéneuc, Y. , Antoniol, G.

An empirical study of the relationships between design

pattern roles and class change proneness‖ in proceedings

of IEEE International Conference on software

maintenance,pp 217-226,Sept,2008

[30] D Jeyamala, S Balamurugan, A Jalila ―Fault-prone

Components Identification for Real-time Complex

systems based on Criticality Analysis‖ In Proceedings of

International Journal of Computer Science Issues

Vol3,Issue2,pp 17-23,2013

[31] Hongmin Lu, Yuming Zhou, Baowen Xu, Hareton

Leung, Lin Chen- The ability of object-oriented metrics

to predict change-proneness: a meta-analysis. Empirical

Software Engineering June 2012, Volume 17, Issue 3, pp

200-242

IJCATM : www.ijcaonline.org

http://link.springer.com/search?facet-author=%22Hongmin+Lu%22
http://link.springer.com/search?facet-author=%22Yuming+Zhou%22
http://link.springer.com/search?facet-author=%22Baowen+Xu%22
http://link.springer.com/search?facet-author=%22Hareton+Leung%22
http://link.springer.com/search?facet-author=%22Hareton+Leung%22
http://link.springer.com/search?facet-author=%22Hareton+Leung%22
http://link.springer.com/search?facet-author=%22Lin+Chen%22
http://link.springer.com/journal/10664
http://link.springer.com/journal/10664
http://link.springer.com/journal/10664
http://link.springer.com/journal/10664/17/3/page/1

